Ecology and Environmental Sciences ›› 2025, Vol. 34 ›› Issue (11): 1788-1801.DOI: 10.16258/j.cnki.1674-5906.2025.11.012
• Review • Previous Articles Next Articles
ZHAO Wenhao(
), GAO Yifei, CHEN Haiyan, WANG Junhao, WANG Meiying, CHEN Ying, MA Jin*(
), WU Fengchang
Received:2025-04-01
Online:2025-11-18
Published:2025-11-05
赵文浩(
), 高一斐, 陈海燕, 王君浩, 王美英, 陈颖, 马瑾*(
), 吴丰昌
通讯作者:
E-mail: 作者简介:赵文浩(1998年生),男,博士研究生,研究方向为土壤环境基准。E-mail: wenhaozhao698@163.com
基金资助:CLC Number:
ZHAO Wenhao, GAO Yifei, CHEN Haiyan, WANG Junhao, WANG Meiying, CHEN Ying, MA Jin, WU Fengchang. Preliminary Study on the Theoretical Framework of Multi-Element Synergistic Environmental Criteria for Human Health in Soil and Groundwater[J]. Ecology and Environmental Sciences, 2025, 34(11): 1788-1801.
赵文浩, 高一斐, 陈海燕, 王君浩, 王美英, 陈颖, 马瑾, 吴丰昌. 土壤与地下水多要素协同作用人体健康环境基准理论初探[J]. 生态环境学报, 2025, 34(11): 1788-1801.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2025.11.012
| 暴露情景 | 居住用地 | 公园用地 | 商服 用地 | 企业 用地 | |||||
|---|---|---|---|---|---|---|---|---|---|
| 城市居住用地 | 农村居住用地 | 社区公园 | 其他公园 | ||||||
| 直接暴露途径 | 经口摄入 | 致癌污染物 | 终生危害 | 终生危害 | 终生危害 | 终生危害 | 成人期 | 成人期 | |
| 非致癌污染物 | 儿童期 | 儿童期 | 儿童期 | 儿童期 | 成人期 | 成人期 | |||
| 皮肤接触 | 致癌污染物 | 终生危害 | 终生危害 | 终生危害 | 终生危害 | 成人期 | 成人期 | ||
| 非致癌污染物 | 儿童期 | 儿童期 | 儿童期 | 儿童期 | 成人期 | 成人期 | |||
| 呼吸吸入 | 致癌污染物 | 终生危害 | 终生危害 | 终生危害 | 终生危害 | 成人期 | 成人期 | ||
| 非致癌污染物 | 儿童期 | 儿童期 | 儿童期 | 儿童期 | 成人期 | 成人期 | |||
| 间接暴露途径 | 吸入室外空气中来自土壤的气态污染物 | 致癌污染物 | 终生危害 | 终生危害 | 终生危害 | 终生危害 | 成人期 | 成人期 | |
| 非致癌污染物 | 儿童期 | 儿童期 | 儿童期 | 儿童期 | 成人期 | 成人期 | |||
| 吸入室内空气中来自土壤的气态污染物 | 致癌污染物 | 终生危害 | 终生危害 | - | - | 成人期 | 成人期 | ||
| 非致癌污染物 | 儿童期 | 儿童期 | - | - | 成人期 | 成人期 | |||
| 自产作物摄入 | 致癌污染物 | - | 终生危害 | - | - | - | - | ||
| 非致癌污染物 | - | 儿童期 | - | - | - | - | |||
Table 1 Exposure pathways and scenarios for various land use types under S&G MESEC-HH
| 暴露情景 | 居住用地 | 公园用地 | 商服 用地 | 企业 用地 | |||||
|---|---|---|---|---|---|---|---|---|---|
| 城市居住用地 | 农村居住用地 | 社区公园 | 其他公园 | ||||||
| 直接暴露途径 | 经口摄入 | 致癌污染物 | 终生危害 | 终生危害 | 终生危害 | 终生危害 | 成人期 | 成人期 | |
| 非致癌污染物 | 儿童期 | 儿童期 | 儿童期 | 儿童期 | 成人期 | 成人期 | |||
| 皮肤接触 | 致癌污染物 | 终生危害 | 终生危害 | 终生危害 | 终生危害 | 成人期 | 成人期 | ||
| 非致癌污染物 | 儿童期 | 儿童期 | 儿童期 | 儿童期 | 成人期 | 成人期 | |||
| 呼吸吸入 | 致癌污染物 | 终生危害 | 终生危害 | 终生危害 | 终生危害 | 成人期 | 成人期 | ||
| 非致癌污染物 | 儿童期 | 儿童期 | 儿童期 | 儿童期 | 成人期 | 成人期 | |||
| 间接暴露途径 | 吸入室外空气中来自土壤的气态污染物 | 致癌污染物 | 终生危害 | 终生危害 | 终生危害 | 终生危害 | 成人期 | 成人期 | |
| 非致癌污染物 | 儿童期 | 儿童期 | 儿童期 | 儿童期 | 成人期 | 成人期 | |||
| 吸入室内空气中来自土壤的气态污染物 | 致癌污染物 | 终生危害 | 终生危害 | - | - | 成人期 | 成人期 | ||
| 非致癌污染物 | 儿童期 | 儿童期 | - | - | 成人期 | 成人期 | |||
| 自产作物摄入 | 致癌污染物 | - | 终生危害 | - | - | - | - | ||
| 非致癌污染物 | - | 儿童期 | - | - | - | - | |||
| 污染类型 | 化学协同 | 物理协同 | 生物协同 | 主导机制 |
|---|---|---|---|---|
| 重金属 | 4 | 3 | 2 | 化学协同 |
| 挥发性有机物 | 3 | 4 | 1 | 物理协同 |
| 持久性有机物 | 2 | 3 | 4 | 生物协同 |
Table 2 Multi-elementr & synergistic mechanism correlation matrix
| 污染类型 | 化学协同 | 物理协同 | 生物协同 | 主导机制 |
|---|---|---|---|---|
| 重金属 | 4 | 3 | 2 | 化学协同 |
| 挥发性有机物 | 3 | 4 | 1 | 物理协同 |
| 持久性有机物 | 2 | 3 | 4 | 生物协同 |
| [45] | National Railway Administration of the People’s Republic of China, 2021. Code for geotechnical test of railway engineering: TB 10102—2021[S]. Beijing: China Railway Publishing House. |
| [46] | 郭芷琳, 马瑞, 张勇, 等, 2021. 地下水污染物在高度非均质介质中的迁移过程: 机理与数值模拟综述[J]. 中国科学: 地球科学, 51(11): 1817-1836. |
| GUO Z L, MA R, ZHANG Y, et al., 2021. Contaminant transport in heterogeneous aquifers: A critical review of mechanisms and numerical methods of non-Fickian dispersion[J]. Science China Earth Sciences, 51(11): 1817-1836. | |
| [47] | 韩丰磊, 李婷, 孙慧, 等, 2020. 废弃石化用地土壤和地下水污染调查与评估[J]. 土壤通报, 51(5): 1238-1245. |
| HAN F L, LI T, SUN H, et al., 2020. Investigation and assessment of pollution situation of soil and groundwater in abandoned petrochemical sites[J]. Chinese Journal of Soil Science, 51(5): 1238-1245. | |
| [48] | 郝辰宇, 钟茂生, 姜林, 等, 2023. 基于土壤气的场地VOCs污染刻画及风险评估[J]. 中国环境科学, 43(11): 5700-5708. |
| HAO C Y, ZHONG M S, JIANG L, et al., 2023. Characterization and vapor intrusion risk assessment of VOCs in contaminated sites based on soil gas[J]. China Environmental Science, 43(11): 5700-5708. | |
| [49] | 侯德义, 2022. 我国工业场地地下水污染防治十大科技难题[J]. 环境科学研究, 35(9): 2015-2025. |
| HOU D Y, 2022. Ten grand challenges for groundwater pollution prevention and remediation at contaminated sites in China[J]. Research of Environmental Sciences, 35(9): 2015-2025. | |
| [50] | 胡立堂, 田蕾, 王岽, 等, 2023. 考虑生物降解的含水层苯酚自然衰减的数值模拟研究[J]. 地质科技通报, 42(4): 37-46. |
| HU L T, TIAN L, WANG D, et al., 2023. Numerical simulation studies on monitored natural attenuation of phenol in aquifers considering the biodegradation effect[J]. Bulletin of Geological Science and Technology, 42(4): 37-46. | |
| [51] | 胡枭, 樊耀波, 王敏健, 1999. 影响有机污染物在土壤中的迁移、转化行为的因素[J]. 环境科学进展, 7(5): 14-22. |
| HU X, FAN Y B, WANG M J, 1999. Factors affecting behavior and fate of organic pollutants in soil[J]. Advances in Environmental Science, 7(5): 14-22. | |
| [52] | 黄婷, 段星春, 陶雪琴, 等, 2017. 2,2’, 4,4’-四溴联苯醚高效好氧降解菌的鉴定及其降解路径[J]. 环境科学学报, 37(12): 4705-4714. |
| HUANG T, DUAN X C, TAO X Q, et al., 2017. Identification of an aerobic strain efficiently degrading 2,2’,4,4’-tetrabromodiphenyl ether and its biodegradation pathway[J]. Acta Scientiae Circumstantiae, 37(12): 4705-4714. | |
| [53] | 李吉鸿, 钟茂生, 姜林, 等, 2023. 非均质场地土壤VOCs通量衰减预测与风险评估[J]. 中国环境科学, 43(11): 5924-5932. |
| LI J H, ZHONG M S, JIANG L, et al., 2023. Estimation of VOCs’ mass flux depletion and risk assessment at complex contaminated sites[J]. China Environmental Science, 43(11): 5924-5932. | |
| [54] | 李梦茹, 贡磊, 王清, 等, 2025. 持续干旱条件下江汉平原厚层黏性土土壤水分运移特征研究[J]. 华南地质, 41(1): 216-228. |
| LI M R, GONG L, WANG Q, et al., 2025. Study on soil moisture transport characteristics of thick layered cohesive soil in Jianghan plain under persistent drought conditions[J]. South China Geology, 41(1): 216-228. | |
| [55] | 林春骏, 刘济宁, 周林军, 等, 2014. 化学品生物降解影响因素研究进展[J]. 环境工程技术学报, 4(6): 525-530. |
| LIN C J, LIU J N, ZHOU L J, et al., 2014. Research progress on the influencing factors of biodegradation of chemicals[J]. Journal of Environmental Engineering Technology, 4(6): 525-530. | |
| [56] | 刘奇, 王晟, 陈文, 等, 2024. 典型有色金属冶炼区重金属污染特征及生态风险评价[J]. 农业环境科学学报, 43(2): 308-322. |
| LIU Q, WANG S, CHEN W, et al., 2024. Pollution characteristics and ecological risk assessment of heavy metals in typical non-ferrous metal smelting areas[J]. Journal of Agro-Environment Science, 43(2): 308-322. | |
| [57] | 鹿亮亮, 刘志彬, 魏启炳, 等, 2019. 热强化有机污染物自土中挥发过程的试验与理论研究[J]. 岩土工程学报, 41(S2): 201-204. |
| LU L L, LIU Z B, WEI Q B, et al., 2019. Experimental and theoretical studies on volatilization process of heat-enhanced organic pollutants from soils[J]. Chinese Journal of Geotechnical Engineering, 41(S2): 201-204. | |
| [58] | 吕燕, 张巍, 黄流雅, 等, 2009. 挥发性有机污染物水中亨利常数的简易测定方法[J]. 华东理工大学学报(自然科学版), 35(6): 860-865. |
| LÜ Y, ZHANG W, HUANG L Y, et al., 2009. Methods for estimating Henry’s law constants of volatile organic water pollutants[J]. Journal of East China University of Science and Technology (Natural Science Edition), 35(6): 860-865. | |
| [59] | 马瑾, 等, 2021. 世界主要发达国家土壤环境基准与标准理论方法研究[M]. 北京: 科学出版社. |
| MA J, et al., 2021. Research on theoretical methods for soil environmental criteria and standards in major developed countries[M]. Beijing: Science Press. | |
| [60] | 马瑾, 等, 2023. 中国土壤环境基准理论方法与实践[M]. 北京: 科学出版社. |
| MA J, et al., 2023. Theoretical methods and practices of soil environmental criteria in China[M]. Beijing: Science Press. | |
| [61] | 马瑾, 骆永明, 胡清, 等, 2025. 中国土壤环境基准与标准研究五十年: 发展历程与未来展望[J]. 环境科学研究, https://doi.org/10.13198/j.issn.1001-6929.2025.06.03 |
| MA J, LUO Y M, HU Q, et al., 2025. Fifty years of research on soil environment criteria and standard in China: Development process and future prospect[J]. Research of Environmental Sciences. | |
| [62] | 穆童, 王明玉, 王月, 2024. 含低渗透镜体包气带典型LNAPL迁移分布模拟研究[J]. 安全与环境工程, 31(6): 189-199. |
| MU T, WANG M Y, WANG Y, 2024. Numerical investigation on migration and distribution of a typical LNAPL in the vadose zone with low permeability lens[J]. Safety and Environmental Engineering, 31(6): 189-199. | |
| [63] | 阮冬梅, 卞建民, 王倩, 等, 2021. 低渗透介质中轻非水相流体迁移转化规律[J]. 中国环境科学, 41(4): 1815-1823. |
| RUAN D M, BIAN J M, WANG Q, et al., 2021. The migration and transformation of light non-aqueous fluid in silty clay[J]. China Environmental Science, 41(4): 1815-1823. | |
| [64] | 苏燕, 程卫国, 李亚斌, 等, 2023. 基于导则模型计算的污染地块挥发性有机物空气、土壤气限值研究[J]. 环境保护科学, 49(3): 121-129. |
| SU Y, CHENG W G, LI Y B, et al., 2023. Study on acceptable levels of volatile organic compounds in air and soil gas in contaminated sites based on Guideline model[J]. Environmental Protection Science, 49(3): 121-129. | |
| [65] | 滕应, 骆永明, 沈仁芳, 等, 2020. 场地土壤-地下水污染物多介质界面过程与调控研究进展与展望[J]. 土壤学报, 57(6): 1333-1340. |
| TENG Y, LUO Y M, SHEN R F, et al., 2020. Research progress and perspective of the multi-medium interface process and regulation principle of pollutants in site soil-groundwater[J]. Acta Pedologica Sinica, 57(6): 1333-1340. | |
| [66] | 田亦琦, 2023. 典型焦化场地土壤多环芳烃污染特征及生态风险评估[D]. 北京: 中国环境科学研究院. |
| TIAN Y Q, 2023. Characterization and ecological risk assessment of polycyclic aromatic hydrocarbons contamination in soil of a typical coking site[D]. Beijing: Chinese Research Academy of Environmental Sciences. | |
| [67] | 王贝贝, 曹素珍, 赵秀阁, 等, 2014. 我国成人土壤暴露相关行为模式研究[J]. 环境与健康杂志, 31(11): 971-974. |
| WANG B B, CAO S Z, ZHAO X G, et al., 2014. Investigation of soil contact time-related activity pattern of Chinese adults[J]. Journal of Environment and Health, 31(11): 971-974. | |
| [68] | 王锦博, 贺志毅, 王亚楠, 等, 2024. 某污染场地土壤与地下水协同修复阈值[J]. [J/OL]. 吉林大学学报(地球科学版), 1-10 [2025-07-22]. https://doi.org/10.13278/j.cnki.jjuese.20240020. |
| WANG J B, HE Z Y, WANG Y N, et al., 2024. Soil and groundwater synergistic remediation thresholds at a contaminated site[J]. Journal of Jilin University (Earth Science Edition), 1-10[2025-07-22]. https://doi.org/10.13278/j.cnki.jjuese.20240020. | |
| [69] | 王蓉, 梁雨蕾, 陈忠清, 2024. 长三角地区环境水文地质特征及其对重金属污染物迁移的影响[J]. 上海国土资源, 45(2): 48-52. |
| WANG R, LIANG Y L, CHEN Z Q, 2024. Study on environmental hydrogeological characteristics of the Yangtze River Delta and their impact on the transport of heavy metal contaminants[J]. Shanghai Land & Resources, 45(2): 48-52. | |
| [70] |
王晓宇, 屈雅静, 赵文浩, 等, 2024. 美国场地土壤筛选值研究及其对中国土壤环境基准研究的启示[J]. 地学前缘, 31(2): 64-76.
DOI |
|
WANG X Y, QU Y J, ZHAO W H, et al., 2024. Soil screening levels in the United States and implication for soil evaluation in China[J]. Earth Science Frontiers, 31(2): 64-76.
DOI |
|
| [71] | 吴丰昌, 等, 2020. 中国环境基准体系中长期路线图[M]. 第2版. 北京: 科学出版社. |
| WU F C, et al., 2020. Long-term roadmap for china’s environmental criteria system[M]. Second Edition. Beijing: Science Press. | |
| [72] | 吴颐杭, 杨书慧, 刘奇缘, 等, 2022. 荷兰人体健康土壤环境基准与标准研究及其对我国的启示[J]. 环境科学研究, 35(1): 265-275. |
| WU Y H, YANG S H, LIU Q Y, et al., 2022. Research on soil environmental criteria and standards for human health in the Netherlands and its enlightenment to China[J]. Research of Environmental Sciences, 35(1): 265-275. | |
| [73] |
熊贵耀, 吴吉春, 杨蕴, 等, 2022. 有机污染土壤-地下水系统中的微生物场及多场耦合研究[J]. 地学前缘, 29(3): 189-199.
DOI |
|
XIONG G Y, WU J C, YANG Y, et al., 2022. Microbial fields and multi-field coupling in organic contaminated soil-groundwater systems[J]. Earth Science Frontiers, 29(3): 189-199.
DOI |
|
| [74] | 徐玉林, 2004. 石油污染土壤降解与土壤的环境关系[J]. 农机化研究 (6): 86-88. |
| XU Y L, 2004. The relations between the reductions of the soil contaminated by petroleum hydrocarbon and the soil environment[J]. Journal of Agricultural Mechanization Research (6): 86-88. | |
| [75] | 晏井春, 宋静, 孙钰沅, 等, 2024. 我国工业场地土壤污染防治十大科技问题与对策[J]. 环境科学研究, 37(12): 2733-2744. |
| YAN J C, SONG J, SUN Y Y, et al., 2024. Ten scientific & technological challenges and strategies for soil pollution prevention and remediation of contaminated industrial sites in China[J]. Research of Environmental Sciences, 37(12): 2733-2744. | |
| [76] |
杨悦锁, 王园园, 宋晓明, 等, 2017. 土壤和地下水环境中胶体与污染物共迁移研究进展[J]. 化工学报, 68(1): 23-36.
DOI |
| YANG Y S, WANG Y Y, SONG X M, et al., 2017. Co-transport of colloids and facilitated contaminants in subsurface environment[J]. CIESC Journal, 68(1): 23-36. | |
| [77] | 杨蕴, 崔孜铭, 熊贵耀, 等, 2023. 温度耦合驱动下土壤-地下水有机污染物迁移规律与模拟研究进展[J]. 土壤, 55(3): 464-473. |
| YANG Y, CUI Z M, XIONG G Y, et al., 2023. Research progresses of simulation and migration patterns on organic pollutants in soil and groundwater driven by thermal coupling[J]. Soils, 55(3): 464-473. | |
| [78] | 殷乐宜, 魏亚强, 陈坚, 等, 2020. 土壤和地下水耦合数值模拟研究进展[J]. 环境保护科学, 46(3): 127-131. |
| YIN L Y, WEI Y Q, CHEN J, et al., 2020. Research progress of coupled numerical simulation of soil and groundwater[J]. Environmental Protection Science, 46(3): 127-131. | |
| [79] | 喻艳红, 张桃林, 李清曼, 等, 2011. 温度和水土比对红壤吸附低分子量有机酸的影响[J]. 土壤, 43(1): 50-55. |
| YU Y H, ZHANG T L, LI Q M, et al., 2011. Effects of temperature and solution/soil ratio on adsorption of low molecular weight organic acids in red soil[J]. Soils, 43(1): 50-55. | |
| [80] | 袁二双, 周秋文, 严卫红, 等, 2023. 喀斯特林地冬季土壤水分对降雨的响应特征[J]. 生态科学, 42(4): 56-63. |
| YUAN E S, ZHOU Q W, YAN W H, et al., 2023. Response of soil moisture to rainfall in forest land in a karst region during winter season[J]. Ecological Science, 42(4): 56-63. | |
| [81] | 袁林杰, 彭芃, 申泰铭, 等, 2019. 石油烃降解菌的研究进展[J]. 生命科学, 31(10): 1088-1097. |
| YUAN L J, PENG P, SHEN T M, et al., 2019. Review on petroleum hydrocarbon-degrading microbes[J]. Chinese Bulletin of Life Sciences, 31(10): 1088-1097. | |
| [82] | 张晶, 2020. 人体健康风险评估中水文地质相关参数获取方法研究——以上海技术导则为例[J]. 中国资源综合利用, 38(3): 154-157. |
| ZHANG J, 2020. Study on methods of obtaining hydrogeological related parameters in human health risk assessment: Taking Shanghai technical guidelines as an example[J]. China Resources Comprehensive Utilization, 38(3): 154-157. | |
| [83] | 张敬晓, 汪星, 汪有科, 等, 2017. 黄土丘陵区林地干化土壤降雨入渗及水分迁移规律[J]. 水土保持学报, 31(3): 231-238. |
| ZHANG J X, WANG X, WANG Y K, et al., 2017. Regularities of rainfall infiltration and water migration in woodland drying soil in the loess hilly region[J]. Journal of Soil and Water Conservation, 31(3): 231-238. | |
| [84] | 张可, 关允, 罗鸿兵, 等, 2017. 一株五溴联苯醚 (BDE-99) 降解菌的分离、鉴定及降解特性[J]. 环境工程学报, 11(5): 3287-3294. |
| ZHANG K, GUAN Y, LUO H B, et al., 2017. Isolation, identification and degradation characteristics of decabromo diphenyl ethers (BDE-99) -degrading strain[J]. Chinese Journal of Environmental Engineering, 11(5): 3287-3294. | |
| [85] | 张施阳, 李晓曼, 吉敏, 等, 2025. 基于多介质监测的污染场地VOCs赋存特征及健康风险评估[J]. 环境化学, 44(5): 1745-1756. |
| ZHANG S Y, LI X M, JI M, et al., 2025. Occurrence characteristics and health risk assessment of VOCs at contaminated sites based on multi-media monitoring[J]. Environmental Chemistry, 44(5): 1745-1756. | |
| [86] | 张文毓, 钟茂生, 姜林, 等, 2023. 污染场地中VOCs的环境行为与调查评估技术[J]. 中国环境科学, 43(6): 2814-2822. |
| ZHANG W Y, ZHONG M S, JIANG L, et al., 2023. Environmental behavior, investigation and risk assessment technologies of VOCs in contaminated sites[J]. China Environmental Science, 43(6): 2814-2822. | |
| [87] | 赵雷, 2015. 饱和多孔介质内多组分非水相有机物溶解传递机制研究[D]. 天津: 天津大学. |
| ZHAO L, 2015. Dissolution and transfer mechanism of multi- components non-aqueous phase organic liquids in saturated porous media[D]. Tianjin: Tianjin University. | |
| [88] | 赵勇胜, 2024. 试论场地污染水文地质学[J]. 水文地质工程地质, 51(3): 222-228. |
| ZHAO Y S, 2024. Discussion on the site contamination hydrogeology[J]. Hydrogeology and Engineering Geology, 51(3): 222-228. | |
| [89] | 中共中央, 国务院, 2021. 中共中央国务院关于深入打好污染防治攻坚战的意见[EB/OL]. (2021-11-07) [2025-03-16]. https://www.gov.cn/zhengce/2021-11/07/content_5649656.htm. |
| Central Committee of the Communist Party of China, The State Council of the People’s Republic of China, 2021. Opinions of the CPC Central Committee and the State Council on Deepening the Fight Against Pollution[EB/OL]. (2021-11-07) [2025-03-16]. | |
| [90] | 中华人民共和国生态环境部, 2019. 建设用地土壤污染风险评估技术导则: HJ 25.3—2019[S]. 北京: 中国环境出版集团. |
| Ministry of Ecology and Environment of the People’s Republic of China, 2019. Technical guidelines for risk assessment of contaminated sites: HJ 25.3—2019[S]. Beijing: China Environmental Publishing Group. | |
| [91] | 中华人民共和国住房和城乡建设部, 2019. 土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国建筑工业出版社, 中国计划出版社. |
| Ministry of Housing and Urban-Rural Development of the People’s Republic of China, 2019. Standard for geotechnical testing method: GB/T 50123—2019[S]. Beijing: China Architecture & Building Press, China Planning Press. | |
| [92] |
钟林健, 郭朝晖, 谢慧民, 等, 2025. 地下水位对尾矿中重金属释放及其在土壤中吸附的影响研究[J]. 地学前缘, 32(2): 484-494.
DOI |
|
ZHONG L J, GUO Z H, XIE H M, et al., 2025. The influence of water table on the release of heavy metals from tailings and their adsorption in soil[J]. Earth Science Frontiers, 32(2): 484-494.
DOI |
|
| [93] | 朱辉, 叶淑君, 吴吉春, 等, 2021. 中国典型有机污染场地土层岩性和污染物特征分析[J]. 地学前缘, 26(5): 26-34. |
| ZHU H, YE S J, WU J C, et al., 2021. Characteristics of soil lithology and pollutants in typical contamination sites in China[J]. Earth Science Frontiers, 26(5): 26-34. | |
| [1] | APPELO C A J, POSTMA D, PARKHURST D L, 2020. Geochemistry, Groundwater and Pollution[M]. Boca Raton: CRC Press. |
| [2] | ASTM International, 2015. Standard Guide for Risk-Based Corrective Action (E2081-00(2015))[S]. West Conshohocken, PA: ASTM. |
| [3] | BEAR J, CHENG A H D, 2010. Modeling groundwater flow and contaminant transport[M]. Dordrecht: Springer. |
| [4] | BEYER C, POPP S, BAUER S, 2016. Simulation of temperature effects on groundwater flow, contaminant dissolution, transport and biodegradation due to shallow geothermal use[J]. Environmental Earth Sciences, 75(18): 1244. |
| [5] | BRADL H B, GUPTA S K, SCHULIN R, 2021. Adsorption of heavy metal ions on soils and soil constituents: Recent advances[J]. Journal of Hazardous Materials, 416: 125735. |
| [6] | Bundesrepublik Deutschland, 1998. Federal Soil Protection Act: BBodSchG of 17 March 1998 (Bundesgesetzblatt. I p. 502)[S]. Cologne: Bundesanzeiger Verlag GmbH. |
| [7] | Bundesrepublik Deutschland, 1999. Federal Soil Protection and Contaminated Sites Ordinance: BBodSchV of 12 July 1999 (Bundesgesetzblatt. I p. 1554)[S]. Cologne: Bundesanzeiger Verlag GmbH. |
| [8] | Bundesrepublik Deutschland, 2009. Water Resources Management Act: WHG of 31 July 2009 (Bundesgesetzblatt. I p. 2585)[S]. Cologne: Bundesanzeiger Verlag GmbH. |
| [9] |
CHEN W, KAN A T, FU G M, et al., 2000. Factors affecting the release of hydrophobic organic contaminants from natural sediments[J]. Environmental Toxicology and Chemistry, 19(10): 2401-2408.
DOI URL |
| [10] | COLOMBANO S, DAVARZANI H, VAN HULLEBUSCH E D, et al., 2020. Insitu thermal treatments and enhancements: Theory and case study[M]// Environmental Soil Remediation and Rehabilitation. Cham: Springer: 149-209. |
| [11] |
DAI L W, MENG J, ZHAO X, et al., 2022. High-spatial-resolution VOCs emission from the petrochemical industries and its differential regional effect on soil in typical economic zones of China[J]. Science of the Total Environment, 827: 154318.
DOI URL |
| [12] | DONALDSON S G, MILLER G C, MILLER W W, 1992. Remediation of gasoline-contaminated soil by passive volatilization[J]. Journal of Environmental Quality, 21(1): 94-102. |
| [13] | Environment Agency, 2006. Land Contamination: Risk Management[R]. Bristol: Environment Agency. |
| [14] | FETTER C W, BOVING T, KREAMER D K, 2018. Contaminant Hydrogeology[M]. Long Grove: Waveland Press. |
| [15] |
FRIIS A K, HEIMANN A C, JAKOBSEN R, et al., 2007. Temperature dependence of anaerobic TCE-dechlorination in a highly enriched Dehalococcoides-containing culture[J]. Water Research, 41: 355-364.
PMID |
| [16] |
GUO S H, LIU Z L, LI Q S, et al., 2016. Leaching heavy metals from the surface soil of reclaimed tidal flat by alternating seawater inundation and air drying[J]. Chemosphere, 157: 262-270.
DOI URL |
| [17] |
HERON G, CHRISTENSEN T H, ENFIELD C G, 1998. Henry’s law constant for trichloroethylene between 10 and 95 ℃[J]. Environmental Science & Technology, 32(10): 1433-1437.
DOI URL |
| [18] | HILL S L, 2009. Engineering and design: Design in situ thermal remediation[R]. Washington D. C: U.S. Army Corps of Engineers. |
| [19] | HU W X, ZHANG J, LI D, et al., 2025. Study on factors influencing the transport and transformation of polycyclic aromatic hydrocarbons in soil-groundwater systems[J]. Emerging Contaminants, 11(2): 100472. |
| [20] |
HUANG X J, DU H, DENG X L, et al., 2021. New insights into the evolution of bacterial community during the domestication of phthalate-degrading consortium[J]. Journal of Cleaner Production, 303: 127064.
DOI URL |
| [21] | KONG L J, 2004. Characterization of mineral oil, coal tar and soil properties and investigation of mechanisms that affect coal tar entrapment in and removal from porous media[D]. Atlanta, GA, USA: Georgia Institute of Technology. |
| [22] |
LEAHY J G, COLWELL R R, 1990. Microbial degradation of hydrocarbons in the environment[J]. Microbiological Reviews, 54(3): 305-315.
DOI PMID |
| [23] |
LI J X, WANG Q, OREMLAND R S, et al., 2016. Microbial antimony biogeochemistry: Enzymes, regulation, and related metabolic pathways[J]. Applied and Environmental Microbiology, 82(18): 5482-5495.
DOI PMID |
| [24] |
LIU Q Y, WU Y H, ZHAO W H, et al., 2023. Soil environmental criteria in six representative developed countries: soil management targets, and human health and ecological risk assessment[J]. Critical Reviews in Environmental Science and Technology, 53(5): 577-600.
DOI URL |
| [25] | PAPRY R I, ISHII K, MAMUN M A A, et al., 2019. Arsenic biotransformation potential of six marine diatom species: Effect of temperature and salinity[J]. Scientific Reports, 9(1): 10226. |
| [26] |
QIU H, LOU Z Y, GU X Y, et al., 2022. Smart 6S roadmap for deciphering the migration and risk of heavy metals in soil and groundwater systems at brownfield sites nationwide in China[J]. Science Bulletin, 67(13): 1295-1299.
DOI PMID |
| [27] | SPOSITO G, 2016. The chemistry of soils[M]. Oxford: Oxford University Press. |
| [28] |
TRAN T H H, KIM S H, JO H Y, et al., 2022. Transient behavior of arsenic in vadose zone under alternating wet and dry conditions: A comparative soil column study[J]. Journal of Hazardous Materials, 422: 126957.
DOI URL |
| [29] | United States Environmental Protection Agency, 1980. Comprehensive Environmental Response, Compensation, and Liability Act[R]. Public Law 96-510, 42 U.S.C. 9601-9675. |
| [30] | VARJANI S J, THAKER M B, UPASANI V N, 2014. Optimization of growth conditions of native hydrocarbon utilizing bacterial consortium “HUBC” obtained from petroleum pollutant contaminated sites[J]. Indian Journal of Applied Research, 4(10): 474-476. |
| [31] |
WANG M Y, ZHAO W H, WU X C, et al., 2025. Advanced three-dimensional prediction model based on stable machine learning for soil pollution: A case study from a contaminated site in southern China[J]. Journal of Hazardous Materials, 494: 138561.
DOI URL |
| [32] | WU Y H, ZHAO W H, MA J, et al., 2022. Human health risk-based soil environmental criteria (SEC) for park soil in Beijing, China[J]. Environmental Research, 212(Part C): 113384. |
| [33] |
XU R, SUN X X, HAN F, et al., 2020. Impacts of antimony and arsenic co-contamination on the river sedimentary microbial community in an antimony-contaminated river[J]. Science of The Total Environment, 713: 136451.
DOI URL |
| [34] | YADAV B K, SHRESTHA S R, HASSANIZADEH S M, 2012. Biodegradation of toluene under seasonal and diurnal fluctuations of soil-water temperature[J]. Water, Air, & Soil Pollution, 223: 3579-3588. |
| [35] |
YAN M Q, MA J, ZHANG C Y, et al., 2017. Optical property of dissolved organic matters (DOMs) and its link to the presence of metal ions in surface freshwaters in China[J]. Chemosphere, 188: 502-509.
DOI PMID |
| [36] |
ZHANG R H, JIANG L, ZHONG M S, et al., 2019. Applicability of soil concentration for VOC-contaminated site assessments explored using field data from the Beijing-Tianjin-Hebei urban agglomeration[J]. Environmental Science & Technology, 53(2): 789-797.
DOI URL |
| [37] | 陈安冉, 2013. 天津滨海平原碱性盐化土壤包气带中重金属Cd迁移与WSOC相互作用关系研究[D]. 天津: 天津师范大学. |
| CHEN A R, 2013. Study on the migration of heavy metal Cd and its interaction with WSOC in the unsaturated zone of alkaline saline soil in Tianjin Binhai Plain[D]. Tianjin:Tianjin Normal University. | |
| [38] | 邓亚平, 2019. 基于ERT和SIP方法刻画非均质介质中NAPLs运移和修复过程研究[D]. 南京: 南京大学. |
| DENG Y P, 2019. Electrical resistivity tomography and spectralinducted polarization for characterizing NAPLs migration and remediation in heterogeneous geological media[D]. Nanjing: Nanjing University. | |
| [39] | 丁洋, 黄焕芳, 张原, 等, 2023. 气候变化下土壤中持久性有机污染物的二次挥发、降解及毒性效应研究进展[J]. 环境化学, 42(12): 4338-4353. |
| DING Y, HUANG H F, ZHANG Y, et al., 2023. Re-volatilization, degradation, and toxicological effects of persistent organic pollutants (POPs) in soil under climate change: A review[J]. Environmental Chemistry, 42(12): 4338-4353. | |
| [40] | 窦健伟, 潘玥, 徐蓓艺, 等, 2024. 低渗透性介质中DNAPL污染物迁移与修复研究进展[J]. 地质与勘探, 60(6): 1257-1271. |
| DOU J W, PAN Y, XU B Y, et al., 2024. Research progress on migration and remediation of DNAPL pollutants in low-permeability media[J]. Geology and Exploration, 60(6): 1257-1271. | |
| [41] | 杜方舟, 施小清, 康学远, 2022. 污染地块中NAPL相污染源存在的判定方法改进及软件开发[J]. 安全与环境工程, 29(5): 175-182, 195. |
| DU F Z, SHI X Q, KANG X Y, 2022. Improved method and software development for assessing NAPL phase presence in contaminated sites[J]. Safety and Environmental Engineering, 29(5): 175-182, 195. | |
| [42] | 高尚, 王磊, 龙涛, 等, 2018. 污染地块中高密度非水相液体 (DNAPLs) 迁移特征及判定调查技术研究进展[J]. 生态与农村环境学报, 34(4): 289-299. |
| GAO S, WANG L, LONG T, et al., 2018. Research progress on migration characteristics and investigation technologies of DNAPLs contaminated sites[J]. Journal of Ecology and Rural Environment, 34(4): 289-299. | |
| [43] | 高一斐, 王学东, 赵文浩, 等, 2025. 英国土壤与地下水污染协同防治经验做法及其对我国的启示[J]. 环境工程学报, https://link.cnki.net/urlid/11.5591.X.20250424.1656.024. |
| GAO Y F, WANG X D, ZHAO W H, et al., 2025. The experience and practice of soil and groundwater pollution collaborative prevention and control in the United Kingdom and its enlightenment to China[J]. Chinese Journal of Environmental Engineering, https://link.cnki.net/urlid/11.5591.X.20250424.1656.024. | |
| [44] | 郭浩, 夏慧丽, 王书琪, 等, 2015. 多溴联苯醚好氧降解菌GH10的筛选及降解特性研究[J]. 安全与环境学报, 15(4): 216-221. |
| GUO H, XIA H L, WANG S Q, et al., 2015. Isolation of an aerobic bacterial strain GH10 capable of PBDEs-degradation and its bio-degradation behaviors[J]. Journal of Safety and Environment, 15(4): 216-221. | |
| [45] | 国家铁路局, 2021. 铁路工程土工试验规程: TB 10102—2021[S]. 北京: 中国铁道出版社. |
| No related articles found! |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn