Ecology and Environmental Sciences ›› 2025, Vol. 34 ›› Issue (10): 1644-1653.DOI: 10.16258/j.cnki.1674-5906.2025.10.014
• Research Article [Environmental Science] • Previous Articles Next Articles
ZHAO Jingshu1(), LIU Jie1,2,*(
), JIANG Xusheng1, HUANG Zhangui1, YANG Lin1
Received:
2025-04-03
Online:
2025-10-18
Published:
2025-09-26
赵婧姝1(), 刘杰1,2,*(
), 蒋旭升1, 黄展桂1, 杨霖1
通讯作者:
E-mail: 作者简介:
赵婧姝(1998年生),女(满族),硕士研究生,主要研究方向为受损环境的生态修复。E-mail: zjs0112024@163.com
基金资助:
CLC Number:
ZHAO Jingshu, LIU Jie, JIANG Xusheng, HUANG Zhangui, YANG Lin. Succession of Rhizosphere Microbial Communities in Cd-Pb-Zn Co-Contaminated Soil Mediated by Celosia argentea L.[J]. Ecology and Environmental Sciences, 2025, 34(10): 1644-1653.
赵婧姝, 刘杰, 蒋旭升, 黄展桂, 杨霖. 镉-铅-锌复合污染土壤中青葙根际微生物群落的演替过程[J]. 生态环境学报, 2025, 34(10): 1644-1653.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2025.10.014
指标 | 单位 | 值 |
---|---|---|
pH | - | 6.75±0.11 |
有机质 | % | 2.88±0.13 |
速效钾 | mg∙kg−1 | 191±3.11 |
有效磷 | mg∙kg−1 | 30.7±0.96 |
硝态氮 | mg∙kg−1 | 0.15±0.00 |
阳离子交换量CEC | cmol∙L−1 | 18.6±0.15 |
有效态Cd | mg∙kg−1 | 2.16±0.01 |
有效态Pb | mg∙kg−1 | 396±1.27 |
有效态Zn | mg∙kg−1 | 150±0.83 |
总量Cd | mg∙kg−1 | 7.60±0.52 |
总量Pb | mg∙kg−1 | 2070±99.6 |
总量Zn | mg∙kg−1 | 1538±67.3 |
Table 1 Physicochemical properties of tested soil
指标 | 单位 | 值 |
---|---|---|
pH | - | 6.75±0.11 |
有机质 | % | 2.88±0.13 |
速效钾 | mg∙kg−1 | 191±3.11 |
有效磷 | mg∙kg−1 | 30.7±0.96 |
硝态氮 | mg∙kg−1 | 0.15±0.00 |
阳离子交换量CEC | cmol∙L−1 | 18.6±0.15 |
有效态Cd | mg∙kg−1 | 2.16±0.01 |
有效态Pb | mg∙kg−1 | 396±1.27 |
有效态Zn | mg∙kg−1 | 150±0.83 |
总量Cd | mg∙kg−1 | 7.60±0.52 |
总量Pb | mg∙kg−1 | 2070±99.6 |
总量Zn | mg∙kg−1 | 1538±67.3 |
部位 | 种植时间/ d | 每株干质量/g | Cd累积量/ (mg∙kg−1) | Pb累积量/ (mg∙kg−1) | Zn累积量/ (mg∙kg−1) | Cd累积量/ (μg∙plant−1) | Pb累积量/ (μg∙plant −1) | Zn累积量/ (μg∙plant−1) |
---|---|---|---|---|---|---|---|---|
地上部 | 7 | 0.21±0.02c | 10.7±0.60a | 28.0±7.95a | 413±27.8b | 2.27±0.24c | 5.93±1.76a | 87.7±9.27c |
14 | 0.68±0.13b | 10.8±0.98a | 9.38±12.1b | 348±28.4c | 7.39±2.02b | 6.36±1.14a | 237±42.3b | |
21 | 0.87±0.17b | 8.32±1.20b | 6.36±14.9b | 351±43.6c | 7.20±1.37b | 5.59±1.89a | 304±61.1b | |
28 | 1.34±0.11a | 11.5±1.37a | 5.64±13.6b | 489±26.5a | 15.8±2.66a | 8.29±1.76a | 711±167a | |
根部 | 7 | 0.04±0.00c | 20.4±1.23a | 405±77.6a | 1108±64.1a | 0.83±0.10c | 16.7±4.66c | 45.1±2.98c |
14 | 0.19±0.03b | 11.4±1.96b | 239±72.4b | 698±77.0c | 2.15±0.60b | 46.2±20.6b | 132±29.1b | |
21 | 0.21±0.01b | 11.5±2.60b | 274±34.6b | 646±91.3c | 2.40±0.49b | 57.6±6.58b | 136±16.8b | |
28 | 0.39±0.07a | 21.4±1.07a | 311±49.7b | 893±41.3b | 8.30±1.15a | 120±23.6a | 348±57.7a |
Table 2 Biomass and heavy metal accumulation of Celosia argentea L. during growth
部位 | 种植时间/ d | 每株干质量/g | Cd累积量/ (mg∙kg−1) | Pb累积量/ (mg∙kg−1) | Zn累积量/ (mg∙kg−1) | Cd累积量/ (μg∙plant−1) | Pb累积量/ (μg∙plant −1) | Zn累积量/ (μg∙plant−1) |
---|---|---|---|---|---|---|---|---|
地上部 | 7 | 0.21±0.02c | 10.7±0.60a | 28.0±7.95a | 413±27.8b | 2.27±0.24c | 5.93±1.76a | 87.7±9.27c |
14 | 0.68±0.13b | 10.8±0.98a | 9.38±12.1b | 348±28.4c | 7.39±2.02b | 6.36±1.14a | 237±42.3b | |
21 | 0.87±0.17b | 8.32±1.20b | 6.36±14.9b | 351±43.6c | 7.20±1.37b | 5.59±1.89a | 304±61.1b | |
28 | 1.34±0.11a | 11.5±1.37a | 5.64±13.6b | 489±26.5a | 15.8±2.66a | 8.29±1.76a | 711±167a | |
根部 | 7 | 0.04±0.00c | 20.4±1.23a | 405±77.6a | 1108±64.1a | 0.83±0.10c | 16.7±4.66c | 45.1±2.98c |
14 | 0.19±0.03b | 11.4±1.96b | 239±72.4b | 698±77.0c | 2.15±0.60b | 46.2±20.6b | 132±29.1b | |
21 | 0.21±0.01b | 11.5±2.60b | 274±34.6b | 646±91.3c | 2.40±0.49b | 57.6±6.58b | 136±16.8b | |
28 | 0.39±0.07a | 21.4±1.07a | 311±49.7b | 893±41.3b | 8.30±1.15a | 120±23.6a | 348±57.7a |
[1] | BREWER T E, HANDLEY K M, CARINI P, et al., 2017. Genome reduction in an abundant and ubiquitous soil bacterium ‘Candidatus Udaeobacter copiosus’[J]. Nature Microbiology, 2(2): 16198. |
[2] | CHENG M, KOPITTKE P M, WANG A A, et al., 2018. Cadmium reduces zinc uptake but enhances its translocation in the cadmium-accumulator, Carpobrotus rossii, without affecting speciation[J]. Plant and Soil, 430(1): 219-231. |
[3] | CHU Z D, SONG Y Q, LI Y Q, et al., 2024. Effects of heavy metals and environmental variables on soil microbial communities in different land-use types of Yellow River Delta (YRD), China[J]. Environmental Earth Sciences, 83(12): 368. |
[4] |
GUO H H, NASIR M, LV J L, et al., 2017. Understanding the variation of microbial community in heavy metals contaminated soil using high throughput sequencing[J]. Ecotoxicology and Environmental Safety, 144: 300-306.
DOI PMID |
[5] | HU X W, WANG J L, LV Y, et al., 2021. Effects of heavy metals/metalloids and soil properties on microbial communities in farmland in the vicinity of a metals smelter[J]. Frontiers in Microbiology, 12: 707786. |
[6] | JEONG S, MOON H S, SHIN D Y, et al., 2013. Survival of introduced phosphate-solubilizing bacteria (PSB) and their impact on microbial community structure during the phytoextraction of Cd-contaminated soil[J]. Journal of Hazardous Materials, 263(Part 2): 441-449. |
[7] |
JONES R T, ROBESON M S, LAUBER C L, et al., 2009. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses[J]. Isme Journal, 3(4): 442-453.
DOI PMID |
[8] | KASEMODEL M C, SAKAMOTO I K, VARESCHE M B A, et al., 2019. Potentially toxic metal contamination and microbial community analysis in an abandoned Pb and Zn mining waste deposit[J]. Science of The Total Environment, 675: 367-379. |
[9] | KHAN M S, ZAIDI A, WANI P A, et al., 2009. Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils[J]. Environmental Chemistry Letters, 7(1): 1-19. |
[10] | LAMBLE K J, HILL S J, 1998. Microwave digestion procedures for environmental matrices[J]. Analyst, 123(7): 103R-133R. |
[11] | LI H, YAO J, MIN N, et al., 2023. Microbial metabolic activity in metal(loid)s contaminated sites impacted by different non-ferrous metal activities[J]. Journal of Hazardous Materials, 459: 132005. |
[12] | LI L J, WANG S T, LI X Z, et al., 2018. Effects of Pseudomonas chenduensis and biochar on cadmium availability and microbial community in the paddy soil[J]. Science of The Total Environment, 640-641: 1034-1043. |
[13] | LI Q, SONG A, YANG H, et al., 2021. Impact of rocky desertification control on soil bacterial community in karst graben basin, southwestern China[J]. Frontiers in Microbiology, 12: 636405. |
[14] | LI X, LI B Q, ZHENG Y, et al., 2022. Physiological and rhizospheric response characteristics to cadmium of a newly identified cadmium accumulator Coreopsis grandiflora Hogg. (Asteraceae)[J]. Ecotoxicology and Environmental Safety, 241: 113739. |
[15] | LI Z Y, MA Z W, VAN DER KUIJP T J, et al., 2014. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment[J]. Science of The Total Environment, 468-469: 843-853. |
[16] | LIN Y B, YE Y M, LIU S C, et al., 2022. Effect mechanism of land consolidation on soil bacterial community: A case study in Eastern China[J]. International Journal of Environmental Research and Public Health, 19(2): 845. |
[17] | LING W T, MA B, ZHANG W, 2022. Editorial: Rhizosphere microbiology: Toward a clean and healthy soil environment[J]. Frontiers in Microbiology, 13: 991356. |
[18] | LIU J, SHANG W W, ZHANG X H, et al., 2014. Mn accumulation and tolerance in Celosia argentea Linn.: A new Mn-hyperaccumulating plant species[J]. Journal of Hazardous Materials, 267: 136-141. |
[19] | LIU M Y, ZHAO H C, 2023. Maize-soybean intercropping improved maize growth traits by increasing soil nutrients and reducing plant pathogen abundance[J]. Frontiers in Microbiology, 14: 1290825. |
[20] | MURATOVA A, GOLUBEV S, ROMANOVA V, et al., 2023. Effect of heavy-metal-resistant pgpr inoculants on growth, rhizosphere microbiome and remediation potential of Miscanthus×giganteus in Zinc-contaminated soil[J]. Microorganisms, 11(6): 1516. |
[21] | SHI Y, DELGADO-BAQUERIZO M, LI Y T, et al., 2020. Abundance of kinless hubs within soil microbial networks are associated with high functional potential in agricultural ecosystems[J]. Environment International, 142: 105869. |
[22] | WANG S F, SHI X, SALAM M M A, et al., 2021. Integrated study on subcellular localization and chemical speciation of Pb reveals root strategies for Pb sequestration and detoxification in Salix integra[J]. Plant and Soil, 467(1-2): 197-211. |
[23] | XU Y, ZHENG C, LIANG L, et al., 2021. Quantitative assessment of the potential for soil improvement by planting Miscanthus on saline-alkaline soil and the underlying microbial mechanism[J]. Global Change Biology Bioenergy, 13(7): 1191-1205. |
[24] |
XUE L, REN H D, LI S, et al., 2017. Soil bacterial community structure and co-occurrence pattern during vegetation restoration in karst rocky desertification area[J]. Frontiers in Microbiology, 8: 2377.
DOI PMID |
[25] | ZBÍRAL J, 2016. Determination of plant-available micronutrients by the Mehlich 3 soil extractant-a proposal of critical values[J]. Plant Soil and Environment, 62(11): 527-531. |
[26] | ZHU W J, LU X L, HONG C L, et al., 2023. Pathogen resistance in soils associated with bacteriome network reconstruction through reductive soil disinfestation[J]. Applied Microbiology and Biotechnology, 107(18): 5829-5842. |
[27] | 陈思, 阎凯, 何永美, 等, 2022. 遮阴对伴矿景天Cd、Pb、Zn累积特征的影响[J]. 中国生态农业学报(中英文), 30(3): 409-418. |
CHEN S, YAN K, HE Y M, et al., 2022. Effect of shading on the accumulation of Cd, Pb and Zn of Sedum plumbizincicola[J]. Chinese Journal of Eco-Agriculture, 30(3): 409-418. | |
[28] | 程毕鑫, 刘玲珑, 刘潇然, 等, 2024. 青葙吸收富集土壤重金属Cd、Zn、Cu、As和Pb的特性研究[J]. 环保科技, 30(3): 39-43. |
CHENG B X, LIU L L, LIU X R, et al., 2024. Characteristics of Scirpus triqueter absorbing and accumulating heavy metals of Cd, Zn, Cu, As, and Pb in contaminated soil[J]. Environmental Protection and Technology, 30(3): 39-43. | |
[29] | 傅校锋, 刘杰, 龙玉梅, 等, 2020. 强化青葙修复镉污染土壤的柠檬酸施用方式优化试验研究[J]. 土壤, 52(1): 153-159. |
FU X F, LIU J, LONG Y M, et al., 2020. Experimental study on optimization of citric acid application method for remediation of cadmium-contaminated soil by Celosia argentea Linn[J]. Soils, 52(1): 153-159. | |
[30] | 傅校锋, 刘杰, 朱文杰, 等, 2019. 青葙修复镉污染土壤的田间试验研究[J]. 水土保持学报, 33(4): 329-334. |
FU X F, LIU J, ZHU W J, et al., 2019. Field experiment on remediation of cadmium contaminated soil by Celosia argentea L.[J]. Journal of Soil and Water Conservation, 33(4): 329-334. | |
[31] | 黄益宗, 郝晓伟, 雷鸣, 等, 2013. 重金属污染土壤修复技术及其修复实践[J]. 农业环境科学学报, 32(3): 409-417. |
HUANG Y Z, HAO X W, LEI M, et al., 2013. The remediation technology and remediation practice of heavy metals-contaminated soil[J]. Journal of Agro-Environment Science, 32(3): 409-417. | |
[32] | 赖才星, 林华, 刘泽蕙, 等, 2025. 巨大芽孢杆菌-青葙组合对镉污染土壤微生物群落演替的驱动作用[J]. 中国环境科学, 45(2): 1036-1044. |
LAI C X, LIN H, LIU Z H, et al., 2025. The driving effect of Bacillus megaterium-Celosia argentea L. combination on the succession of microbial communities incadmium-contaminated soill[J]. China Environmental Science, 45(2): 1036-1044. | |
[33] |
鲁子正钢, 朱立新, 季宏兵, 等, 2024. 鞘氨醇单胞菌修复土壤重金属污染研究进展[J]. 浙江农业学报, 36(5): 1208-1216.
DOI |
LUZI Z G, ZHU L X, JI H B, et al., 2024. Acta Agriculturae Zhejiangensis. Research progress in remediation of soil heavy metal pollution by Sphingosinomonas[J]. Acta Agriculturae Zhejiangensis, 36(5): 1208-1216. | |
[34] | 孟德佳, 刘杰, 俞果, 等, 2019. 锰对超富集植物青葙镉积累的影响[J]. 农业环境科学学报, 38(5): 1017-1025. |
MENG D J, LIU J, YU G, et al., 2019. Effect of manganese on cadmium accumulation in Celosia argentea Linn., a hyperaccumulator[J]. Journal of Agro-Environment Science, 38(5): 1017-1025. | |
[35] | 沈锋, 2017. 典型铅锌冶炼区农田土壤重金属污染及植物化学联合修复研究[D]. 咸阳: 西北农林科技大学:184. |
SHEN F, 2017. Heavy metal pollution of farmland soil in a typical pb/zn smelting area and phyto-chemistry combined remediation[D]. Xianyang: Northwest A & F University: 184. | |
[36] |
唐海明, 肖小平, 李微艳, 等, 2016. 长期施肥对双季稻田根际土壤微生物群落功能多样性的影响[J]. 生态环境学报, 25(3): 402-408.
DOI |
TANG H M, XIAO X P, LI W Y, et al., 2016. Effects of long-term different fertilization regimes on the rhizospheric microbial community functional diversity in paddy field[J]. Ecology and Environmental Sciences, 25(3): 402-408. | |
[37] | 文金磊, 朱一民, 周菁, 等, 2015. 铅锌矿产资源特征及浮选工艺研究现状[J]. 矿产综合利用 (6): 1-6. |
WEN J L, ZHU Y M, ZHOU J, et al., 2015. Research status of Pb-Zn mineral resource characteristics and flotation technology[J]. Multipurpose Utilization of Mineral Resources (6): 1-6. | |
[38] | 向春雨, 罗栋源, 郭莉, 等, 2024. 植物-微生物联合修复化学退化土壤研究进展[J]. 土壤通报, 55(1): 288-300. |
XIANG C Y, LUO D Y, GUO L, et al., 2024. Advances in plant-microbial combined remediation of chemically-degraded soils[J]. Chinese Journal of Soil Science, 55(1): 288-300. | |
[39] | 徐佩, 吴超, 2014. 我国铅锌矿山土壤重金属污染综述及现状分析[J]. 环境保护前沿, 4(5): 2164-5485. |
XU P, WU C, 2014. Analysis of soil heavy metals pollution and its present situation around lead-zinc mining areas in China[J]. Advances in Environmental Protection, 4(5): 2164-5485. | |
[40] | 余轲, 刘杰, 尚伟伟, 等, 2015. 青葙对土壤锰的耐性和富集特征[J]. 生态学报, 35(16): 5430-5436. |
YU K, LIU J, SHANG W W, et al., 2015. Tolerance and accumulation characteristics of Celosia argentea Linn. growing in Mn-contaminated soil[J]. Acta Ecologica Sinica, 35(16): 5430-5436. | |
[41] | 张珂飞, 钟永嘉, 孙丽莉, 等, 2021. 植物有益伯克霍尔德氏菌的研究进展及其在农业中的应用[J]. 微生物学报, 61(8): 2205-2218. |
ZHANG K F, ZHONG Y J, SUN L L, et al., 2021. Plant-associated beneficial Burkholderia[J]. Acta Microbiologica Sinica, 61(8): 2205-2218. | |
[42] | 赵丹, 吴畏达, 孙倩, 等, 2023. 场地复合污染的生态效应与风险评估研究进展和展望[J]. 环境科学研究, 36(1): 30-43. |
ZHAO D, WU W D, SUN Q, et al., 2023. Research progress and prospect of ecological effect and risk assessment of site combined pollution[J]. Research of Environmental Sciences, 36(1): 30-43. | |
[43] | 周可欣, 王小瑞, 米世灿, 等, 2025. 土壤污染根际修复研究进展[J]. 中国生态农业学报(中英文), 33(4): 769-782. |
ZHOU K X, WANG X R, MI S C, et al., 2025. Research progress on rhizosphere remediation of soil pollution[J]. Chinese Journal of Eco-Agriculture, 33(4): 769-782. | |
[44] | 朱灵, 李易, 杨婉秋, 等, 2021. 沙化对高寒草地土壤碳、氮、酶活性及细菌多样性的影响[J]. 水土保持学报, 35(3): 350-358. |
ZHU L, LI Y, YANG W Q, et al., 2021. Effect of desertification on soil carbon and nitrogen, enzyme activity and bacterial diversity in alpine grassland[J]. Journal of Soil and Water Conservation, 35(3): 350-358. |
[1] | CHEN Yan, SHI Chenglong, LI Pujun, XIAO Jiang, CHEN Guangcai. Co-hydrothermal Liquid Phase Product of Heavy Metal-containing Trees and Bone Meal: Analysis and Preliminary Evaluation [J]. Ecology and Environmental Sciences, 2025, 34(4): 642-652. |
[2] | LIU Chutian, GUO Dongdong, HOU Lei, LIANG Qibin, WANG Yanxia, SHI Yanting, QI Yane. Analysis of the Effect Model for Nutrient Regulation on Cadmium Accumulation in Populus yunnanensis Seedlings [J]. Ecology and Environmental Sciences, 2024, 33(3): 460-468. |
[3] | LI Zhenguo, HAO Xingyu, HE Tianlian, JING Rui, RONG Cheng, GU Chengzhen, ZHENG Xinyu. Study on the Alleviating Effect of Bamboo Vinegar on Cadmium Toxicity of Perilla frutescens (L.) Britt. [J]. Ecology and Environmental Sciences, 2023, 32(7): 1313-1324. |
[4] | ZHAO Liangxia, GAO Kun, HUANG Tingting, GAO Ye, JU Tangdan, JIANG Qiuyang, JIN Heng, XIONG Lei, TANG Zailin, GAO Canhong. The Cadmium Accumulation Characteristics of Maize Inbred Lines with High/Low Grain Cadmium Accumulation at Different Growth Stages [J]. Ecology and Environmental Sciences, 2023, 32(4): 766-775. |
[5] | YANG Yaodong, CHEN Yumei, TU Pengfei, ZENG Qingru. Phytoremediation Potential of Economic Crop Rotation Patterns for Cadmium-polluted Farmland [J]. Ecology and Environmental Sciences, 2023, 32(3): 627-634. |
[6] | LIU Kanghan, ZHENG Liugen, ZHANG Liqun, DING Dan, SHAN Shifeng. Effect of Complex Plant Derived Activator on the Remediation of As Contaminated Soil by Pteris vittata [J]. Ecology and Environmental Sciences, 2023, 32(3): 635-642. |
[7] | HAO Liyu, HE Miaomiao, TANG Jiaxi. Research Progress on Pollution Situation and Remediation Technology of Perfluoroalkyl Substances in River Water [J]. Ecology and Environmental Sciences, 2023, 32(12): 2115-2127. |
[8] | WU De, PENG Ou, LIU Yuling, ZHANG Puxin, YIN Xuefei, HUANG Xinming, TIE Boqing. Effects of Chelating Agents and Thier Combinations on Remediation of Two Cadmium Contaminated Soils by Sedum plumbizincicola [J]. Ecology and Environmental Sciences, 2022, 31(12): 2414-2421. |
[9] | YU Longsheng, LI Wei, XU Mingyu, LIN Zefan. Effect of Gibberellin Soaking on Seed Germination and Seedling Growth of Two Pioneer Plants for Ecological Restoration in Mining Areas [J]. Ecology and Environmental Sciences, 2022, 31(11): 2225-2233. |
[10] | CONG Chao, YANG Ningke, WANG Haijuan, WANG Hongbin. Enhancing Arsenic and Cadmium Accumulation in Pteris vittata and Solanum nigrum by Combined Application of Indoleacetic Acid and Kinetin: A Field Experiment [J]. Ecology and Environmental Sciences, 2021, 30(6): 1299-1309. |
[11] | LI Furong, WANG Linqing, LI Wenying, WU Zhichao, WANG Xu. Research and Application Progress on Heavy Metal Absorption and Accumulation of Oenanthe javanica [J]. Ecology and Environmental Sciences, 2021, 30(12): 2423-2430. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn