Ecology and Environment ›› 2022, Vol. 31 ›› Issue (2): 231-238.DOI: 10.16258/j.cnki.1674-5906.2022.02.003
• Research Articles • Previous Articles Next Articles
WANG Xiaona(), XU Danghui(
), WANG Xiejun, FANG Xiangwen
Received:
2021-06-29
Online:
2022-02-18
Published:
2022-04-14
Contact:
XU Danghui
通讯作者:
徐当会
作者简介:
王小娜(1996年生),女,硕士研究生,主要从事群落生态学研究。E-mail: wangxn19@lzu.edu.cn
基金资助:
CLC Number:
WANG Xiaona, XU Danghui, WANG Xiejun, FANG Xiangwen. Changes of Shrub Community Structure with Altitudinal Gradient and Longitude in Qilian Mountains[J]. Ecology and Environment, 2022, 31(2): 231-238.
王小娜, 徐当会, 王谢军, 方向文. 祁连山灌丛群落结构特征随海拔梯度和经度的变化[J]. 生态环境学报, 2022, 31(2): 231-238.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2022.02.003
Figure 1 The spatial position of the sample sites E represents the eastern part of the Qilian Mountains, E-M represents the middle-eastern part of the Qilian Mountains, and M represents the middle part of the Qilian Mountains; 2700, 2900 and 3100 represent the elevations (m) of the sample sites, respectively
地点 Sites | 经纬度 Longitude and latitude | 海拔 Altitude/m | 坡向 Aspect/(°) | 坡度 Slope/(°) |
---|---|---|---|---|
东段 East | 103°1′44.31ʺE, 36°50′4.78ʺN | 2700 | 110 | 30 |
103°0′5.48ʺE, 36°48′37.36ʺN | 2900 | 157 | 25 | |
102°59′52.33ʺE, 36°48′32.36ʺN | 3100 | 205 | 32 | |
中东段 Middle-east | 102°33′12.83ʺE, 37°23′2.28ʺN | 2700 | 250 | 30 |
102°33′18.07ʺE, 37°23′0.47ʺN | 2900 | 151 | 25 | |
102°33′48.44ʺE, 37°23′28.6ʺN | 3100 | 178 | 20 |
Table 1 Basic information of sites
地点 Sites | 经纬度 Longitude and latitude | 海拔 Altitude/m | 坡向 Aspect/(°) | 坡度 Slope/(°) |
---|---|---|---|---|
东段 East | 103°1′44.31ʺE, 36°50′4.78ʺN | 2700 | 110 | 30 |
103°0′5.48ʺE, 36°48′37.36ʺN | 2900 | 157 | 25 | |
102°59′52.33ʺE, 36°48′32.36ʺN | 3100 | 205 | 32 | |
中东段 Middle-east | 102°33′12.83ʺE, 37°23′2.28ʺN | 2700 | 250 | 30 |
102°33′18.07ʺE, 37°23′0.47ʺN | 2900 | 151 | 25 | |
102°33′48.44ʺE, 37°23′28.6ʺN | 3100 | 178 | 20 |
地点 Sites | 海拔 Altitude/m | 物种 Species | 数量 Quantity/strain | 盖度 Coverage/% | 平均高度 Average height/m | 重要值 Important value/% |
---|---|---|---|---|---|---|
东段 East | 2700 | 银露梅 P. glabra 甘蒙锦鸡儿 Caragana opulens 绢毛蔷薇 Rosa sericea 高山绣线菊 S. alpina | 17±2.00 6±1.41 1±0.20 2±0.58 | 36.7±1.15 5.5±0.71 1.0±0.12 1.3±0.56 | 0.79±0.16 1.12±0.12 1.40±0.05 0.75±0.21 | 58.19±0.05 13.30±0.01 17.53±0.06 10.98±0.01 |
2900 | 鲜黄小檗 B. diaphana 高山绣线菊 S. alpina 西北蔷薇 Rosa davidii 金露梅 P. fruticosa 绢毛蔷薇 R. sericea 银露梅 P. glabra | 5±1.53 5±1.53 7±0.58 31±2.65 1±0.00 1±0.00 | 50.0±0.00 15.0±0.00 10.7±1.15 22.7±2.52 2.8±0.35 3.0±0.00 | 1.81±0.26 1.32±0.28 1.25±0.30 0.90±0.17 1.30±0.33 1.53±0.07 | 28.26±0.009 12.61±0.02 13.96±0.02 32.17±0.01 4.60±0.01 8.40±0.01 | |
3100 | 山生柳 S. oritrepha 烈香杜鹃 R. anthopogonoides 金露梅 P. fruticosa 高山绣线菊 S. alpina 鬼箭锦鸡儿 Caragana jubata | 28±2.65 25±1.73 20±1.53 10±2.00 3±1.00 | 23.3±1.53 53.3±1.00 16.0±2.65 10.3±1.53 10.3±1.53 | 1.42±0.07 1.00±0.18 0.82±0.28 0.88±0.26 1.22±0.28 | 26.40±0.009 31.47±0.001 18.02±0.009 12.35±0.01 11.76±0.02 | |
中东段 Middle-east | 2700 | 金露梅 P. fruticosa 高山绣线菊 S. alpina 鲜黄小檗 B. diaphana 银露梅 P. glabra | 25±2.65 12±1.41 11±0.58 1±0.00 | 26.3± 1.24 4.0±1.41 9.0±2.00 1.0±0.00 | 0.54±0.09 0.46±0.007 0.52±0.16 0.5±0.003 | 11.34±0.06 13.32±0.01 25.23±0.06 51.11±0.02 |
2900 | 高山绣线菊 S. alpina 鲜黄小檗 Berberis diaphana 银露梅 P. glabra | 26±3.61 12±2.65 5±1.00 | 70.7±2.08 36.7±2.08 5±0.00 | 1.12±0.09 1.24±0.25 0.75±0.01 | 53.72±0.01 33.60±0.008 12.68±0.01 | |
3100 | 烈香杜鹃 R. anthopogonoides 雪层杜鹃 R. nivale 头花杜鹃 R. capitatum 金露梅 P. fruticosa 高山绣线菊 S. alpina 山生柳 S. oritrepha | 3±0.00 45±1.53 24±1.53 7±0.71 9±1.00 11±0.58 | 7.5±0.70 50.0±1.73 31.0±1.15 5.0±0.00 3.0±0.58 12.0±1.00 | 1.33±0.18 0.96±0.08 1.07±0.09 0.95±0.01 0.65±0.04 1.36±0.14 | 6.86±0.002 37.99±0.03 24.80±0.03 5.81±0.005 8.30±0.02 16.24±0.02 | |
中段 Middle | 2700 | 银露梅 P. glabra 金露梅 P. fruticosa 鲜黄小檗 Berberis diaphana 高山绣线菊 S. alpina | 13±0.58 8±1.15 3±1.15 3±0.71 | 11.0±1.00 6.0±1.73 1.2±0.76 2.5±0.71 | 0.66±0.13 0.48±0.12 0.73±0.17 0.51±0.04 | 45.85±0.05 28.45±0.03 16.67±0.02 9.03±0.02 |
2900 | 金露梅 P. fruticosa 山生柳 S. oritrepha 高山绣线菊 S. alpina | 16±2.08 10±2.08 3±1.00 | 12.0±2.08 8.7±2.00 1.0±0.00 | 0.48±0.08 0.63±0.02 0.53±0.007 | 46.32±0.02 38.37±0.01 15.31±0.008 | |
3100 | 金露梅 P. fruticosa 高山绣线菊 S. alpina | 34±1.41 13±3.51 | 39.0±1.41 3.5±1.50 | 0.62±0.12 0.44±0.03 | 73.82±0.01 26.18±0.001 |
Table 2 The community structure changes of shrub at different elevations
地点 Sites | 海拔 Altitude/m | 物种 Species | 数量 Quantity/strain | 盖度 Coverage/% | 平均高度 Average height/m | 重要值 Important value/% |
---|---|---|---|---|---|---|
东段 East | 2700 | 银露梅 P. glabra 甘蒙锦鸡儿 Caragana opulens 绢毛蔷薇 Rosa sericea 高山绣线菊 S. alpina | 17±2.00 6±1.41 1±0.20 2±0.58 | 36.7±1.15 5.5±0.71 1.0±0.12 1.3±0.56 | 0.79±0.16 1.12±0.12 1.40±0.05 0.75±0.21 | 58.19±0.05 13.30±0.01 17.53±0.06 10.98±0.01 |
2900 | 鲜黄小檗 B. diaphana 高山绣线菊 S. alpina 西北蔷薇 Rosa davidii 金露梅 P. fruticosa 绢毛蔷薇 R. sericea 银露梅 P. glabra | 5±1.53 5±1.53 7±0.58 31±2.65 1±0.00 1±0.00 | 50.0±0.00 15.0±0.00 10.7±1.15 22.7±2.52 2.8±0.35 3.0±0.00 | 1.81±0.26 1.32±0.28 1.25±0.30 0.90±0.17 1.30±0.33 1.53±0.07 | 28.26±0.009 12.61±0.02 13.96±0.02 32.17±0.01 4.60±0.01 8.40±0.01 | |
3100 | 山生柳 S. oritrepha 烈香杜鹃 R. anthopogonoides 金露梅 P. fruticosa 高山绣线菊 S. alpina 鬼箭锦鸡儿 Caragana jubata | 28±2.65 25±1.73 20±1.53 10±2.00 3±1.00 | 23.3±1.53 53.3±1.00 16.0±2.65 10.3±1.53 10.3±1.53 | 1.42±0.07 1.00±0.18 0.82±0.28 0.88±0.26 1.22±0.28 | 26.40±0.009 31.47±0.001 18.02±0.009 12.35±0.01 11.76±0.02 | |
中东段 Middle-east | 2700 | 金露梅 P. fruticosa 高山绣线菊 S. alpina 鲜黄小檗 B. diaphana 银露梅 P. glabra | 25±2.65 12±1.41 11±0.58 1±0.00 | 26.3± 1.24 4.0±1.41 9.0±2.00 1.0±0.00 | 0.54±0.09 0.46±0.007 0.52±0.16 0.5±0.003 | 11.34±0.06 13.32±0.01 25.23±0.06 51.11±0.02 |
2900 | 高山绣线菊 S. alpina 鲜黄小檗 Berberis diaphana 银露梅 P. glabra | 26±3.61 12±2.65 5±1.00 | 70.7±2.08 36.7±2.08 5±0.00 | 1.12±0.09 1.24±0.25 0.75±0.01 | 53.72±0.01 33.60±0.008 12.68±0.01 | |
3100 | 烈香杜鹃 R. anthopogonoides 雪层杜鹃 R. nivale 头花杜鹃 R. capitatum 金露梅 P. fruticosa 高山绣线菊 S. alpina 山生柳 S. oritrepha | 3±0.00 45±1.53 24±1.53 7±0.71 9±1.00 11±0.58 | 7.5±0.70 50.0±1.73 31.0±1.15 5.0±0.00 3.0±0.58 12.0±1.00 | 1.33±0.18 0.96±0.08 1.07±0.09 0.95±0.01 0.65±0.04 1.36±0.14 | 6.86±0.002 37.99±0.03 24.80±0.03 5.81±0.005 8.30±0.02 16.24±0.02 | |
中段 Middle | 2700 | 银露梅 P. glabra 金露梅 P. fruticosa 鲜黄小檗 Berberis diaphana 高山绣线菊 S. alpina | 13±0.58 8±1.15 3±1.15 3±0.71 | 11.0±1.00 6.0±1.73 1.2±0.76 2.5±0.71 | 0.66±0.13 0.48±0.12 0.73±0.17 0.51±0.04 | 45.85±0.05 28.45±0.03 16.67±0.02 9.03±0.02 |
2900 | 金露梅 P. fruticosa 山生柳 S. oritrepha 高山绣线菊 S. alpina | 16±2.08 10±2.08 3±1.00 | 12.0±2.08 8.7±2.00 1.0±0.00 | 0.48±0.08 0.63±0.02 0.53±0.007 | 46.32±0.02 38.37±0.01 15.31±0.008 | |
3100 | 金露梅 P. fruticosa 高山绣线菊 S. alpina | 34±1.41 13±3.51 | 39.0±1.41 3.5±1.50 | 0.62±0.12 0.44±0.03 | 73.82±0.01 26.18±0.001 |
Figure 2 Changes of Shannon-Wiener index (a), Pielou homogeneous degree (b), Biomass (c) and coverage (d) with altitude gradient n=3; Different lowercase letters indicated significant difference in the same longitude and different elevations (P<0.05). Different capital letters indicated significant difference at the same altitude and different longitude (P<0.05)
影响因子 Impact factor | 生物量 Biomass | Shannon-Wiener指数 Shannon-Wiener index | Pielou均匀度 Pielou homogeneous degree | 盖度 Coverage | ||||
---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | F | P | |
海拔 Altitude | 82.871 | 0.000 | 106.131 | 0.000 | 13.659 | 0.000 | 402.137 | 0.000 |
经度 Longitude | 134.954 | 0.000 | 3.131 | 0.068 | 8.402 | 0.003 | 953.265 | 0.000 |
海拔×经度 Altitude & Longitude | 19.178 | 0.000 | 9.880 | 0.001 | 4.968 | 0.007 | 107.064 | 0.000 |
Table 3 Two-factor analysis of elevation and longitude on aboveground biomass, Shannon-Wiener index, Pielou homogeneous degree and Coverage
影响因子 Impact factor | 生物量 Biomass | Shannon-Wiener指数 Shannon-Wiener index | Pielou均匀度 Pielou homogeneous degree | 盖度 Coverage | ||||
---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | F | P | |
海拔 Altitude | 82.871 | 0.000 | 106.131 | 0.000 | 13.659 | 0.000 | 402.137 | 0.000 |
经度 Longitude | 134.954 | 0.000 | 3.131 | 0.068 | 8.402 | 0.003 | 953.265 | 0.000 |
海拔×经度 Altitude & Longitude | 19.178 | 0.000 | 9.880 | 0.001 | 4.968 | 0.007 | 107.064 | 0.000 |
Pearson相关性 Pearson correlation | 生物量 Biomass | Shannon-Wiener指数 Shannon-Wiener index | Pielou均匀度 Pielou homogeneous degree | 盖度 Coverage | 海拔 Altitude |
---|---|---|---|---|---|
生物量 Biomass Shannon-Wiener指数 Shannon-Wiener index | 1 | ||||
0.943** | 1 | ||||
Pielou均匀度 Pielou homogeneous degree | 0.855** | 0.776* | 1 | ||
盖度 Coverage | 0.740* | 0.872** | 0.455 | 1 | |
海拔 Altitude | 0.926** | 0.965** | 0.762* | 0.913** | 1 |
Table 4 Correlation analysis of shrub biomass, Shannon-Wiener index, Pielou homogeneous degree, Coverage and Altitude
Pearson相关性 Pearson correlation | 生物量 Biomass | Shannon-Wiener指数 Shannon-Wiener index | Pielou均匀度 Pielou homogeneous degree | 盖度 Coverage | 海拔 Altitude |
---|---|---|---|---|---|
生物量 Biomass Shannon-Wiener指数 Shannon-Wiener index | 1 | ||||
0.943** | 1 | ||||
Pielou均匀度 Pielou homogeneous degree | 0.855** | 0.776* | 1 | ||
盖度 Coverage | 0.740* | 0.872** | 0.455 | 1 | |
海拔 Altitude | 0.926** | 0.965** | 0.762* | 0.913** | 1 |
[1] |
DORJI T, MOE S R, KLEINl J A, et al., 2014. Plant species richness, evenness, and composition along environmental gradients in an alpine meadow grazing ecosystem in central Tibet, China[J]. Arctic Antarctic and Alpine Research, 46(2): 308-326.
DOI URL |
[2] |
EVANS R D, FONDA R W, 1990. The influence of snow on sub-alpine meadow community pattern, North-Cascades, Washington[J]. Canadian Journal of Botany, 68(1): 212-220.
DOI URL |
[3] |
GASTON K, 2000. Global patterns in biodiversity[J]. Nature, 405(6783): 220-227.
DOI URL |
[4] |
PIAO S L, FANG J Y, CIAIS P, et al., 2009. The carbon balance of terrestrial ecosystems in China[J]. Nature, 458(7241): 1009-1013.
DOI URL |
[5] |
RAHBEK C, 2005. The role of spatial scale and the perception of large-scale species-richness patterns[J]. Ecology Letters, 8(2): 224-239.
DOI URL |
[6] |
XU Z F, HU T X, WANG K Y, et al., 2009. Short-term responses of phenology, shoot growth and leaf traits of four alpine shrubs in a timberline ecotone to simulated global warming, Eastern Tibetan Plateau, China[J]. Plant Species Biology, 24(1): 27-34.
DOI URL |
[7] | 蔡蔚, 刘学录, 宋洁, 等, 2020. 基于土地利用变化的生态系统服务价值动态研究--以祁连山自然保护区为例[J]. 国土与自然资源研究(4): 32-37. |
CAI W, LIU X L, SONG J, et al., 2020. Dynamic research on ecosystem service value based on land use change: A case study of Qilian Mountain Nature Reserve[J]. Territory & Natural Resources Study (4): 32-37. | |
[8] | 陈泓, 黎燕琼, 郑绍伟, 等, 2007. 岷江上游干旱河谷灌丛生物量与坡向及海拔梯度相关性研究[J]. 成都大学学报: 自然科学版, 26(1): 14-18. |
CHEN H, LI Y Q, ZHENG S W, et al., 2007. Research on the correlations of shrub biomass with slope-aspect and altitude in dry valley of the upper reach of the Minjiang River[J]. Journal of Chengdu University (Natural Science Edition), 26(1): 14-18. | |
[9] | 陈祖刚, 巴图娜存, 徐芝英, 等, 2014. 基于数码相机的草地植被盖度测量方法对比研究[J]. 草业学报, 23(6): 20-27. |
CHEN Z G, BATU N C, XU Z Y, et al., 2014. Measuring grassland vegetation cover using digital camera images[J]. Acta Prataculturae Sinica, 23(6): 20-27. | |
[10] | 邓清月, 张晓龙, 牛俊杰, 等, 2019. 晋西北饮马池山植物群落物种多样性沿海拔梯度的变化[J]. 生态环境学报, 28(5): 865-872. |
DENG Q Y, ZHANG X L, NIU J J, et al., 2019. Species diversity of plant communities along an altitude gradient in Yinmachi Mountain, northwestern Shanxi, China[J]. Ecology and Environmental Sciences, 28(5): 865-872. | |
[11] | 邓少福, 2013. 祁连山气候变化对植被的影响研究 (2000-2011)[D]. 兰州: 兰州大学: 34-38. |
DENG S F, 2013. Impacts of climate change on vegetation in Qilian Mountains from 2000 to 2011 [D]. Lanzhou: Lanzhou university: 34-38. | |
[12] | 丁松爽, 苏培玺, 2010. 黑河上游祁连山区植物群落随海拔生境的变化特征[J]. 冰川冻土, 32(4): 829-836. |
DING S S, SU P X, 2010. Altitudinal variation characteristics of plant community on tne upper reaches of Heihe River in tne Qilian Mountains[J]. Journal of Glaciology and Geocryology, 32(4): 829-836. | |
[13] | 方精云, 黄耀, 朱江玲, 等, 2015. 森林生态系统碳收支及其影响机制[J]. 中国基础科学, 17(3): 20-25. |
FANG J Y, HUANG Y, ZHU J L, et al., 2015. Carbon budget of forest ecosystems and its driving forces[J]. China Basic Science, 17(3): 20-25. | |
[14] | 付建新, 曹广超, 郭文炯, 2020. 1998-2017年祁连山南坡不同海拔、坡度和坡向生长季NDVI变化及其与气象因子的关系[J]. 应用生态学报, 31(4): 1203-1212. |
FU J X, CAO G C, GUO W J, 2020. Changes of NDVI of growing season at different elevations, slopes, slope aspects and its relationship with meteorological factors in the southern slope of the Qilian Mountains, China from 1998 to 2017 [J]. Chinese Journal of Applied Ecology, 31(4): 1203-1212. | |
[15] |
胡会峰, 王志恒, 刘国华, 等, 2006. 中国主要灌丛植被碳储量[J]. 植物生态学报, 30(4): 539-544.
