Ecology and Environment ›› 2022, Vol. 31 ›› Issue (4): 785-792.DOI: 10.16258/j.cnki.1674-5906.2022.04.017
• Research Articles • Previous Articles Next Articles
LI Jiayi1(), SUN Weimin2, SUN Xiaoxu2, KONG Tianle1, LI Baoqin2, LIU Zhenhong1, GAO pin1,*(
)
Received:
2022-01-26
Online:
2022-04-18
Published:
2022-06-22
Contact:
GAO pin
李嘉义1(), 孙蔚旻2, 孙晓旭2, 孔天乐1, 李宝琴2, 刘振鸿1, 高品1,*(
)
通讯作者:
高品
作者简介:
李嘉义(1998年生),男,硕士,研究方向为尾矿中硫氧化过程的自养微生物驱动机制。E-mail: 1043547027@qq.com
基金资助:
CLC Number:
LI Jiayi, SUN Weimin, SUN Xiaoxu, KONG Tianle, LI Baoqin, LIU Zhenhong, GAO pin. Isolation, Identification and Functional Verification of Sulfur-oxidizing Microorganisms in Mine Tailing[J]. Ecology and Environment, 2022, 31(4): 785-792.
李嘉义, 孙蔚旻, 孙晓旭, 孔天乐, 李宝琴, 刘振鸿, 高品. 尾矿硫氧化微生物的分离鉴定与功能验证[J]. 生态环境学报, 2022, 31(4): 785-792.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2022.04.017
成分 Composition | 液体培养基 Liquid medium/ (g∙L-1) | 固体培养基 Solid medium/ (g∙L-1) |
---|---|---|
硫代硫酸钠 Sodium thiosulfate | 5.0 | 5.0 |
磷酸氢二钾 Dipotassium phosphate | 2.0 | 2.0 |
硝酸钾 Potassium Nitrate | 2.0 | 2.0 |
硫酸镁 Magnesium sulfate | 0.6 | 0.6 |
氯化铵 Ammonium Chloride | 0.5 | 0.5 |
硫酸亚铁 Ferrous sulfate | 0.01 | 0.01 |
琼脂 Agar | — | 15 |
Table1 Sulfur-oxidizing bacteria liquid medium and solid medium
成分 Composition | 液体培养基 Liquid medium/ (g∙L-1) | 固体培养基 Solid medium/ (g∙L-1) |
---|---|---|
硫代硫酸钠 Sodium thiosulfate | 5.0 | 5.0 |
磷酸氢二钾 Dipotassium phosphate | 2.0 | 2.0 |
硝酸钾 Potassium Nitrate | 2.0 | 2.0 |
硫酸镁 Magnesium sulfate | 0.6 | 0.6 |
氯化铵 Ammonium Chloride | 0.5 | 0.5 |
硫酸亚铁 Ferrous sulfate | 0.01 | 0.01 |
琼脂 Agar | — | 15 |
[1] | AKCIL A, KOLDAS S, 2006. Acid Mine Drainage (AMD): causes, treatment and case studies[J]. Journal of Cleaner Production, 78(12): 215-272. |
[2] |
BAKER B J, BANFIELD J F, 2003. Microbial communities in acid mine drainage[J]. FEMS Microbiology Ecology, 44(2): 139-152.
DOI URL |
[3] | BOLAN N S, ADRIANO D C, CURTIN D, 2003. Soil acidification and liming interactions with nutrientand heavy metal transformationand bioavailability[J]. Advances in Agronomy, 78(2): 215-272. |
[4] |
CAI T, QIAN L, SHU C, et al., 2011. Biodegradation of Benazolin-Ethyl by Strain Methyloversatilis sp. cd-1 Isolated from Activated Sludge[J]. Current Microbiology, 62(2): 570-577.
DOI URL |
[5] | CAO X Y, TOBIAS K, LYDIA S, et al., 2018. Lipoate-binding proteins and specific lipoate-protein ligases in microbial sulfur oxidation reveal an atypcial role for an old cofactor[J]. Life Sciences, 7(3): 37439. |
[6] |
CHISTOSERDOVA, LUDMILA, 2015. Methylotrophs in natural habitats: current insights through metagenomics[J]. Applied Microbiology and Biotechnology, 99(14): 5763-5779.
DOI URL |
[7] | DORONINA N V, KAPARULLINA E N, TROTSENKO Y A, 2014. Methyloversatilis thermotolerans sp. nov. A novel thermotolerant facultative methylotroph isolated from a hot spring[J]. International Journal of Systematic & Evolutionary Microbiology, 64(Pt 1): 158-164. |
[8] |
GHOSH W, DAM B, 2009. Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea[J]. FEMS Microbiology Reviews, 33(6): 999-1043.
DOI URL |
[9] |
HANSON T E, TABITA F R, 2003. Insights into the stress response and sulfur metabolism revealed by proteome analysis of a Chlorobium tepidum mutant lacking the Rubisco-like protein[J]. Photosynthesis Research, 78(3): 231-248.
DOI URL |
[10] |
HUANG C, LIU Q, CHEN X Q, et al., 2020. Bioaugmentation with Thiobacillus sp. H1 in an autotrophic denitrification desulfurization microbial reactor: Microbial community changes and relationship[J]. Environmental Research, 189(2): 109927.
DOI URL |
[11] |
KISKOVÁ J, PERHÁOVÁ Z, VLKO L, et al., 2018. The Bacterial Population of Neutral Mine Drainage Water of Elizabeth's Shaft (Slovinky, Slovakia)[J]. Current Microbiology, 75(1): 1-9.
DOI URL |
[12] |
LILIAN L L, NICHOLAS J B, KRISTINE G K, 2021. Emerging frontiers in human milk microbiome research and suggested primers for 16S rRNA gene analysis-ScienceDirect[J]. Computational and Structural Biotechnology Journal, 19(1): 121-133.
DOI URL |
[13] | MEYER B, IMHOFF J F, KUEVER J, 2010. Molecular analysis of the distribution and phylogeny of the soxB gene among sulfur-oxidizing bacteria-evolution of the Sox sulfur oxidation enzyme system[J]. Environmental Microbiology, 9(12): 126-137. |
[14] |
SCHNEIDER A, FRIEDRICH C, 1994. Sulfide dehydrogenase is identical with the soxB protein of the thiosulfate-oxidizing enzyme system of Paracoccus denitrificans GB17[J]. FEBS Lett, 350(1): 61-70.
DOI URL |
[15] |
SMALLEY N E, TAIPALE S, MARCO P D, et al., 2015. Functional and genomic diversity of methylotrophic Rhodocyclaceae: Description of Methyloversatilis discipulorum sp. Nov[J]. International Journal of Systematic and Evolutionary Microbiology, 65(7): 2227-2233.
DOI URL |
[16] | SPRING S, KAMPFER P, SCHLEIFER K H, 2001. Limnobacter thiooxidans gen. nov. sp nov. a novel thiosulfate-oxidizingbacterium isolated from freshwater lake sediment[J]. International Journal of Systematic & Evolutionary Microbiology, 51(4): 1463-1470. |
[17] | YANG L, WU Z J, DONG X C, et al., 2018. Pyrite oxidization accelerates bacterial carbon sequestration in copper mine mine tailings Type of contribution[J]. Biogeosciences Discussions, 16(2): 1-16. |
[18] |
ZHANG L L, ZHANG C, HU C Z, et al., 2015. Sulfur-based mixotrophic denitrification corresponding to different electron donors and microbial profiling in anoxic fluidized-bed membrane bioreactors[J]. Water Research, 85(15): 422-431.
DOI URL |
[19] |
ZHAO R, TAO H Q, SONG Y Y, et al., 2021. Perchlorate bioreduction in UASB reactor: S 2- -autotrophic granular sludge formation and sulfate generation control[J]. Environmental Technology, 21(2): 1-19.
DOI URL |
[20] | 陈小红, 陈宇锋, 郑惠东, 等, 2016. 网箱养殖沉积环境中硫氧化菌的分离鉴定及生长特性[J]. 渔业研究, 38(6): 431-436. |
CHEN X H, CHEN Y F, ZHENG H D, et al., 2016. Isolation, identification and growth characteristics of sulfur-oxidizing bacteria in the sedimentary environment of cage culture[J]. Fishery Research, 38(6): 431-436. | |
[21] | 程睿, 2021. 金属矿山废弃地土壤质量综合评价指标体系初探[J]. 江西农业学报, 33(3): 106-112. |
CHENG R, 2021. A preliminary study on the comprehensive evaluation index system of soil quality in metal mine abandoned land[J]. Jiangxi Agricultural Journal, 33(3): 106-112. | |
[22] | 储巧玲, 杨渐, 蒋宏忱, 2018. 三峡库区水体中硫氧化菌的群落多样性[J]. 微生物学报, 58(4): 584-597. |
CHU Q L, YANG J, JIANG H C, 2018. Community diversity of sulfur oxidizing bacteria in the water of the Three Gorges Reservoir Area[J]. Journal of Microbiology, 58(4): 584-597. | |
[23] | 郭朝晖, 廖柏寒, 黄昌勇, 2002. 酸雨中SO42-, NO3-, Ca2+, NH4+对红壤中重金属的影响[J]. 中国环境科学, 22(1): 6-10. |
GUO Z H, LIAO B H, HUANG C Y, 2002. Effects of SO42-, NO3-, Ca2+, NH4+ on heavy metals in red soil during acid rain[J]. China Environmental Science, 22(1): 6-10. | |
[24] | 黄小龙, 秦风华, 周亚萍, 2018. 有色金属矿物中硫资源的回收及综合利用研究[J]. 世界有色金属, 12(8): 24, 26. |
HUANG X L, QIN F H, ZHOU Y P, 2018. Study on recovery and comprehensive utilization of sulfur resources in nonferrous metal minerals[J]. World Nonferrous Metals, 12(8): 24, 26. | |
[25] | 孔天乐, 孙晓旭, 孙蔚旻, 2020. 锑和砷对固氮菌的毒性效应及其机制研究[J]. 生态环境学报, 29(3): 589-595. |
KONG T L, SUN X X, SUN W M, 2020. Toxicity and mechanism of antimony and arsenic on Azotobacter[J]. Ecology and Environmental Sciences, 29(3): 589-595. | |
[26] | 刘阳, 姜丽晶, 邵宗泽, 2018. 硫氧化细菌的种类及硫氧化途径的研究进展[J]. 微生物学报, 58(2): 191-201. |
LIU Y, JIANG L J, SHAO Z Z, 2018. Research progress on species of sulfur-oxidizing bacteria and sulfur-oxidizing pathways[J]. Chinese Journal of Microbiology, 58(2): 191-201. | |
[27] | 林旭, 何洁, 冯守帅, 等, 2018. 硫氧化菌Halothiobacillus neapolitanus筛选、鉴定及其脱硫性能[J]. 应用与环境生物学报, 24(5): 1107-1113. |
LIN X, HE J, FENG S S, et al., 2018. Screening, identification and desulfurization performance of the sulfur-oxidizing bacteria Halothiobacillus neapolitanus[J]. Chinese Journal of Applied and Environmental Biology, 24(5): 1107-1113. | |
[28] | 陆现彩, 李娟, 刘欢, 等, 2019. 金属硫化物微生物氧化的机制和效应[J]. 岩石学报, 35(1): 153-163. |
LU X C, LI J, LIU H, et al., 2019. Mechanism and effect of microbial oxidation of metal sulfides[J]. Acta Petrologica Sinica, 35(1): 153-163.
DOI URL |
|
[29] | 曲珊珊, 严洪珊, 林炜铁, 等, 2021. 化能自养硫氧化细菌Halothiobacillus sp. LS2介导的以乙炔为电子受体的硫氧化反应[J]. 微生物学报, 42(2): 126-134. |
QU S S, YAN H S, LIN W T, et al., 2021. Sulfur oxidation with acetylene as electron acceptor mediated by the chemoautotrophic sulfur oxidizing bacterium Halothiobacillus sp.LS2[J]. Acta Microbiologica Sinica, 42(2): 126-134. | |
[30] | 苏雄, 2016. X-荧光光谱法测定硫原矿、硫尾矿中硫含量[J]. 中国钼业, 7(4): 49-50. |
SU X, 2016. Determination of sulfur content in sulfur ore and sulfur mine tailings by X-fluorescence spectroscopy[J]. China Molybdenum Industry, 7(4): 49-50. | |
[31] | 王雪峰, 朱欣然, 李为, 等, 2018. 全国矿产资源节约与综合利用报告[M]. 北京: 地质出版社 |
WANG X F, ZHU X R, LI W, et al., 2018. National report on conservation and comprehensive utilization of mineral resources: 2018[M]. Beijing: Geology Press. | |
[32] | 王存龙, 郑伟军, 王红晋, 等, 2012. 山东烟台环境介质中重金属元素富集特征及与酸化土壤的关系[J]. 岩矿测试, 31(2): 361-369. |
WANG C L, ZHENG W J, WANG H J, et al., 2012. Enrichment characteristics of heavy metals in environmental media in Yantai, Shandong and their relationship with acidified soil[J]. Rock and Mineral Testing, 31(2): 361-369. | |
[33] | 杨涛涛, 廖斌, 2020. 酸性尾矿生态修复过程的微生物学研究进展[J]. 节能与环保, 37(6): 70-72. |
YANG T T, LIAO B, 2020. Microbiological research progress of acid mine tailings ecological restoration process[J]. Energy Conservation and Environmental Protection, 37(6): 70-72. | |
[34] | 杨勇, 张吉, 张天佑, 2015. 有色金属尾矿的问题及处理现状[J]. 硅谷, 8(4): 253-254. |
YANG Y, ZHANG J, ZHANG T Y, 2015. Problems of non-ferrous metal mine tailings and their treatment status[J]. Silicon Valley, 8(4): 253-254. | |
[35] | 张静, 王清, 李晓茹, 等, 2009. 利用硫氧化细菌改良盐碱土[J]. 吉林大学学报, 39(1): 147-151. |
ZHANG J, WANG Q, LI X R, et al., 2009. Using sulfur-oxidizing bacteria to improve saline-alkali soil[J]. Journal of Jilin University, 39(1): 147-151. |
[1] | SHI Jianfei, JIN Zhengzhong, ZHOU Zhibin, WANG Xin. Evaluation of Heavy Metal Pollution in the Soil Around A Typical Tailing Reservoir in Irtysh River Basin [J]. Ecology and Environment, 2022, 31(5): 1015-1023. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn