生态环境学报 ›› 2024, Vol. 33 ›› Issue (3): 478-486.DOI: 10.16258/j.cnki.1674-5906.2024.03.016
王亚军1,2,*(), 秦楚桐1, 李肇隆1, 杨胜1, 姜舒恒1, 王艳纯1
收稿日期:
2023-08-31
出版日期:
2024-03-18
发布日期:
2024-05-08
通讯作者:
*作者简介:
王亚军(1979年生),男,教授,博士,主要从事生物强化技术研究。E-mail: wyj79626@163.com
基金资助:
WANG Yajun1,2,*(), QIN Chutong1, LI Zhaolong1, YANG Sheng1, JIANG Shuheng1, WANG Yanchun1
Received:
2023-08-31
Online:
2024-03-18
Published:
2024-05-08
摘要:
好氧颗粒污泥由于其强大的抗冲击能力和出色的除污效果,在常规活性污泥性能升级改造中得到热点关注,而其形成时间较长和稳定性较弱的问题限制了在污水处理厂的商业化应用。为了能尽快将好氧颗粒污泥技术广泛投入到污水处理领域中,有必要重新深入认知形成机制和结构稳定性的关键影响因素,从而达到精准调控其形成过程和实现长期稳定有效使用目的。该文通过系统地收集和分析相关研究文献,梳理了好氧颗粒污泥形成机制,形成机制主要集中在七大类假说,即晶核理论、自凝聚原理、胞外聚合物假说、丝状菌假说、细胞疏水性假说、选择压驱动假说和阶段假说等。从宏观和微观两个角度分析了其稳定性的关键影响因素。宏观上,反应器的高径比、水力剪切力、有机负荷率等因素都会对好氧颗粒污泥的形成和稳定性产生影响;微观上,微生物的群体感应及其分泌的胞外聚合物等因素也发挥着重要作用。详细阐述了好氧颗粒污泥微生物群落组成和功能,进一步整理了好氧颗粒污泥微生物群落与颗粒结构稳定性能的内在关联。依据以上研究进展并结合工程应用的实际情况和需求,总结概况了好氧颗粒污泥结构稳定强化策略,即控制污泥粒径、改善进料与曝气方式、调控胞外聚合物分泌、调控群体感应等。初步构想了基于生物强化、崩解和再造粒的技术路径,具有生化、物化和化学理论融合的特点,在一定程度上可能代表了群体感应-晶核凝聚共诱导造粒的研究方向。
中图分类号:
王亚军, 秦楚桐, 李肇隆, 杨胜, 姜舒恒, 王艳纯. 好氧颗粒污泥结构稳定强化策略研究评述[J]. 生态环境学报, 2024, 33(3): 478-486.
WANG Yajun, QIN Chutong, LI Zhaolong, YANG Sheng, JIANG Shuheng, WANG Yanchun. Anticipating Formation Characteristics and Stability Strengthening of Aerobic Granular Sludge[J]. Ecology and Environment, 2024, 33(3): 478-486.
试验方法/条件 | 强化结果 | 参考文献 |
---|---|---|
6个AGS反应器以A/O循环或A/O/A循环运行, 仅改变阶段时间分布 | A/O/A反应器中AGS性能和稳定性显著提升 | Rollemberg et al., |
投加真菌颗粒 (FPs) 低用量 (与种子污泥干重质量比, 30%) 和高用量 (60%) | 高FPs剂量诱导的AGS表现出良好结构和功能稳定性 | Geng et al., |
序批式间歇反应器 (SBR) 中分别接种污泥 (0 d)、形成初期颗粒污泥 (30 d) 和稳定颗粒污 (90 d), 改变水力条件 (雷诺数表征) | 控制反应体系的雷诺数为150, 有利于维持AGS稳定性 | 曹润娟等, |
向SBR反应器中添加木质纤维素运行5个月以上 | 木质纤维素促进细胞分泌多糖, 充当颗粒骨架, 进一步推动AGS形成并使其结构强度增强 | Xu et al., |
快速静态进料与添加Fe2+相结合 | 促进异养细菌生长和增强AGS形成。Fe2+抑制丝状菌生长, 促进EPS分泌和功能微生物聚集, 提高AGS颗粒稳定性 | Song et al., |
表1 国内外近5年内关于AGS结构稳定性强化的研究进展
Table1 Research progress on AGS structural stability enhancement within the past five years in China and abroad
试验方法/条件 | 强化结果 | 参考文献 |
---|---|---|
6个AGS反应器以A/O循环或A/O/A循环运行, 仅改变阶段时间分布 | A/O/A反应器中AGS性能和稳定性显著提升 | Rollemberg et al., |
投加真菌颗粒 (FPs) 低用量 (与种子污泥干重质量比, 30%) 和高用量 (60%) | 高FPs剂量诱导的AGS表现出良好结构和功能稳定性 | Geng et al., |
序批式间歇反应器 (SBR) 中分别接种污泥 (0 d)、形成初期颗粒污泥 (30 d) 和稳定颗粒污 (90 d), 改变水力条件 (雷诺数表征) | 控制反应体系的雷诺数为150, 有利于维持AGS稳定性 | 曹润娟等, |
向SBR反应器中添加木质纤维素运行5个月以上 | 木质纤维素促进细胞分泌多糖, 充当颗粒骨架, 进一步推动AGS形成并使其结构强度增强 | Xu et al., |
快速静态进料与添加Fe2+相结合 | 促进异养细菌生长和增强AGS形成。Fe2+抑制丝状菌生长, 促进EPS分泌和功能微生物聚集, 提高AGS颗粒稳定性 | Song et al., |
[1] |
AWANG N A, SHAABAN M G, LEE C W, et al., 2017. Characterization of aerobic granular sludge developed under variable and low organic loading rate[J]. Sains Malaysiana, 46(12): 2497-2506.
DOI URL |
[2] |
BEUN J J, HENDRIKS A, LOOSDRECHT M C M V, et al., 1999. Aerobic granulation in a sequencing batch reactor[J]. Water Research, 33(10): 2283-2290.
DOI URL |
[3] |
BUENO R D F, FARIA J K, ULIANA D P, et al., 2020. Simultaneous removal of organic matter and nitrogen compounds from landfill leachate by aerobic granular sludge[J]. Environmental Technology, 42(24): 3756-3770.
DOI URL |
[4] |
CHEN H, ZHOU S G, LI T H, 2010. Impact of extracellular polymeric substances on the settlement ability of aerobic granular sludge[J]. Environmental Technology, 31(14): 1601-1612.
DOI URL |
[5] |
CHEN H, LI A, CUI C W, et al., 2019. AHL-mediated quorum sensing regulates the variations of microbial community and sludge properties of aerobic granular sludge under low organic loading[J]. Environment International, 130: 104946.
DOI URL |
[6] | CHENG W, MA C, BAO R L, et al., 2023. Effect of influent ammonia nitrogen concentration on the phosphorus removal process in the aerobic granular sludge reactor[J]. Journal of Environmental Chemical Engineering, 11(5): 110476. |
[7] |
CORSINO S F, CAPODICI M, TORREGROSSA M, et al., 2016. Fate of aerobic granular sludge in the long-term: The role of EPSs on the clogging of granular sludge porosity[J]. Journal of Environmental Management, 183(Part 3): 541-550.
DOI URL |
[8] |
CORSINO S F, BIASE A D, DEVLIN T R, et al., 2017. Effect of extended famine conditions on aerobic granular sludge stability in the treatment of brewery wastewater[J]. Bioresource Technology, 226: 150-157.
DOI PMID |
[9] |
DAN L, SU Y, YU Y X, et al., 2023. Ball-milled magnetic sludge biochar enables fast aerobic granulation in anoxic/oxic process for the treatment of coal chemical wastewater[J]. The Science of the Total Environment, 880: 163241.
DOI URL |
[10] |
PENG D C, BERNET N, MOLETTA R, et al., 1999. Aerobic granular sludge: A case report[J]. Water Research, 33(3): 890-893.
DOI URL |
[11] |
DEVLIN T R, OLESZKIEWICZ J A, 2018. Cultivation of aerobic granular sludge in continuous flow under various selective pressure[J]. Bioresource Technology, 253: 281-287.
DOI PMID |
[12] |
DONG Y H, CHEN F, LI L, et al., 2022. Enhanced aerobic granular sludge formation by applying Phanerochaete chrysosporium pellets as induced nucleus[J]. Bioprocess and Biosystems Engineering, 45(5): 815-828.
DOI PMID |
[13] | ELY C, MOREIRA I S, BASSIN J P, et al., 2022. Treatment of saline wastewater amended with endocrine disruptors by aerobic granular sludge: Assessing performance and microbial community dynamics[J]. Journal of Environmental Chemical Engineering, 10(2): 107272. |
[14] | FALL C, BARRÓN-HERNÁNDEZ L M, GONZAGA-GALEANA V E, et al., 2022. Ordinary heterotrophic organisms with aerobic storage capacity provide stable aerobic granular sludge for C and N removal[J]. Journal of Environmental Management, 308(1): 114662. |
[15] |
FAN W W, YUAN L J, QU X Y. 2018. CFD simulation of hydrodynamic behaviors and aerobic sludge granulation in a stirred tank with lower ratio of height to diameter[J]. Biochemical Engineering Journal, 137(18): 78-94.
DOI URL |
[16] |
GAO W, HU Y C, JIAO X H, et al., 2021. Recovery of structure and activity of disintegrated aerobic granular sludge after long-term storage: Effect of exogenous N-acyl-homoserine lactones[J]. Chemosphere, 281: 130894.
DOI URL |
[17] |
GENG M Y, YOU S J, GUO H J, et al., 2021. Impact of fungal pellets dosage on long-term stability of aerobic granular sludge[J]. Bioresour Technology, 332: 125106.
DOI URL |
[18] |
HAAKSMAN V A, SCHOUTEREN M, LOOSDRECHT M C M V, et al., 2023. Impact of the anaerobic feeding mode on substrate distribution in aerobic granular sludge[J]. Water Research, 233: 119803.
DOI URL |
[19] | HAMIRUDDIN N A, AWANG N A, SHAABAN M G, 2019. The Performance of Extracellular Polymeric Substance (EPS) on Stability of Aerobic Granular Sludge (AGS)[J]. Civil Environmental Engineering Reports, 29(3): 60-69. |
[20] |
HE Q L, SONG J Y, ZHANG W, et al., 2020. Enhanced simultaneous nitrification, denitrification and phosphorus removal through mixed carbon source by aerobic granular sludge[J]. Journal of Hazardous Materials, 382: 121043.
DOI URL |
[21] |
IACONI C D, RAMADORI R, LOPEZ A, et al., 2006. Influence of hydrodynamic shear forces on properties of granular biomass in a sequencing batch biofilter reactor[J]. Biochemical Engineering Journal, 30(2): 152-157.
DOI URL |
[22] | IORHEMEN O T, ZAGHLOUL M S, HAMZA R A, et al., 2020. Long-term aerobic granular sludge stability through anaerobic slow feeding, fixed feast-famine period ratio, and fixed SRT[J]. Journal of Environmental Chemical Engineering, 8(2): 103681. |
[23] |
LETTINGA G, VELSEN V A F M, HOBMA S W, et al., 1980. Use of the Upflow Sludge Blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment[J]. Biotechnology Bioengineering, 22(4): 699-734.
DOI URL |
[24] |
LI Z W, MENG Q T, WAN C L, et al., 2022. Aggregation performance and adhesion behavior of microbes in response to feast/famine condition: Rapid granulation of aerobic granular sludge[J]. Environmental Research, 208: 112780.
DOI URL |
[25] |
LIU X Y, PEI Q Q, HAN H Y, et al., 2022. Functional analysis of extracellular polymeric substances (EPS) during the granulation of aerobic sludge: Relationship among EPS, granulation and nutrients removal[J]. Environmental Research, 208: 112692.
DOI URL |
[26] |
LIU Y, TAY J H, 2002. The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge[J]. Water Research, 36(7): 1653-1665.
PMID |
[27] |
LIU Y, TAY J H, 2004a. State of the art of biogranulation technology for wastewater treatment[J]. Biotechnology Advances, 22(7): 533-563.
DOI URL |
[28] |
LIU Y, YANG S F, TAY J H, 2004b. Improved stability of aerobic granules by selecting slow-growing nitrifying bacteria[J]. Journal of Biotechnology, 108(2): 161-169.
DOI URL |
[29] |
LONG B, YANG C Z, PU W H, et al., 2015. Tolerance to organic loading rate by aerobic granular sludge in a cyclic aerobic granular reactor[J]. Bioresource Technology, 182: 314-322.
DOI PMID |
[30] |
LONG B, XUAN X P, YANG C Z, et al., 2019. Stability of aerobic granular sludge in a pilot scale sequencing batch reactor enhanced by granular particle size control[J]. Chemosphere, 225: 460-469.
DOI PMID |
[31] |
MUÑOZ-PALAZON B, ROSA-MASEGOSA A, VILCHEZ-VARGAS R, et al., 2022. Biological removal processes in aerobic granular sludge for treating synthetic hospital wastewater: Effect of temperature[J]. Journal of Water Process Engineering, 47: 102691.
DOI URL |
[32] | MUNOZ P B, RODRIGUEZ S A, HURTADO M M, et al., 2020. Polar Arctic Circle biomass enhances performance and stability of aerobic granular sludge systems operated under different temperatures[J]. Bioresource Technology, 300(12): 26-36. |
[33] | NANCHARAIAH Y V, SARVAJITH M, 2019. Aerobic granular sludge process: A fast growing biological treatment for sustainable wastewater treatment[J]. Current Opinion in Environmental Science & Health, 12: 57-65. |
[34] |
OUYANG L F, HUANG W, HUANG M, et al., 2022. Polyaniline improves granulation and stability of aerobic granular sludge[J]. Advanced Composites and Hybrid Materials, 5(2): 1126-1136.
DOI |
[35] |
PENG J, ZHAO L, WANG Q R, et al., 2022. Enhancing the Stability of Aerobic Granular Sludge Process Treating Municipal Wastewater by Adjusting Organic Loading Rate and Dissolved Oxygen Concentration[J]. Separations, 9(8): 228-240.
DOI URL |
[36] |
PENG T, WANG Y Y, WANG J Q, et al., 2022. Effect of different forms and components of EPS on sludge aggregation during granulation process of aerobic granular sludge[J]. Chemosphere, 303(Part 2): 135116.
DOI URL |
[37] | POL L W H, LOPES S, LETTINGA G, et al., 2004. Anaerobic sludge granulation[J]. Waterr Research, 38(6): 1376-1389. |
[38] | PURBA L D A, IBIYEYE H T, YUZIR A, et al., 2020. Various applications of aerobic granular sludge: A review[J]. Environmental Technology & Innovation, 20: 101045. |
[39] |
ROLLEMBERG S L D S, BARROS A R M, FIRMINO P I M, et al., 2018. Aerobic granular sludge: Cultivation parameters and removal mechanisms[J]. Bioresource Technology, 270: 678-688.
DOI PMID |
[40] |
ROLLEMBERG S L S, FERREIRA T J T, FIRMINO P I M, et al., 2020. Impact of cycle type on aerobic granular sludge formation, stability, removal mechanisms and system performance[J]. Journal of Environmental Management 256: 109970.
DOI URL |
[41] | ROSAS-ECHEVERRíA K, FALL C, GUTI´ERREZ-SEGURA E, et al., 2023. Mechanisms of persistence and impact of ordinary heterotrophic organisms in aerobic granular sludge[J]. Bioresource Technology, 384(55): 129346. |
[42] |
ROSMAN N H, ANUAR A N, CHELLIAPAN S, et al., 2014. Characteristics and performance of aerobic granular sludge treating rubber wastewater at different hydraulic retention time[J]. Bioresource Technology, 161: 155-161.
DOI PMID |
[43] | SARVAJITH M, NANCHARAIAH Y V, 2023. De novo granulation of sewage-borne microorganisms: A proof of concept on cultivating aerobic granular sludge without activated sludge and effective enhanced biological phosphorus removal[J]. Environmental Research, 224: 115-128. |
[44] |
SCHMIDT J E, AHRING B K, 1996. Granular sludge formation in upflow anaerobic sludge blanket (UASB) reactors.[J]. Biotechnology and Bioengineering, 49(3): 229-246.
PMID |
[45] |
SHI Y J, LIU Y, 2021. Evolution of extracellular polymeric substances (EPS) in aerobic sludge granulation: Composition, adherence and viscoelastic properties[J]. Chemosphere, 262: 128033.
DOI URL |
[46] |
SHUAI J, HU X L, WANG B, et al., 2021. Response of aerobic sludge to AHL-mediated QS: Granulation, simultaneous nitrogen and phosphorus removal performance[J]. Chinese Chemical Letters, 32(11): 3402-3409.
DOI |
[47] | SILVA S A, VAL DEL RIO A, AMARAL A L, et al., 2022. Monitoring morphological changes from activated sludge to aerobic granular sludge under distinct organic loading rates and increasing minimal imposed sludge settling velocities through quantitative image analysis[J]. Chemosphere, 286(Part 2): 131-141. |
[48] |
SONG T, ZHANG X L, LI J, 2022. The formation and distinct characteristics of aerobic granular sludge with filamentous bacteria in low strength wastewater[J]. Bioresource Technology, 360: 127409.
DOI URL |
[49] |
SONG T, ZHANG X L, LI J, et al., 2023. Sulfamethoxazole impact on pollutant removal and microbial community of aerobic granular sludge with filamentous bacteria[J]. Bioresource Technology, 379: 128823.
DOI URL |
[50] |
SONG T, XIE W Y, LI Y, et al., 2024. Rapid static feeding combined with Fe2+ addition for improving the formation and stability of aerobic granular sludge in low-strength wastewater[J]. Environmental Research, 242: 117770.
DOI URL |
[51] |
STURM B S M, IRVINE R L, 2008. Dissolved oxygen as a key parameter to aerobic granule formation[J]. Water Science and Technology, 58(4): 781-787.
DOI PMID |
[52] |
SUN S P, LIU X, MA B Y, et al., 2016. The role of autoinducer-2 in aerobic granulation using alternating feed loadings strategy[J]. Bioresource Technology, 201: 58-64.
DOI PMID |
[53] | TANG P, WANG Y Y, LI J, et al., 2022. Multiple-perspective research on the spatial distribution of full-size aerobic granular sludge in wastewater treatment[J]. Journal of Environmental Chemical Engineering, 10(2): 107135. |
[54] | TANG R, HAN X S, JIN Y, et al., 2022. Do increased organic loading rates accelerate aerobic granulation in hypersaline environment?[J]. Journal of Environmental Chemical Engineering, 10(6): 108775. |
[55] |
TAO J, QIN L, LIU X Y, et al., 2017. Effect of granular activated carbon on the aerobic granulation of sludge and its mechanism[J]. Bioresource Technology, 236: 60-67.
DOI PMID |
[56] |
TAY J H, LIU Q S, LIU Y, 2001. The effects of shear force on the formation, structure and metabolism of aerobic granules[J]. Applied Microbiology and Biotechnology, 57(1-2): 227-233.
PMID |
[57] |
TAY J H, LIU Q S, LIU Y, 2002. Characteristics of aerobic granules grown on glucose and acetate in sequential aerobic sludge blanket reactors[J]. Environmental Technology, 23(8): 931-936.
DOI URL |
[58] | TIAN X P, ZHAO J T, HUANG J, et al., 2021. The metabolic process of aerobic granular sludge treating piggery wastewater: Microbial community, denitrification genes and mathematical model calculation[J]. Journal of Environmental Chemical Engineering, 9(2): 105392. |
[59] |
TONG Y H, LU P L, ZHANG W Y, et al., 2023. The shock of benzalkonium chloride on aerobic granular sludge system and its microbiological mechanism[J]. Science of The Total Environment, 895: 165010.
DOI URL |
[60] | VAN d H J P, 1988. Granular anaerobic sludge; microbiology and technology[M]. The Netherlands: Pudoc Wageningen: 203-211. |
[61] | WANG B, LIU S G, YAO X, et al., 2022. Alternating aeration strategy to reduce aeration energy demand for aerobic granular sludge and analysis of microbial community dynamics[J]. Environmental Science: Water Research & Technology, 8(5): 1111-1125. |
[62] |
WANG S, HUANG X X, LIU L J, et al., 2021. Insight into the role of exopolysaccharide in determining the structural stability of aerobic granular sludge[J]. Journal of Environmental Management, 298: 113521.
DOI URL |
[63] |
WANG X C, CHEN Z L, SHEN J M, et al., 2019. Impact of carbon to nitrogen ratio on the performance of aerobic granular reactor and microbial population dynamics during aerobic sludge granulation[J]. Bioresource Technology, 271: 258-265.
DOI PMID |
[64] |
WANG X C, LI J, ZHANG X L, et al., 2020. Impact of hydraulic retention time on swine wastewater treatment by aerobic granular sludge sequencing batch reactor[J]. Environmental Science and Pollution Research, 28(5): 5927-5937.
DOI |
[65] |
WANG Z W, LIU Y, TAY J H, 2005. Distribution of EPS and cell surface hydrophobicity in aerobic granules[J]. Applied Microbiology and Biotechnology, 69(4): 469-473.
DOI URL |
[66] | XAVIER J A, SANTOS S G S, MONTEIRO J P, et al., 2023. Towards a better understanding concerning carbon to nitrogen ratio and the carbon source in aerobic granular sludge[J]. Journal of Environmental Chemical Engineering, 11(5): 110457. |
[67] |
XU J, GAO Y, BI X J, et al., 2023. Positive effects of lignocellulose on the formation and stability of aerobic granular sludge[J]. Front Microbiol, 14: 1254152.
DOI URL |
[68] | YAO J C, YAO G J, WANG Z H, et al., 2023. Bioaugmentation of intertidal sludge enhancing the development of salt-tolerant aerobic granular sludge[J]. Journal of Environmental Management, 325(Part B): 116394. |
[69] |
YILMAZ G, BOZKURT U, MAGDEN K A, 2016. Effect of iron ions (Fe2+, Fe3+) on the formation and structure of aerobic granular sludge[J]. Biodegradation, 28(1): 1-16.
DOI URL |
[70] |
YU Z D, ZHANG Y, ZHANG Z M, et al., 2020. Enhancement of PPCPs removal by shaped microbial community of aerobic granular sludge under condition of low C/N ratio influent[J]. Journal of Hazardous Materials, 394: 122583.
DOI URL |
[71] |
YUAN Q, GONG H, XI H, et al., 2019. Strategies to improve aerobic granular sludge stability and nitrogen removal based on feeding mode and substrate[J]. Journal of Environmental Sciences, 84: 144-154.
DOI PMID |
[72] | ZHANG C Y, GAO F, WU Y H, et al., 2022. Small-sized salt-tolerant denitrifying and phosphorus removal aerobic granular sludge cultivated with mariculture waste solids to treat synthetic mariculture wastewater[J]. Biochemical Engineering Journal, 181(4): 108396. |
[73] |
ZHANG X T, CHEN A X, ZHANG D J, et al., 2018. The treatment of flowback water in a sequencing batch reactor with aerobic granular sludge: Performance and microbial community structure[J]. Chemosphere, 211: 1065-1072.
DOI PMID |
[74] |
ZHANG Z M, CAO R J, JIN L N, et al., 2019. The regulation of N-acyl-homoserine lactones (AHLs)-based quorum sensing on EPS secretion via ATP synthetic for the stability of aerobic granular sludge[J]. Science of the Total Environment, 673: 83-91.
DOI URL |
[75] | ZHANG Z M, YU Z D, ZHU L, et al., 2018. Gradient reduced aeration in an enhanced aerobic granular sludge process optimizes the dominant microbial community and its function[J]. Environmental Science: Water Research & Technology, 4(5): 680-688. |
[76] |
ZHI M Z, LIN L W, YA T J, et al., 2023. Understanding the N-acylated homoserine lactones(AHLs)-based quorum sensing for the stability of aerobic granular sludge in the aspect of substrate hydrolysis enhancement[J]. Science of the Total Environment, 858(Part 3): 159581.
DOI URL |
[77] |
ZOU J T, PAN J Y, WU S Y, et al., 2019. Rapid control of activated sludge bulking and simultaneous acceleration of aerobic granulation by adding intact aerobic granular sludge[J]. Science of The Total Environment, 674: 105-113.
DOI URL |
[78] | 曹润娟, 姬雅彤, 楼恬汝, 等, 2022. 强化好氧颗粒污泥稳定性的水力条件响应研究[J]. 环境科学学报, 42(2): 138-145. |
CAO R J, JI Y T, LOU T R, et al., 2022. The hydraulic response on enhancing the stability of aerobic granular sludge[J]. Acta Scientiae Circumstantiae, 42(2): 138-145. | |
[79] | 高春娣, 杨箫阳, 欧家丽, 等, 2022. 丝状菌膨胀污泥好氧颗粒化稳定性及微生物多样性[J]. 环境科学, 43(7): 3718-3729. |
GAO C D, YANG X Y, OU J L, et al., 2022. Aerobic granulation stability and microbial diversity of filamentous bulking sludge[J]. Environmental Science, 43(7): 3718-3729. | |
[80] |
郭之晗, 徐云翔, 李天皓, 等, 2022. 好氧颗粒污泥长期稳定运行研究进展[J]. 化工进展, 41(5): 2686-2697.
DOI |
GUO Z H, XU Y X, LI T H, et al., 2022. Research progress on long-term stable operation of aerobic granular sludge[J]. Chemical Industry and Engineering Progress, 41(5): 2686-2697.
DOI |
|
[81] | 李冬, 曹思雨, 王琪, 等, 2021. 低表观气速间歇曝气AGS-SBR系统处理实际生活污水[J]. 中国环境科学, 41(10): 4588-4596. |
LI D, CAO S Y, WANG Q, et al., 2021. Low superficial gas velocity intermittent aeration AGS (aerobic granular sludge) SBR system oftreating domestic wastewater[J]. China Environmental Science, 41(10): 4588-4596. | |
[82] |
李冬, 高飞雁, 解一博, 等, 2022. 有机负荷波动频次对好氧颗粒污泥的影响[J]. 化工进展, 41(12): 6680-6688.
DOI |
LI D, GAO F Y, XIE Y B, et al., 2022. Effect of organic load fluctuation frequency on aerobic granular sludge[J]. Chemical Industry and Engineering Progress, 41(12): 6680-6688.
DOI |
|
[83] | 李冬, 李悦, 李雨朦, 等, 2023. 好氧颗粒污泥同步硝化内源反硝化脱氮除磷[J]. 中国环境科学, 42(3): 1113-1119. |
LI D, LI Y, LI Y M, et al., 2023. Simultaneous nitrification and denitrification of aerobic granular sludge for nitrogen and phosphorus removal[J]. China Environmental Science, 42(3): 1113-1119. | |
[84] | 倪丙杰, 俞汉青, 谢文明, 等. 好氧颗粒污泥形成机理与模型[EB/OL]. 北京: 中国科技论文在线, [2007-12-28]. http://www.paper.edu.cn/releasepaper/content/200712-844. |
NI B J, YU H Q, XIE W M, et al., 2007. Mechanism and modeling of aerobic granular sludge formation[EB/OL]. Beijing: Sciencepaper Online, [2007-12-28]. http://www.paper.edu.cn/releasepaper/content/200712-844. | |
[85] | 潘江, 肖芃颖, 姚源, 等, 2021. 连续曝气SBR快速培养AGS及同步脱氮除碳特性分析[J]. 环境监测管理与技术, 33(3): 60-63. |
PAN J, XIAO P Y, YAO Y, et al., 2021. Characteristic analysis on rapid cultivation of AGS with continuous aeration sbr and simultaneous removal of nitrogen and carbon[J]. The Administration and Technique of Environmental Monitoring, 33(3): 60-63. | |
[86] | 闻逸铮, 郑超群, 郑洁, 等, 2022. Ca2+、 Mg2+、Fe2+诱导颗粒污泥形成及污水处理效果[J]. 环境工程, 40(8): 40-46. |
WEN Y Z, ZHENG C Q, ZHENG J, et al., 2022. The formation of aerobic granular sludge induced by Ca2+, Mg2+ and Fe2+ and its sewage treatment effect[J]. Environmental Engineering, 40(8): 40-46. | |
[87] | 杨春维, 李雪丽, 邵亚红, 等, 2012. SBR中好氧颗粒污泥的培养[J]. 四川环境, 31(5): 21-25. |
YANG C W, LI X L, SHAO Y H, et al., 2012. Cultivation of the aerobic granular sludge in sequencing batch reactor[J]. Sichuan Environment, 31(5): 21-25. | |
[88] | 张杰, 杨杰, 李冬,, 2023. AOA-O模式下好氧颗粒污泥同步硝化内源反硝化除磷[J]. 中国环境科学, 43(10): 5226-5234. |
ZHANG J, YANG J, LI D, et al., 2023. Simultaneous nitrification and phosphorus removal of aerobic granular sludge in AOA-O mode[J]. China Environmental Science, 43(10): 5226-5234. | |
[89] | 张立楠, 宣鑫鹏, 程媛媛, 等, 2019. 不同pH下好氧颗粒污泥的稳定性[J]. 有色金属科学与工程, 10(1): 87-91. |
ZHANG L N, XUAN X P, CHENG Y Y, et al., 2019. Effect of pH on stability of aerobic granular sludge[J]. Nonferrous Metals Science and Engineering, 10(1): 87-91. | |
[90] | 郑婧婧, 张智明, 徐向阳, 等, 2021. 污水处理好氧颗粒污泥生产运行中的结构与稳定性[J]. 应用与环境生物学报, 27(6): 1672-1685. |
ZHENG J J, ZHANG Z M, XU X Y, et al., 2021. Structure and stability of aerobic granular sludge during operation in wastewater treatment[J]. Chinese Journal of Applied and Environmental Biology, 27(6): 1672-1685. | |
[91] | 周律, 钱易, 1995. 好氧颗粒污泥的形成和技术条件[J]. 给水排水, 21(4): 11-13. |
ZHOU L, QIAN Y, 1995. Formation and technical conditions of aerobic granular sludge[J]. Water & Wastewater Engineering, 21(4): 11-13. |
[1] | 梁贝竹, 陈建耀, 杨再智, 张鹏程, 任坤, 梁作兵, 杨晨晨, 吴洁珊. 华南滨海小流域地下水中PPCPs的分布、来源及影响因素——以珠海市唐家湾镇为例[J]. 生态环境学报, 2024, 33(2): 249-260. |
[2] | 张德嵩, 陈振东, 孔德锦, 李柏林, 何晓曼, 杨列. 碳源补充型高级氧化法工艺净化水中磺胺类抗生素研究进展与趋势[J]. 生态环境学报, 2024, 33(2): 321-332. |
[3] | 李晴, 张梦悦, 于明乔, 李小璇, 常明, 陈立斌, 丁森. 东莞城市河流大型底栖动物群落结构及影响因子[J]. 生态环境学报, 2024, 33(1): 101-110. |
[4] | 李丹怡, 黄显婷, 李继超, 李颖洁, 闫家普, 林慰. 氧化石墨烯及其复合材料去除水体抗生素的研究进展[J]. 生态环境学报, 2024, 33(1): 144-155. |
[5] | 蒋伯琪, 浮天, 程昳璇, 苏枞枞, 沈建东, 于谨铖, 于兴娜. 沈阳市臭氧污染特征及其影响因素[J]. 生态环境学报, 2024, 33(1): 72-79. |
[6] | 高尧峰, 段艳平, 陈昱如, 涂耀仁, 高峻. 长江流域氧氟沙星和金霉素的人体健康水质基准研究[J]. 生态环境学报, 2024, 33(1): 92-100. |
[7] | 黄国锋, 贺斌, 谢志宜, 刘军, 王安侯, 廖彤, 王博瑾, 郝贝贝. 广东省农业源污染对水环境的影响及其空间分异格局[J]. 生态环境学报, 2023, 32(12): 2207-2215. |
[8] | 鲁言波, 陈湛峰, 李彤. 基于改进TOPSIS模型的广东省主要湖库水质特征分析[J]. 生态环境学报, 2023, 32(12): 2194-2206. |
[9] | 李卓轩, 彭自然, 何文辉, 卫瑞璐, 高琳茜. 羊粪炭对水体氮磷吸附条件的响应面优化及吸附机理研究[J]. 生态环境学报, 2023, 32(12): 2216-2227. |
[10] | 郝丽宇, 何苗苗, 汤家喜. 河流水体全氟化合物的污染现状及修复技术研究进展[J]. 生态环境学报, 2023, 32(12): 2115-2127. |
[11] | 李文菁, 黄月群, 黄亮亮, 李向通, 苏琼源, 孙扬言. 北部湾海洋鱼类微塑料污染特征及其风险评估[J]. 生态环境学报, 2023, 32(11): 1913-1921. |
[12] | 何文宣, 李垒, 孙思宇, 李昌, 李久义, 田秀君. 北运河水体、沉积物和鱼类中微塑料的分布特征研究[J]. 生态环境学报, 2023, 32(11): 1901-1912. |
[13] | 高晓宇, 王磊. 抗生素抗性基因在土壤中积累、转移与消减的研究进展[J]. 生态环境学报, 2023, 32(11): 2062-2071. |
[14] | 韩迁, 张玉娇, 赖承钺, 杨璐瑶, 孟旭. 成都市河流中四环素、喹诺酮类抗生素污染特征及生态风险评价[J]. 生态环境学报, 2023, 32(11): 1922-1932. |
[15] | 侯冬梅, 张兰, 李春成, 陈露童, 王盼盼, 邹建平. 壳聚糖-生物铁锰氧化物去除水体中锑的性能及机理研究[J]. 生态环境学报, 2023, 32(10): 1842-1853. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||