DOI |
HU H F, WANG Z H, LIU G H, et al., 2006. Vegetation carbon storage of major shrublands in China[J]. Journal of Plant Ecology, 30(4): 539-544. | |
[16] | 梁倍, 邸利, 赵传燕, 等, 2013. 祁连山天涝池流域典型灌丛地上生物量沿海拔梯度变化规律的研究[J]. 草地学报, 21(4): 664-669. |
LIANG B, DI L, ZHAO C Y, et al., 2013. Altitude distribution of aboveground biomass of typical shrubs in the Tianlaochi watershed of Qilian Mountains[J]. Acta Agrestia Sinica, 21(4): 664-669. | |
[17] | 雷蕾, 刘贤德, 王顺利, 等, 2011. 祁连山高山灌丛生物量分配规律及其与环境因子的关系[J]. 生态环境学报, 20(11): 1602-1607. |
LEI L, LIU X D, WANG S L, et al., 2011. Assignment rule of alpine shrubs biomass and its relationships to environmental factors in Qilian Mountains[J]. Ecology and Environmental Sciences, 20(11): 1602-1607. | |
[18] | 雷蕾, 2012. 祁连山高山灌丛生物量沿海拔梯度分配特征研究[D]. 兰州: 甘肃农业大学: 12-42. |
LEI L, 2012. Distributon character of alpine shrubs biomass along an elevation gradient in Qilian mountains[D]. Lanzhou: Gansu Agricultural University: 12-42. | |
[19] | 刘国华, 马克明, 傅伯杰, 等, 2003. 岷江干旱河谷主要灌丛类型地上生物量研究[J]. 生态学报, 23(9): 1757-1764. |
LIU G H, MA K M, FU B J, et al., 2003. Aboveground biomass of main shrubs in dry valley of Minjiang River[J]. Acta Ecologica Sinica, 23(9): 1757-1764. | |
[20] | 刘玉祯, 曹文侠, 王金兰, 等, 2019. 祁连山东段不同类型灌丛斑块土壤特征对围封的响应[J]. 草业学报, 28(11): 32-45. |
LIU Y Z, CAO W X, WANG J L, et al., 2019. Response of soil characteristics of different types of shrub patches to enclosure on eastern Qilian Mountain[J]. Acta Prataculturae Sinica, 28(11): 32-45. | |
[21] | 罗黎鸣, 苗彦军, 武建双, 等, 2014. 拉萨河谷山地灌丛草地物种多样性随海拔升高的变化特征[J]. 草业学报, 23(6): 320-326. |
LUO L M, MIAO Y J, WU J S, et al., 2014. Variation in the biodiversity of montane shrub grassland communities along an altitudinal gradient in Lhasa River basin valley[J]. Acta Prataculturae Sinica, 23(6): 320-326. | |
[22] | 齐鹏, 刘贤德, 赵维俊, 等, 2015. 祁连山中段青海云杉林土壤养分特征[J]. 山地学报, 33(5): 538-545. |
QI P, LIU X D, ZHAO W J, et al., 2015. Soil nutrient characteristics of Picea crassifolia forest in the middle segment of Qilian Mountain[J]. Mountain Research, 33(5): 538-545. | |
[23] | 唐志红, 尉秋实, 刘虎俊, 等, 2020. 祁连山东段高寒植被群落特征及其与地形气候因子关系研究[J]. 生态学报, 40(1): 223-232. |
TANG Z H, WEI Q S, LIU H J, et al., 2020. Characteristics of alpine vegetation community and its relationship to topographic climmate factors in the eastern Qilian mountain[J]. Acta Ecologica Sinica, 40(1): 223-232. | |
[24] | 王飞, 屠彩芸, 曹秀文, 等, 2018. 白龙江干旱河谷不同坡向主要灌丛群落随海拔梯度变化的物种多样性研究[J]. 植物研究, 38(1): 26-36. |
WANG F, TU C Y, CAO X W, et al., 2018. The different altitude gradient change rules of the main shrub community in arid valleys of the Bailongjiang river with different slope[J]. Bulletin of Botanical Research, 38(1): 26-36. | |
[25] |
王晶, 张钦弟, 许强, 等, 2016. 山西庞泉沟银露梅群落物种多样性的海拔格局[J]. 植物学报, 51(3): 335-342.
DOI |
WANG J, ZHANG Q D, XU Q, et al., 2016. Elevational patterns of community species diversity of Potentilla glabra in Pangquangou of Shanxi province[J]. Chinese Bulletin of Botany, 51(3): 335-342. | |
[26] | 王金兰, 曹文侠, 张德罡, 等, 2019. 东祁连山高寒杜鹃灌丛群落结构和物种多样性对海拔梯度的响应[J]. 草原与草坪, 39(5): 1-9. |
WANG J L, CAO W X, ZHANG D G, et al., 2019. Structure and species diversity of Rhododendron shrub-herb community and its response to altitude gradients in eastern Qilian Mountains[J]. Grassland and Turf, 39(5): 1-9. | |
[27] | 温静, 张世雄, 杨晓艳, 等, 2019. 青藏高原高寒草地物种多样性的海拔梯度格局及其对模拟增温的响应[J]. 农学学报, 9(4): 66-73. |
WEN J, ZHANG S X, YANG X Y, et al., 2019. Species diversity in alpine meadow of the Qinghai-Tibet Plateau: altitudinal gradient pattern and its response to simulated warming[J]. Journal of Agriculture, 9(4): 66-73. | |
[28] | 武龙庆, 金铭, 敬文茂, 等, 2021. 祁连山肃南县大野口至小孤山公路边坡生态防护措施探索[J]. 农业与技术, 41(6): 127-130. |
WU L Q, JIN M, JING W M, et al., 2021. Exploration of ecological protection measures for slope of highway from Dayekou to Xiaogushan in Sunan County, Qilian Mountains[J]. Agriculture and Technology, 41(6): 127-130. | |
[29] | 占玉芳, 马力, 滕玉风, 等, 2015. 祁连圆柏群落物种多样性的海拔梯度效应研究[J]. 中国水土保持 (8): 52-55, 77. |
ZFAN Y F, MA L, TENG Y F, et al., 2015. Altitude gradient effect of species diversity in Sabina przewalskii Community[J]. Soil and Water Conservation in China (8): 52-55, 77. | |
[30] | 赵维俊, 敬文茂, 赵永宏, 等 2017. 祁连山大野口流域典型灌丛植物与土壤中氮磷的化学计量特征[J]. 土壤, 49(3): 572-579. |
ZHAO W J, JING W M, ZHAO Y H, et al., 2017. Nitrogen and phosphorus stoichiometry of plants and soils of typical shrubs in Dayekou Basin of Qilian Mountains[J]. Soil, 49(3): 572-579. |
[1] | WANG Xuemei, YANG Xuefeng, ZHAO Feng, AN Baisong, HUANG Xiaoyu. Estimation of Aboveground Biomass in the Arid Oasis Based on the Machine Learning Algorithm [J]. Ecology and Environment, 2023, 32(6): 1007-1015. |
[2] | CHEN Keyi, LIN Tianmiao, WANG Jianjun, HE Youjun, ZHANG Liwen. Effects of Natural Forest Conservation Project on Forest Carbon Pool of Key State-Owned Forest Region of Daxing’anling, Heilongjiang Province in the Past 20 Years [J]. Ecology and Environment, 2023, 32(6): 1016-1025. |
[3] | LI Haipeng, HUANG Yuehua, SUN Xiaodong, CAO Qimin, FU Fangxing, SUN Chuhan. Correlation Analysis of the Occurrence of the Tomato Bacterial Wilt and Different Types of Texture of Latosols and Its Bacterial Community in Cropland in Hainan [J]. Ecology and Environment, 2023, 32(6): 1062-1069. |
[4] | CHEN Junfang, WU Xian, LIU Xiaolin, LIU Juan, YANG Jiarong, LIU Yu. Shaping Characteristics of Elemental Stoichiometry on Microbial Diversity under Different Soil Water Contents [J]. Ecology and Environment, 2023, 32(5): 898-909. |
[5] | JIANG Yongwei, DING Zhenjun, YUAN Junbin, ZHANG Zheng, LI Yang, WEN Qingchun, WANG Yeyao, JIN Xiaowei. Study on Benthic Macroinvertebrates Community Structure and Water Quality Evaluation in Main Rivers of Liaoning Province [J]. Ecology and Environment, 2023, 32(5): 969-979. |
[6] | LI Yang, HOU Zhiyong, CHEN Wei, YU Xiaoying, XIE Yonghong, HUANG Xin, TAN Peiyang, LI Jicheng, LI Shanglin, YANG Hui. Plant Diversity and Systematic Composition of Alpine Wetlands in Dawei Mountain [J]. Ecology and Environment, 2023, 32(4): 643-650. |
[7] | LI Shanjia, WANG Xingmin, LIU Haifeng, SUN Mengge, LEI Yuxin. Diversity of Desert Plants in Hexi Corridor and Its Response to Environmental Factors [J]. Ecology and Environment, 2023, 32(3): 429-438. |
[8] | QIN Hao, LI Mengai, GAO Jin, CHEN Kailong, ZHANG Yinbo, ZHANG Feng. Composition and Diversity of Soil Bacterial Communities in Shrub at Different Altitudes in Luya Mountain [J]. Ecology and Environment, 2023, 32(3): 459-468. |
[9] | YANG Yaodong, CHEN Yumei, TU Pengfei, ZENG Qingru. Phytoremediation Potential of Economic Crop Rotation Patterns for Cadmium-polluted Farmland [J]. Ecology and Environment, 2023, 32(3): 627-634. |
[10] | SONG Zhibin, ZHOU Jiacheng, TAN Lu, TANG Tao. Altitudinal Patterns of Benthic Algal Communities in Plateau Rivers: A Case Study of Heiqu and Xuequ in Tibet [J]. Ecology and Environment, 2023, 32(2): 274-282. |
[11] | ZHANG Lijin, DU Hu, ZENG Fuping, HUANG Guoqin, SONG Min, SONG Tongqing. Discussion on the Relationship between Productivity and Diversity during Vegetation Restoration in the Karst Peak-cluster Depression [J]. Ecology and Environment, 2023, 32(1): 26-35. |
[12] | LI Weiwen, HUANG Jinquan, QI Yujie, LIU Xiaolan, LIU Jigen, MAO Zhichao, GAO Xiufang. Meta-analysis of Soil Microbial Biomass Carbon Content and Its Influencing Factors under Soil Erosion [J]. Ecology and Environment, 2023, 32(1): 47-55. |
[13] | LI Ping, BAI Xiaoming, CHEN Xin, LI Juanxia, RAN Fu, CHEN Hui, YANG Xiaoni, KANG Ruiqing. Effects of Trifolium repens Invasion on Soil Properties and Plant Communities of Gramineous Turfgrass [J]. Ecology and Environment, 2023, 32(1): 70-79. |
[14] | HUANG Weijia, LIU Chun, LIU Yue, HUANG Bin, LI Dingqiang, YUAN Zaijian. Soil Ecological Stoichiometry and Its Influencing Factors at Different Elevations in Nanling Mountains [J]. Ecology and Environment, 2023, 32(1): 80-89. |
[15] | WANG Jie, SHAN Yan, MA Lan, SONG Yanjing, WANG Xiangyu. Effects of Straw and Biochar Synergistic Returning on the Improvement of Salt-affected Soil in the Yellow River Delta [J]. Ecology and Environment, 2023, 32(1): 90-98. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn