Ecology and Environmental Sciences ›› 2025, Vol. 34 ›› Issue (10): 1654-1660.DOI: 10.16258/j.cnki.1674-5906.2025.10.015
• Review • Previous Articles
CHEN Wentao1(), XIAO Xian1,*(
), ZHANG Yi2, FANG Guodong2,*(
), TU Baohua1, CHEN Ning2
Received:
2024-03-26
Online:
2025-10-18
Published:
2025-09-26
陈文涛1(), 肖娴1,*(
), 张怡2, 方国东2,*(
), 涂保华1, 陈宁2
通讯作者:
E-mail: 作者简介:
陈文涛(1998年生),男,硕士研究生,研究方向为土壤污染修复与阻控。E-mail: cwtchenwt@163.com
基金资助:
CLC Number:
CHEN Wentao, XIAO Xian, ZHANG Yi, FANG Guodong, TU Baohua, CHEN Ning. Generation Mechanism and Environmental Effects of Hydroxyl Radicals in Paddy Soil[J]. Ecology and Environmental Sciences, 2025, 34(10): 1654-1660.
陈文涛, 肖娴, 张怡, 方国东, 涂保华, 陈宁. 稻田土壤羟基自由基生成机制及环境效应[J]. 生态环境学报, 2025, 34(10): 1654-1660.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2025.10.015
[1] | ALEXANDROV V, ROSSO K M, 2013. Insights into the mechanism of Fe(Ⅱ) adsorption and oxidation at Fe-clay mineral surfaces from first-principles calculations[J]. Journal of Physical Chemistry, 117(44): 22880-22886. |
[2] | ASAKAWA S, 2021. Ecology of methanogenic and methane-oxidizing microorganisms in paddy soil ecosystem[J]. Soil Science and Plant Nutrition, 67(5): 520-526. |
[3] |
BONMATIN J M, MOINEAU I, CHARVET R, et al., 2003. A LC/APCI-MS/MS method for analysis of imidacloprid in soils, in plants, and in pollens[J]. Analytical Chemistry, 75(9): 2027-2033.
PMID |
[4] |
BOURGIN M, VIOLLEAU F, DEBRAUWER L, et al., 2011. Ozonation of imidacloprid in aqueous solutions: Reaction monitoring and identification of degradation products[J]. Journal of Hazardous Materials, 190(1-3): 60-68.
DOI PMID |
[5] | CHEN C M, HALL S J, COWARD E, et al., 2020. Iron-mediated organic matter decomposition in humid soils can counteract protection[J]. Nature Communications, 11(1): 2255. |
[6] | CHEN C M, KUKKADAPU R K, LAZAREVA O, et al., 2017. Solid-phase Fe speciation along the vertical redox gradients in floodplains using XAS and Mössbauer spectroscopies[J]. Environmental Science & Technology, 51(14): 7903-7912. |
[7] | CHEN N, FU Q L, WU T L, et al., 2021a. Active iron phases regulate the abiotic transformation of organic carbon during redox fluctuation cycles of paddy soil[J]. Environmental Science & Technology, 55(20): 14281-14293. |
[8] | CHEN N, HUANG D Y, LIU G X, et al., 2021b. Active iron species driven hydroxyl radicals formation in oxygenation of different paddy soils: Implications to polycyclic aromatic hydrocarbons degradation[J]. Water Research, 203: 117484. |
[9] | CHEN Z H, JIN J Y, SONG X J, et al., 2018. Redox conversion of arsenite and nitrate in the UV/quinone systems[J]. Environmental Science & Technology, 52(17): 10011-10018. |
[10] | CISMASU A C, WILLIAMS K H, NICO P S, 2016. Iron and carbon dynamics during aging and reductive transformation of biogenic ferrihydrite[J]. Environmental Science & Technology, 50(1): 25-35. |
[11] |
DOROSHOW J H, 1986. Role of hydrogen peroxide and hydroxyl radical formation in the killing of ehrlich tumor cells by anticancer quinones[J]. Proceedings of the National Academy of Sciences of the United States of America, 83(12): 4514-4518.
DOI PMID |
[12] | FITZPATRICK R W, SHAND P, MOSLEY L M, 2017. Acid sulfate soil evolution models and pedogenic pathways during drought and reflooding cycles in irrigated areas and adjacent natural wetlands[J]. Geoderma, 308: 270-290. |
[13] | FRITZSCHE A, SCHRÖDER C, WIECZOREK A K, et al., 2015. Structure and composition of Fe-OM co-precipitates that form in soil-derived solutions[J]. Geochimica et Cosmochimica Acta, 169: 167-183. |
[14] | GOLDSTONE J V, PULLIN M J, BERTILSSON S, et al., 2002. Reactions of hydroxyl radical with humic substances: Bleaching, mineralization, and production of bioavailable carbon substrates[J]. Environmental Science & Technology, 36(3): 364-372. |
[15] | HAN Z Y, NHUNG N T H, WU Y X, et al., 2022. Arsenic(Ⅲ) oxidation and removal from artificial mine wastewater by blowing O2 nanobubbles[J]. Journal of Water Process Engineering, 47: 102780. |
[16] | HANSEL C M, BENNER S G, NEISS J, et al., 2003. Secondary mineralization pathways induced by dissimilatory iron reduction of ferrihydrite under advective flow[J]. Geochimica et Cosmochimica Acta, 67(16): 2977-2992. |
[17] | HIEMSTRA T, VAN RIEMSDIJK W H, 2007. Adsorption and surface oxidation of Fe(Ⅱ) on metal (hydr)oxides[J]. Geochimica et Cosmochimica Acta, 71(24): 5913-5933. |
[18] | HUANG D Y, CHEN N, LIN Y, et al., 2023b. Pyrogenic carbon accelerates iron cycling and hydroxyl radical production during redox fluctuations of paddy soils[J]. Biochar, 5(1): 1-7. |
[19] | HUANG D Y, CHEN N, ZHU C Y, et al., 2023a. Dynamic production of hydroxyl radicals during the flooding-drainage process of paddy soil: An in situ column study[J]. Environmental Science & Technology, 57(43): 16340-16347. |
[20] | HUANG G X, DING C F, LI Y S, et al., 2020. Selenium enhances iron plaque formation by elevating the radial oxygen loss of roots to reduce cadmium accumulation in rice (Oryza sativa L.)[J]. Journal of Hazardous Materials, 398: 122860. |
[21] | HUANG H, CHEN H P, KOPITTKE P M, et al., 2021a. The voltaic effect as a novel mechanism controlling the remobilization of cadmium in paddy soils during drainage[J]. Environmental Science & Technology, 55(3): 1750-1758. |
[22] | HUANG H, JI X B, CHENG L Y, et al., 2021b. Free radicals produced from the oxidation of ferrous sulfides promote the remobilization of cadmium in paddy soils during drainage[J]. Environmental Science & Technology, 55(14): 9845-9853. |
[23] | HUANG J Z, JONES A, WAITE T D, et al., 2021. Fe(Ⅱ) redox chemistry in the environment[J]. Chemical Reviews, 121(13): 8161-8233. |
[24] | HUANG M Y, NHUNG N T H, DODBIBA G, et al., 2023. Mitigation of arsenic accumulation in rice (Oryza sativa L.) seedlings by oxygen nanobubbles in hydroponic cultures[J]. Ecotoxicology and Environmental Safety, 268: 115700. |
[25] | JONES A M, GRIFFIN P J, WAITE T D, 2015. Ferrous iron oxidation by molecular oxygen under acidic conditions: The effect of citrate, EDTA and fulvic acid[J]. Geochimica et Cosmochimica Acta, 160: 117-131. |
[26] | KEENAN C R, SEDLAK D L, 2008. Ligand-enhanced reactive oxidant generation by nanoparticulate zero-valent iron and oxygen[J]. Environmental Science & Technology, 42(18): 6936-6941. |
[27] | KIMURA M, 2000. Anaerobic microbiology in waterlogged rice fields[J]. Soil Biochemistry, 10: 35-138. |
[28] | KÖGEL-KNABNER I, AMELUNG W, CAO Z H, et al., 2010. Biogeochemistry of paddy soils[J]. Geoderma, 157(1): 1-14. |
[29] |
LEE J S, KIM J W, CHOI W Y, 2014. Oxidation of aquatic pollutants by ferrous-oxalate complexes under dark aerobic conditions[J]. Journal of Hazardous Materials, 274: 79-86.
DOI PMID |
[30] | LI T G, LI W J, YU S, et al., 2023. Biochar inhibited hydrogen radical-induced Cd bioavailability in a paddy soil[J]. Science of The Total Environment, 892: 164521. |
[31] |
LI Y, LONG L, GE J, et al., 2019. Effect of imidacloprid uptake from contaminated soils on vegetable growth[J]. Journal of Agricultural and Food Chemistry, 67(26): 7232-7242.
DOI PMID |
[32] | LIAO P, YU K, LU Y, et al., 2019. Extensive dark production of hydroxyl radicals from oxygenation of polluted river sediments[J]. Chemical Engineering Journal, 368: 700-709. |
[33] | LIU S C, WANG D X, ZHU C Y, et al., 2021. Effect of straw return on hydroxyl radical formation in paddy soil[J]. Bulletin of Environmental Contamination and Toxicology, 106(1): 211-217. |
[34] | MEJIA J, RODEN E E, GINDER-VOGEL M, 2016. Influence of oxygen and nitrate on Fe (hydr)oxide mineral transformation and soil microbial communities during redox cycling[J]. Environmental Science & Technology, 50(7): 3580-3588. |
[35] | MENG F L, ZHANG X, HU Y, et al., 2024. New barrier role of iron plaque: Producing interfacial hydroxyl radicals to degrade rhizosphere pollutants[J]. Environmental Science & Technology, 58(1): 795-804. |
[36] | PAGE S E, KLING G W, SANDER M, et al., 2013. Dark formation of hydroxyl radical in arctic soil and surface waters[J]. Environmental Science & Technology, 47(22): 12860-12867. |
[37] | PAGE S E, SANDER M, ARNOLD W A, et al., 2012. Hydroxyl radical formation upon oxidation of reduced humic acids by oxygen in the dark[J]. Environmental Science & Technology, 46(3): 1590-1597. |
[38] | ROSSO K M, MORGAN J J, 2002. Outer-sphere electron transfer kinetics of metal ion oxidation by molecular oxygen[J]. Geochimica et Cosmochimica Acta, 66(24): 4223-4233. |
[39] | SHIMIZU M, ZHOU J H, SCHRÖDER C, et al., 2013. Dissimilatory reduction and transformation of ferrihydrite-humic acid coprecipitates[J]. Environmental Science & Technology, 47(23): 13375-13384. |
[40] | SOYLUOGLU M, KIM D, ZAKER Y, et al., 2021. Stability of oxygen nanobubbles under freshwater conditions[J]. Water Research, 206(9): 117749. |
[41] | STARCHER A N Z, 2016. Environmental factors impacting the formation and kinetics of Fe(Ⅱ) layered hydroxides on minerals and soils[D]. State of Delaware: University of Delaware:187 |
[42] | STIRLING E, FITZPATRICK R W, MOSLEY L M, 2020. Drought effects on wet soils in inland wetlands and peatlands[J]. Earth-Science Reviews, 210(3): 103387. |
[43] |
SUN R G, WANG D Y, MAO W, et al., 2015. Diurnal characteristics of migration and transformation of mercury and effects of nitrate in Jialing River, Chongqing, China[J]. Chemosphere, 119: 634-641.
DOI PMID |
[44] |
TARR M A, WANG W W, BIANCHI T S, et al., 2001. Mechanisms of ammonia and amino acid photoproduction from aquatic humic and colloidal matter[J]. Water Research, 35(15): 3688-3696.
PMID |
[45] | WAGGONER D C, CHEN H M, WILLOUGHBY A S, et al., 2015. Formation of black carbon-like and alicyclic aliphatic compounds by hydroxyl radical initiated degradation of lignin[J]. Organic Geochemistry, 82: 69-76. |
[46] | WAGGONER D C, WOZNIAK A S, CORY R M, et al., 2017. The role of reactive oxygen species in the degradation of lignin derived dissolved organic matter[J]. Geochimica et Cosmochimica Acta, 208: 171-184. |
[47] | WANG D X, HUANG D Y, WU S, et al., 2021. Pyrogenic carbon initiated the generation of hydroxyl radicals from the oxidation of sulfide[J]. Environmental Science & Technology, 55(9): 6001-6011. |
[48] | WANG W C, HUANG D Y, WANG D X, et al., 2022. Extensive production of hydroxyl radicals during oxygenation of anoxic paddy soils: Implications to imidacloprid degradation[J]. Chemosphere, 286(Part 1): 131565. |
[49] | WANG Y X, HUANG D Y, GE C H, et al., 2023. Amendment of organic acids significantly enhanced hydroxyl radical production during oxygenation of paddy soils[J]. Journal of Hazardous Materials, 457: 131799. |
[50] |
WARDMAN P, CANDEIAS L P, 1996. Fenton chemistry: An introduction[J]. Radiation Research, 145(5): 523-531.
PMID |
[51] | WILLIAMS A G B, SCHERER M M, 2004. Spectroscopic evidence for Fe(Ⅱ)-Fe(Ⅲ) electron transfer at the iron oxide-water interface[J]. Environmental Science & Technology, 38(18): 4782-4790. |
[52] | WINKLER P, KAISER K, THOMPSON A, et al., 2018. Contrasting evolution of iron phase composition in soils exposed to redox fluctuations[J]. Geochimica et Cosmochimica Acta, 235: 89-102. |
[53] | WU B, HUANG D M, MA F N, et al., 2021. Effects of different organic fertilizer rates on the bacterial community of off-season syzygium samarangense park soil[J]. Chinese Journal of Tropical Crops, 42(9): 2727-2734. |
[54] | XIAO Y Q, PENG W, FU J H, et al., 2024. Effect of long-term straw return on organic matter transformation by hydroxyl radical during paddy soil oxygenation[J]. Chemical Engineering Journal, 482: 148974. |
[55] | YANG X L, CAI H Y, BAO M T, et al., 2018. Insight into the highly efficient degradation of PAHs in water over graphene oxide/Ag3PO4 composites under visible light irradiation[J]. Chemical Engineering Journal, 334: 355-376. |
[56] | YU C L, ZHANG Y T, LU Y X, et al., 2021. Mechanistic insight into humic acid-enhanced hydroxyl radical production from Fe(Ⅱ)-bearing clay mineral oxygenation[J]. Environmental Science & Technology, 55(19): 13366-13375. |
[57] | YU L B, DUAN L C, NAIDU R, et al., 2018. Abiotic factors controlling bioavailability and bioaccessibility of polycyclic aromatic hydrocarbons in soil: Putting together a bigger picture[J]. Science of The Total Environment, 613-614: 1140-1153. |
[58] | YUAN S H, LIU X X, LIAO W J, et al., 2018. Mechanisms of electron transfer from structrual Fe(Ⅱ) in reduced nontronite to oxygen for production of hydroxyl radicals[J]. Geochimica et Cosmochimica Acta, 223: 422-436. |
[59] | ZENG Q, DONG H L, WANG X, 2019. Effect of ligands on the production of oxidants from oxygenation of reduced Fe-bearing clay mineral nontronite[J]. Geochimica et Cosmochimica Acta, 251: 136-156. |
[60] | ZENG Q, WANG X, LIU X L, et al., 2020. Mutual interactions between reduced Fe-bearing clay minerals and humic acids under dark, oxygenated conditions: Hydroxyl radical generation and humic acid transformation[J]. Environmental Science & Technology, 54(23): 15013-15023. |
[61] | ZHANG L, YIN L C, YI Y N, et al., 2014. The dynamic change of Eh of reddish paddy soil and the preliminary study of its impact factors[J]. Soil and Fertilizer Sciences in China, 5: 11-15. |
[62] | ZHANG N, BU X C, LI Y M, et al., 2021. Water table fluctuations regulate hydrogen peroxide production and distribution in unconfined aquifers[J]. Environmental Science & Technology, 55(4): 2706-2706. |
[63] | ZHANG P, YUAN S H, CHEN R, et al., 2020. Oxygenation of acid sulfate soils stimulates CO2 emission: Roles of acidic dissolution and hydroxyl radical oxidation[J]. Chemical Geology, 533: 119437. |
[64] |
ZHOU X H, TIAN Y, LIU X, et al., 2018. Reduction of imidacloprid by sponge iron and identification of its degradation products[J]. Water Environment Research, 90(12): 2049-2055.
DOI PMID |
[65] |
ZHU B Z, KITROSSKY N, CHEVION M, 2000. Evidence for production of hydroxyl radicals by pentachlorophenol metabolites and hydrogen peroxide: A metal-independent organic Fenton reaction[J]. Biochemical and Biophysical Research Communications, 270(3): 942-946.
PMID |
[66] | 童曼, 2015. 地下环境Fe(Ⅱ)活化O2产生活性氧化物种与除砷机制[D]. 武汉: 中国地质大学:105. |
TONG M, 2015. Activation of O2 by Fe(Ⅱ) in subsurface environment for reactive oxygen species production and arsenic removal[D]. Wuhan: China University of Geosciences:105. |
[1] | LIN Jiayin, HOU Yuting, ZENG Haicen, LI Weizhi, LI Dongqin, YE Tingjin, CHEN Huojun. Preparation of Silicon-calcium-based Materials and Their Passivation Effects on Cadmium Contaminated Soil [J]. Ecology and Environmental Sciences, 2025, 34(8): 1282-1292. |
[2] | HUANG Deng-lingyao, TANG Bingran, MA Yuanyuan, HE Qiang, LI Hong. The Effect of As on the Transformation of Nitrogen in Paddy Soil: A Case Study Towards Purple Soil [J]. Ecology and Environmental Sciences, 2025, 34(5): 784-795. |
[3] | YAN Siyao, YANG Guang, BAI Yan, GAO Yifan, LIANG Luyu, GONG Feng, HUANG Guoyong, PAN Dandan, LI Xiaomin. Effect of Rice on Arsenic Transformation in Paddy Soil under Flooded Conditions [J]. Ecology and Environmental Sciences, 2024, 33(11): 1756-1767. |
[4] | LIU Sujie, LIU Chuanping, FANG Liping, CHEN Guanhong, LI Fangbai. Arsenic Methylation Process and the Associated Microbial Mechanisms in Paddy Soil Butyrate-degrading Methanogenic Communities [J]. Ecology and Environmental Sciences, 2024, 33(10): 1580-1589. |
[5] | LIANG Xin, HAN Yafeng, ZHENG Ke, WANG Xugang, CHEN Zhihuai, DU Juan. Effects of Fe3O4 on Soil Carbon Mineralization in Paddy Field [J]. Ecology and Environmental Sciences, 2023, 32(9): 1615-1622. |
[6] | DONG Leheng, WANG Xugang, CHEN Manjia, WANG Zihao, SUN Lirong, SHI Zhaoyong, Wu Qiqi. Interaction of Iron Redox and Cu Activities in Calcareous Paddy Soil under Light and Dark Condition [J]. Ecology and Environmental Sciences, 2022, 31(7): 1448-1455. |
[7] | HE Xiaojia, FENG Shuhua, JIANG Ming, LI Mingrui, ZHAN Fangdong, LI Yuan, HE Yongmei. Effects of UV-B Radiation on Conversion of Active Organic Carbon and Methane Production Potential of Rice Rhizosphere Soil [J]. Ecology and Environmental Sciences, 2022, 31(3): 556-564. |
[8] | HUANG Cheng, WU Yueying, JI Hengkuan, CHEN Liming, LI Beiying, FU Chuanliang, LI Jianhong, WU Weidong, WU Zhipeng. Response of Iron Reduction Characteristics to DOM Molecular Properties under Anaerobic Conditions in Typical Paddy Soils of Hainan Island [J]. Ecology and Environmental Sciences, 2021, 30(5): 957-967. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn