生态环境学报 ›› 2024, Vol. 33 ›› Issue (2): 321-332.DOI: 10.16258/j.cnki.1674-5906.2024.02.016
• 综述 •
上一篇
张德嵩(), 陈振东, 孔德锦, 李柏林, 何晓曼, 杨列*(
)
收稿日期:
2023-08-28
出版日期:
2024-02-18
发布日期:
2024-04-03
通讯作者:
*杨列。E-mail: yanglie612@whut.edu.cn作者简介:
张德嵩(1999年生),男,硕士研究生,研究方向为新污染物的迁移转化及去除。E-mail: zhangdesong@whut.edu.cn
基金资助:
ZHANG Desong(), CHEN Zhendong, KONG Dejin, LI Bolin, HE Xiaoman, YANG Lie*(
)
Received:
2023-08-28
Online:
2024-02-18
Published:
2024-04-03
摘要:
磺胺类抗生素(SAs)是自然水环境和污水处理系统中检出频次与残留浓度最高的抗生素之一。过氧乙酸(PAA)作为广谱性杀菌剂,因其氧化性强、环境友好等优势,其用于有机污染物降解成为研究热点之一。与传统H2O2基芬顿法等无机氧化法相比,PAA氧化反应生成乙酸,经中和后转化的乙酸钠可为后续生化工艺段提供优质碳源,有效降低含SAs废水的处理成本。该文对PAA基碳源补充型高级氧化法的研究进展与趋势进行了系统总结。以SAs作为典型水环境污染物,对近年来PAA基碳源补充型高级氧化工艺进行了系统总结分析,比较分析了其对各类水质背景中SAs的去除效能,并对过渡金属、碳基材料等多种PAA活化方式,工艺运行参数、活性氧物种(ROS)的交联作用机理以及SAs降解机制进行了剖析。研究发现,乙酰氧基自由基和乙酰过氧基自由基为PAA基高级氧化工艺中的基础活性物质,pH、PAA含量、共存物质等会不同程度上影响体系中ROS的生成路径。此外,磺胺类抗生素主要包括五元磺胺和六元磺胺,二者降解机理存在一定差异。五元磺胺降解主要依靠苯胺环上氨基氧化、羟基取代、S-N/S-C键断裂、N中心自由基偶联反应等4种途径;六元磺胺降解过程还包括SO2脱除、斯迈尔斯重排等机制。在PAA基碳源补充型高级氧化工艺研究领域,新型高性能非均相PAA活化方式开发、实际工况的运行调控与成本控制等将成为未来研究热点。该文可为PAA基碳源补充型高级氧化工艺治理水环境新污染物的研究与应用方向提供参考。
中图分类号:
张德嵩, 陈振东, 孔德锦, 李柏林, 何晓曼, 杨列. 碳源补充型高级氧化法工艺净化水中磺胺类抗生素研究进展与趋势[J]. 生态环境学报, 2024, 33(2): 321-332.
ZHANG Desong, CHEN Zhendong, KONG Dejin, LI Bolin, HE Xiaoman, YANG Lie. Research Progress and Tendency of Carbon Source Supplementation Advanced Oxidation Processes for Purification of Sulfonamides from Wastewater[J]. Ecology and Environment, 2024, 33(2): 321-332.
名称 | 过氧乙酸 |
---|---|
分子式 | CH3C(O)OOH |
CAS编号 | 79-21-0 |
分子量 | 76.05 |
熔点、沸点 | −0.2-0.1 ℃, 110 ℃ |
相对密度 | 1.2 |
氧化还原电位 | 1.06-1.96 V |
溶解度 | 与水混溶, 易溶于乙醚、硫酸, 溶于乙醇 |
酸度系数 (pKa) | 8.2 |
O-O键能 | 159 kJ∙mol−1 |
表1 过氧乙酸理化性质
Table1 Physical and chemical properties of PAA
名称 | 过氧乙酸 |
---|---|
分子式 | CH3C(O)OOH |
CAS编号 | 79-21-0 |
分子量 | 76.05 |
熔点、沸点 | −0.2-0.1 ℃, 110 ℃ |
相对密度 | 1.2 |
氧化还原电位 | 1.06-1.96 V |
溶解度 | 与水混溶, 易溶于乙醚、硫酸, 溶于乙醇 |
酸度系数 (pKa) | 8.2 |
O-O键能 | 159 kJ∙mol−1 |
活化方式 | 污染物 | 反应条件 | 去除效率/ % | 参考 文献 | ||||
---|---|---|---|---|---|---|---|---|
污染物初始浓度/ (μmol∙L−1) | PAA初始浓度/ (mmol∙L−1) | 催化剂投加量/ (mg∙L−1) | 初始pH | 温度/℃ | ||||
热 | SMX | 5 | 0.2 | ‒ | 7.0 | 60 | 86 | Wang et al., |
Co2+ | SMX | 10 | 0.1 | 0.047 | 7.0±0.2 | 25 | 89.4 | Wang et al., 2020a |
ZVCo | SMX | 5 | 0.05 | 100 | 7.0 | ‒ | 99.4 | Zhou et al., |
Mn3O4 | SMX | 1 | 1 | 50 | 6.5 | 25 | 100 | Zhou et al., |
CoCaAl-LDO | SMX | 20 | 0.2 | 50 | 6.4 | 25 | 94.6 | Xie et al., |
Co@MXenes | SMX | 20 | 0.26 | 10 | 7.0 | 20 | 90 | Zhang et al., |
FeCo2S4-CN | SMX | 5 | 0.125 | 20 | 6.5 | 25 | 78.6 | Zhou et al., |
RuO2/MWCNTs | SMX | 50 | 1 | 200 | 7.0 | ‒ | 100 | Qian et al., |
PAC | SMX | 10 | 0.1 | 20 | 7.0±0.15 | 25 | 87 | Wang et al., |
Mn(VII) | SMT | 50 | 0.025 | 8.24 | 5.8±0.1 | 25 | 97.5 | Dong et al., |
表2 不同方式活化PAA去除SAs性能比较
Table 2 Performance comparison of different PAA activation methods for SAs removal
活化方式 | 污染物 | 反应条件 | 去除效率/ % | 参考 文献 | ||||
---|---|---|---|---|---|---|---|---|
污染物初始浓度/ (μmol∙L−1) | PAA初始浓度/ (mmol∙L−1) | 催化剂投加量/ (mg∙L−1) | 初始pH | 温度/℃ | ||||
热 | SMX | 5 | 0.2 | ‒ | 7.0 | 60 | 86 | Wang et al., |
Co2+ | SMX | 10 | 0.1 | 0.047 | 7.0±0.2 | 25 | 89.4 | Wang et al., 2020a |
ZVCo | SMX | 5 | 0.05 | 100 | 7.0 | ‒ | 99.4 | Zhou et al., |
Mn3O4 | SMX | 1 | 1 | 50 | 6.5 | 25 | 100 | Zhou et al., |
CoCaAl-LDO | SMX | 20 | 0.2 | 50 | 6.4 | 25 | 94.6 | Xie et al., |
Co@MXenes | SMX | 20 | 0.26 | 10 | 7.0 | 20 | 90 | Zhang et al., |
FeCo2S4-CN | SMX | 5 | 0.125 | 20 | 6.5 | 25 | 78.6 | Zhou et al., |
RuO2/MWCNTs | SMX | 50 | 1 | 200 | 7.0 | ‒ | 100 | Qian et al., |
PAC | SMX | 10 | 0.1 | 20 | 7.0±0.15 | 25 | 87 | Wang et al., |
Mn(VII) | SMT | 50 | 0.025 | 8.24 | 5.8±0.1 | 25 | 97.5 | Dong et al., |
活化方式 | 优点 | 缺点 |
---|---|---|
能量输入 | 绿色环保、不易产生二次 污染 | 能量消耗较大、经济成本较高、推广适用性较低 |
过渡金属 | 工艺简便、成本较低、活化效率高、污染物去除效果好 | 易造成金属浸出等二次污染、具有pH局限性 |
碳基材料 | pH适用范围较广、活化效率高、不易产生二次污染、原材料来源广泛、成本较低 | 循环使用性能较差 |
表3 PAA主要活化工艺比较
Table 3 Comparison of major PAA activation processes
活化方式 | 优点 | 缺点 |
---|---|---|
能量输入 | 绿色环保、不易产生二次 污染 | 能量消耗较大、经济成本较高、推广适用性较低 |
过渡金属 | 工艺简便、成本较低、活化效率高、污染物去除效果好 | 易造成金属浸出等二次污染、具有pH局限性 |
碳基材料 | pH适用范围较广、活化效率高、不易产生二次污染、原材料来源广泛、成本较低 | 循环使用性能较差 |
[1] |
ABDEL-HALIM E S, AL-DEYAB S S, 2011. Low temperature bleaching of cotton cellulose using peracetic acid[J]. Carbohydrate Polymers, 86(2): 988-994.
DOI URL |
[2] |
ALASRI A, ROQUES C, MICHEL G, et al., 1992. Bactericidal properties of peracetic acid and hydrogen peroxide, alone and in combination, and chlorine and formaldehyde against bacterial water strains[J]. Canadian Journal of Microbiology, 38(7): 635-642.
PMID |
[3] |
ANIPSITAKIS G P, DIONYSIOU D D, 2003. Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt[J]. Environmental Science & Technology, 37(20): 4790-4797.
DOI URL |
[4] |
ANTONELLI M, ROSSI S, MEZZANOTTE V, et al., 2006. Secondary effluent disinfection: PAA long term efficiency[J]. Environmental Science & Technology, 40(15): 4771-4775.
DOI URL |
[5] |
AO X, WANG W, SUN W, et al., 2021a. Degradation and transformation of norfloxacin in medium-pressure ultraviolet/peracetic acid process: An investigation of the role of pH[J]. Water Research, 203: 117458.
DOI URL |
[6] |
AO X W, ELORANTA J, HUANG C H, et al., 2021b. Peracetic acid-based advanced oxidation processes for decontamination and disinfection of water: A review[J]. Water Research, 188: 116479.
DOI URL |
[7] |
APPELS L, VAN ASSCHE A, WILLEMS K, et al., 2011. Peracetic acid oxidation as an alternative pre-treatment for the anaerobic digestion of waste activated sludge[J]. Bioresource Technology, 102(5): 4124-4130.
DOI PMID |
[8] |
BALDRY M G, 1983. The bactericidal, fungicidal and sporicidal properties of hydrogen peroxide and peracetic acid[J]. Journal of Applied Bacteriology, 54(3): 417-423.
DOI PMID |
[9] |
BARAN W, ADAMEK E, ZIEMIANSKA J, et al., 2011. Effects of the presence of sulfonamides in the environment and their influence on human health[J]. Journal of Hazardous Materials, 196: 1-15.
DOI PMID |
[10] |
BIANCHINI R, CALUCCI L, LUBELLO C, et al., 2002. Intermediate free radicals in the oxidation of wastewaters[J]. Research on Chemical Intermediates, 28(2-3): 247-256.
DOI URL |
[11] |
BLAIR B, NIKOLAUS A, HEDMAN C, et al., 2015. Evaluating the degradation, sorption, and negative mass balances of pharmaceuticals and personal care products during wastewater treatment[J]. Chemosphere, 134: 395-401.
DOI PMID |
[12] |
CHANDRABOSE G, DEY A, GAUR S S, et al., 2021. Removal and degradation of mixed dye pollutants by integrated adsorption-photocatalysis technique using 2-D MoS2/TiO2 nanocomposite[J]. Chemosphere, 279: 130467.
DOI URL |
[13] |
CHEN H Y, JING L J, TENG Y G, et al., 2018. Characterization of antibiotics in a large-scale river system of China: Occurrence pattern, spatiotemporal distribution and environmental risks[J]. Science of the Total Environment, 618: 409-418.
DOI URL |
[14] |
CHEN K, ZHOU J L, 2014. Occurrence and behavior of antibiotics in water and sediments from the Huangpu River, Shanghai, China[J]. Chemosphere, 95: 604-612.
DOI PMID |
[15] |
CHEN S, CAI M Q, LIU Y Z, et al., 2019. Effects of water matrices on the degradation of naproxen by reactive radicals in the UV/peracetic acid process[J]. Water Research, 150: 153-161.
DOI PMID |
[16] |
CHEN S H, FEGAN N, KOCHARUNCHITT C, et al., 2020. Effect of peracetic acid on Campylobacter in food matrices mimicking commercial poultry processing[J]. Food Control, 113: 107185.
DOI URL |
[17] |
CHEN Z D, HE L Y, SHEN S T, et al., 2023. Natural tourmaline activated peracetic acid for efficient degradation of sulfadiazine: Reaction mechanisms and catalyst reusability[J]. Progress in Natural Science: Materials International, 33(4): 458-466.
DOI URL |
[18] |
CUI J, FU L F, TANG B, et al., 2020. Occurrence, ecotoxicological risks of sulfonamides and their acetylated metabolites in the typical wastewater treatment plants and receiving rivers at the Pearl River Delta[J]. Science of the Total Environment, 709: 136192.
DOI URL |
[19] |
DAI C M, LI S, DUAN Y P, et al., 2022a. Mechanisms and product toxicity of activated carbon/peracetic acid for degradation of sulfamethoxazole: Implications for groundwater remediation[J]. Water Research, 216: 118347.
DOI URL |
[20] |
DAI Y H, CAO H, QI C D, et al., 2023. L-cysteine boosted Fe(III)-activated peracetic acid system for sulfamethoxazole degradation: Role of L-cysteine and mechanism[J]. Chemical Engineering Journal, 451(Part 2): 138588.
DOI URL |
[21] |
DAI Y H, QI C D, CAO H, et al., 2022b. Enhanced degradation of sulfamethoxazole by microwave-activated peracetic acid under alkaline condition: Influencing factors and mechanism[J]. Separation and Purification Technology, 288: 120716.
DOI URL |
[22] |
DE BRUYN M, BUDARIN V L, STURM G S J, et al., 2017. Subtle microwave-induced overheating effects in an industrial demethylation reaction and their direct use in the development of an innovative microwave reactor[J]. Journal of the American Chemical Society, 139(15): 5431-5436.
DOI PMID |
[23] |
DONG J, DONG H R, LI Y J, et al., 2023. Low additive peracetic acid enhanced sulfamethazine degradation by permanganate: A mechanistic study[J]. Water Research, 242: 120298.
DOI URL |
[24] |
DONG J, XU W H, LIU S B, et al., 2022. Lignin-derived biochar to support CoFe2O4: Effective activation of peracetic acid for sulfamethoxazole degradation[J]. Chemical Engineering Journal, 430(Part 3): 132868.
DOI URL |
[25] |
DU P H, WANG J J, SUN G D, et al., 2022. Hydrogen atom abstraction mechanism for organic compound oxidation by acetylperoxyl radical in Co(II)/peracetic acid activation system[J]. Water Research, 212: 118113.
DOI URL |
[26] |
DUAN J, CHEN L, JI H D, et al., 2022. Activation of peracetic acid by metal-organic frameworks (ZIF-67) for efficient degradation of sulfachloropyridazine[J]. Chinese Chemical Letters, 33(6): 3172-3176.
DOI URL |
[27] |
DUNKIN N, WENG S, SCHWAB K J, et al., 2017. Comparative inactivation of murine norovirus and MS2 bacteriophage by peracetic acid and monochloramine in municipal secondary wastewater effluent[J]. Environmental Science & Technology, 51(5): 2972-2981.
DOI URL |
[28] |
EVANS F W, SEHON A H, 1963. The thermal decomposition of peracetic acid in aromatic solvents[J]. Canadian Journal of Chemistry, 41(7): 1826-1831.
DOI URL |
[29] |
FAN J H, QIN H H, JIANG S M, 2019. Mn-doped g-C3N4 composite to activate peroxymonosulfate for acetaminophen degradation: The role of superoxide anion and singlet oxygen[J]. Chemical Engineering Journal, 359: 723-732.
DOI URL |
[30] |
GAO S S, ZHAO Z W, XU Y P, et al., 2014. Oxidation of sulfamethoxazole (SMX) by chlorine, ozone and permanganate: A comparative study[J]. Journal of Hazardous Materials, 274: 258-269.
DOI URL |
[31] |
GARCIA-RODRÍGUEZ A, MATAMOROS V, FONTÀS C, et al., 2013. The influence of light exposure, water quality and vegetation on the removal of sulfonamides and tetracyclines: A laboratory-scale study[J]. Chemosphere, 90(8): 2297-2302.
DOI URL |
[32] |
HE L Y, YANG S D, SHEN S T, et al., 2022. Novel insights into the mechanism of periodate activation by heterogeneous ultrasonic-enhanced sludge biochar: Relevance for efficient degradation of levofloxacin[J]. Journal of Hazardous Materials, 434: 128860.
DOI URL |
[33] |
HOLLMAN J, DOMINIC J A, ACHARI G, 2020. Degradation of pharmaceutical mixtures in aqueous solutions using UV/peracetic acid process: Kinetics, degradation pathways and comparison with UV/H2O2[J]. Chemosphere, 248: 125911.
DOI URL |
[34] | HU J H, LI X Y, LIU F F, et al., 2022. Comparison of chemical and biological degradation of sulfonamides: Solving the mystery of sulfonamide transformation[J]. Journal of Hazardous Materials, 424(Part D): 127661. |
[35] |
HU P D, LONG M C, 2016. Cobalt-catalyzed sulfate radical-based advanced oxidation: A review on heterogeneous catalysts and applications[J]. Applied Catalysis B: Environmental, 181: 103-117.
DOI URL |
[36] |
HUO B J, MENG F Q, YANG J W, et al., 2022. High efficiently piezocatalysis degradation of tetracycline by few-layered MoS2/GDY: Mechanism and toxicity evaluation[J]. Chemical Engineering Journal, 436: 135173.
DOI URL |
[37] |
JIA M Y, CHEN X H, LIU B J, et al., 2023. Persistence kinetics of a novel disinfectant peracetic acid for swimming pool disinfection[J]. Journal of Hazardous Materials, 457: 131792.
DOI URL |
[38] |
KATSUMATA H, KANECO S, SUZUKI T, et al., 2007. Sonochemical degradation of 2,3,7,8-tetrachlorodibenzo-p-dioxins in aqueous solution with Fe(III)/UV system[J]. Chemosphere, 69(8): 1261-1266.
PMID |
[39] |
KIM J H, DU P H, LIU W, et al., 2020. Cobalt/peracetic acid: Advanced oxidation of aromatic organic compounds by acetylperoxyl radicals[J]. Environmental Science & Technology, 54(8): 5268-5278.
DOI URL |
[40] |
KIM J H, WANG J Y, ASHLEY D C, et al., 2022. Enhanced degradation of micropollutants in a peracetic acid-Fe(III) system with picolinic acid[J]. Environmental Science & Technology, 56(7): 4437-4446.
DOI URL |
[41] |
KIM J H, ZHANG T Q, LIU W, et al., 2019. Advanced oxidation process with peracetic acid and Fe(II) for contaminant degradation[J]. Environmental Science & Technology, 53(22): 13312-13322.
DOI URL |
[42] | KLEIN E Y, VAN BOECKEL T P, MARTINEZ E M, et al., 2018. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015[J]. Proceedings of the National Academy of Sciences of the United States of America, 115(15): E3463-E3470. |
[43] |
KONG D Z, ZHAO Y M, FAN X R, et al., 2022. Reduced graphene oxide triggers peracetic acid activation for robust removal of micropollutants: The role of electron transfer[J]. Environmental Science & Technology, 56(16): 11707-11717.
DOI URL |
[44] |
KOVALAKOVA P, CIZMAS L, MCDONALD T J, et al., 2020. Occurrence and toxicity of antibiotics in the aquatic environment: A review[J]. Chemosphere, 251: 126351.
DOI URL |
[45] |
KUANG J Y, GUO H J, SI Q S, et al., 2023. Nitrogen vacancies regulated the local electron density of iron sites in g-C3N4 to boost the generation of high-valent iron-oxo species in a peracetic acid-based Fenton-like process[J]. Applied Catalysis B: Environmental, 337: 122990.
DOI URL |
[46] |
LEE J, VON GUNTEN U, KIM J H, 2020. Persulfate-based advanced oxidation: Critical assessment of opportunities and roadblocks[J]. Environmental Science & Technology, 54(6): 3064-3081.
DOI URL |
[47] |
LI N, YE J Y, DAI H X, et al., 2023. A critical review on correlating active sites, oxidative species and degradation routes with persulfate-based antibiotics oxidation[J]. Water Research, 235(8): 119926.
DOI URL |
[48] |
LI R B, MANOLI K, KIM J H, et al., 2021. Peracetic acid-ruthenium(III) oxidation process for the degradation of micropollutants in water[J]. Environmental Science & Technology, 55(13): 9150-9160.
DOI URL |
[49] |
LIU B H, GUO W Q, JIA W R, et al., 2021b. Novel nonradical oxidation of sulfonamide antibiotics with Co(II)-doped g-C3N4-activated peracetic acid: Role of high-valent cobalt-oxo Species[J]. Environmental Science & Technology, 55(18): 12640-12651.
DOI URL |
[50] |
LIU B H, GUO W Q, JIA W R, et al., 2021a. Insights into the oxidation of organic contaminants by Co(II) activated peracetic acid: The overlooked role of high-valent cobalt-oxo species[J]. Water Research, 201: 117313.
DOI URL |
[51] |
LIU B M, SONG W B, WU H X, et al., 2020. Degradation of norfloxacin with peroxymonosulfate activated by nanoconfinement Co3O4@CNT nanocomposite[J]. Chemical Engineering Journal, 398: 125498.
DOI URL |
[52] |
LIU T C, CHEN J B, LI N, et al., 2022. Unexpected role of nitrite in promoting transformation of sulfonamide antibiotics by peracetic acid: Reactive nitrogen species contribution and harmful disinfection byproduct formation potential[J]. Environmental Science & Technology, 56(2): 1300-1309.
DOI URL |
[53] |
LIU Y Q, WANG S X, WANG Z R, et al., 2023. FeCu-coal gangue heterogeneous activation of peracetic acid for degradation of sulfamethoxazole[J]. Journal of Environmental Chemical Engineering, 11(3): 110007.
DOI URL |
[54] |
MALCHESKY P S, 1993. Peracetic acid and its application to medical instrument sterilization[J]. Artificial Organs, 17(3): 147-152.
PMID |
[55] |
MANOLI K, LI R B, KIM J H, et al., 2022. Ferrate(VI)-peracetic acid oxidation process: Rapid degradation of pharmaceuticals in water[J]. Chemical Engineering Journal, 429: 132384.
DOI URL |
[56] |
MENG L, DONG J Y, CHEN J, et al., 2023. Activation of peracetic acid by spinel FeCo2O4 nanoparticles for the degradation of sulfamethoxazole[J]. Chemical Engineering Journal, 456: 141084.
DOI URL |
[57] |
MO Y J, LÜ X Y, GUO Y L, et al., 2023. Catechin-enhanced sulfamethoxazole degradation in Fe(II) activated peracetic acid process: Efficiency, mechanism and affecting factors[J]. Journal of Water Process Engineering, 55: 104122.
DOI URL |
[58] |
PENG Y T, TANG H M, YAO B, et al., 2021. Activation of peroxymonosulfate (PMS) by spinel ferrite and their composites in degradation of organic pollutants: A Review[J]. Chemical Engineering Journal, 414: 128800.
DOI URL |
[59] |
PHILLIPS I, CASEWELL M, COX T, et al., 2004. Does the use of antibiotics in food animals pose a risk to human health? A critical review of published data[J]. Journal of Antimicrobial Chemotherapy, 53(1): 28-52.
DOI PMID |
[60] |
PUHLMANN N, OLSSON O, KUMMERER K, 2022. Transformation products of sulfonamides in aquatic systems: Lessons learned from available environmental fate and behaviour data[J]. Science of the Total Environment, 830: 154744.
DOI URL |
[61] |
QIAN Y J, HUANG J J, CHEN J B, et al., 2022. Activation of peracetic acid by RuO2/MWCNTs to degrade sulfamethoxazole at neutral condition[J]. Chemical Engineering Journal, 431(Part 3): 134217.
DOI URL |
[62] |
REN W B, HUANG X K, WANG L X, et al., 2021. Degradation of simazine by heat-activated peroxydisulfate process: A coherent study on kinetics, radicals and models[J]. Chemical Engineering Journal, 426: 131876.
DOI URL |
[63] |
REN W, XIONG L L, NIE G, et al., 2020. Insights into the electron-transfer regime of peroxydisulfate activation on carbon nanotubes: The role of oxygen functional groups[J]. Environmental Science & Technology, 54(2): 1267-1275.
DOI URL |
[64] |
SHEN P, HOU K J, CHEN F, et al., 2023. Ultra-rapid and long-lasting activation of peracetic acid by Cu-Co spinel oxides for eliminating organic contamination: Role of radical and non-radical catalytic oxidation[J]. Chemical Engineering Journal, 463: 142344.
DOI URL |
[65] |
SOCHACKI A, NOWROTEK M, FELIS E, et al., 2018. The effect of loading frequency and plants on the degradation of sulfamethoxazole and diclofenac in vertical-flow constructed wetlands[J]. Ecological Engineering, 122: 187-196.
DOI URL |
[66] |
SU P, FU W Y, DU X D, et al., 2021. Confined Fe0@CNTs for highly efficient and super stable activation of persulfate in wide pH ranges: Radicals and non-radical co-catalytic mechanism[J]. Chemical Engineering Journal, 420(Part 1): 129446.
DOI URL |
[67] | SUN D D, QIAO M Y, XU Y Y, et al., 2018. Pretreatment of waste activated sludge by peracetic acid oxidation for enhanced anaerobic digestion[J]. Environmental Progress & Sustainable Energy, 37(6): 2058-2062. |
[68] |
TIAN S H, ZHANG C, HUANG D L, et al., 2020. Recent progress in sustainable technologies for adsorptive and reactive removal of sulfonamides[J]. Chemical Engineering Journal, 389: 123423.
DOI URL |
[69] | TISEO K, HUBER L, GILBERT M, et al., 2020. Global trends in antimicrobial use in food animals from 2017 to 2030[J]. Antibiotics (Basel), 9(12): 918. |
[70] |
WANG B Y, LI Q Q, LÜ Y, et al., 2021a. Insights into the mechanism of peroxydisulfate activated by magnetic spinel CuFe2O4/SBC as a heterogeneous catalyst for bisphenol S degradation[J]. Chemical Engineering Journal, 416: 129162.
DOI URL |
[71] |
WANG J W, WAN Y, DING J Q, et al., 2020c. Thermal activation of peracetic acid in aquatic solution: The mechanism and application to degrade sulfamethoxazole[J]. Environmental Science & Technology, 54(22): 14635-14645.
DOI URL |
[72] |
WANG J W, WANG Z P, CHENG Y J, et al., 2021b. Molybdenum disulfide (MoS2): A novel activator of peracetic acid for the degradation of sulfonamide antibiotics[J]. Water Research, 201: 117291.
DOI URL |
[73] |
WANG J W, WANG Z P, CHENG Y J, et al., 2022. Molybdenum disulfide (MoS2) promoted sulfamethoxazole degradation in the Fe(III)/peracetic acid process[J]. Separation and Purification Technology, 281: 119854.
DOI URL |
[74] |
WANG J W, XIONG B, MIAO L, et al., 2021a. Applying a novel advanced oxidation process of activated peracetic acid by CoFe2O4 to efficiently degrade sulfamethoxazole[J]. Applied Catalysis B: Environmental, 280: 119422.
DOI URL |
[75] |
WANG L H, JIANG J, PANG S Y, et al., 2019. Further insights into the combination of permanganate and peroxymonosulfate as an advanced oxidation process for destruction of aqueous organic contaminants[J]. Chemosphere, 228: 602-610.
DOI PMID |
[76] |
WANG S X, WANG H B, LIU Y Q, et al., 2020b. Effective degradation of sulfamethoxazole with Fe2+-zeolite/peracetic acid[J]. Separation and Purification Technology, 233: 115973.
DOI URL |
[77] |
WANG Z P, CHEN Z B, LI Q B, et al., 2023. Non-radical activation of peracetic acid by powdered activated carbon for the degradation of sulfamethoxazole[J]. Environmental Science & Technology, 57(28): 10478-10488.
DOI URL |
[78] |
WANG Z P, WANG J W, XIONG B, et al., 2020c. Application of cobalt/peracetic acid to degrade sulfamethoxazole at neutral condition: Efficiency and mechanisms[J]. Environmental Science & Technology, 54(1): 464-475.
DOI URL |
[79] |
WU J Q, ZHENG X S, WANG Y F, et al., 2022a. Activation of peracetic acid via Co3O4 with double-layered hollow structures for the highly efficient removal of sulfonamides: Kinetics insights and assessment of practical applications[J]. Journal of Hazardous Materials, 431: 128579.
DOI URL |
[80] |
WU L Y, LI Z Y, CHENG P T, et al., 2022b. Efficient activation of peracetic acid by mixed sludge derived biochar: Critical role of persistent free radicals[J]. Water Research, 223: 119013.
DOI URL |
[81] |
WU Y Q, CHEN Z Q, WEN Q X, et al., 2021. Mechanism concerning the occurrence and removal of antibiotic resistance genes in composting product with ozone post-treatment[J]. Bioresource Technology, 321: 124433.
DOI URL |
[82] |
XIAO J Y, DONG H R, LI Y J, et al., 2023. Graphene shell-encapsulated copper-based nanoparticles (G@Cu-NPs) effectively activate peracetic acid for elimination of sulfamethazine in water under neutral condition[J]. Journal of Hazardous Materials, 441: 129895.
DOI URL |
[83] |
XIE P C, MA J, LIU W, et al., 2015. Removal of 2-MIB and geosmin using UV/persulfate: contributions of hydroxyl and sulfate radicals[J]. Water Research, 69: 223-233.
DOI PMID |
[84] |
XIE Q Q, WANG X X, CHEN W Q, et al., 2023c. Engineering active heterojunction architecture with oxygenated-Co, Mo bimetallic sulfide heteronanosheet and graphene oxide for peroxymonosulfate activation[J]. Journal of Hazardous Materials, 448: 130852.
DOI URL |
[85] |
XIE Z H, HE C S, HE Y L, et al., 2023b. Peracetic acid activation via the synergic effect of Co and Fe in CoFe-LDH for efficient degradation of pharmaceuticals in hospital wastewater[J]. Water Research, 232: 119666.
DOI URL |
[86] |
XIE Z H, HE C S, PEI D N, et al., 2023a. Efficient degradation of micropollutants in CoCaAl-LDO/peracetic acid (PAA) system: An organic radical dominant degradation process[J]. Journal of Hazardous Materials, 452: 131286.
DOI URL |
[87] |
YAN Z H, YANG X F, LU G H, et al., 2014. Potential environmental implications of emerging organic contaminants in Taihu Lake, China: comparison of two ecotoxicological assessment approaches[J]. Science of the Total Environment, 470-471: 171-179.
DOI URL |
[88] |
YANG L W, SHE L H, XIE Z H, et al., 2022a. Boosting activation of peracetic acid by Co@mZVI for efficient degradation of sulfamethoxazole: Interesting two-phase generation of reactive oxidized species[J]. Chemical Engineering Journal, 448: 137667.
DOI URL |
[89] |
YANG S D, HE L Y, PENG P, et al., 2022b. Synergistic Fe2+/UV activated peroxydisulfate as an efficient method for the degradation of thiacloprid[J]. Process Safety and Environmental Protection, 161: 466-475.
DOI URL |
[90] |
YAO K Y, FANG L, LIAO P, et al., 2023. Ultrasound-activated peracetic acid to degrade tetracycline hydrochloride: Efficiency and mechanism[J]. Separation and Purification Technology, 306(4): 122635.
DOI URL |
[91] |
YUAN C W, BAI C W, ZHU K A, et al., 2023. Metal-free boron-assisted Fe(III)/peracetic acid system for ultrafast removal of organic contaminants: Role of crystalline nature and interfacial suboxide boron intermediates[J]. Chemical Engineering Journal, 454(Part 1): 140049.
DOI URL |
[92] |
ZHANG B T, ZHANG Y, TENG Y G, et al., 2014. Sulfate radical and its application in decontamination technologies[J]. Critical Reviews in Environmental Science and Technology, 45(16): 1756-1800.
DOI URL |
[93] |
ZHANG L L, CHEN J B, ZHANG Y L, et al., 2022a. Highly efficient activation of peracetic acid by nano-CuO for carbamazepine degradation in wastewater: The significant role of H2O2 and evidence of acetylperoxy radical contribution[J]. Water Research, 216: 118322.
DOI URL |
[94] |
ZHANG L L, CHEN J B, ZHANG Y L, et al., 2021a. Activation of peracetic acid with cobalt anchored on 2D sandwich-like MXenes (Co@MXenes) for organic contaminant degradation: High efficiency and contribution of acetylperoxyl radicals[J]. Applied Catalysis B: Environmental, 297: 120475.
DOI URL |
[95] |
ZHANG L L, CHEN J B, ZHENG T L, et al., 2023a. Co-Mn spinel oxides trigger peracetic acid activation for ultrafast degradation of sulfonamide antibiotics: Unveiling critical role of Mn species in boosting Co activity[J]. Water Research, 229: 119462.
DOI URL |
[96] |
ZHANG L, FU Y S, WANG Z R, et al., 2021b. Removal of diclofenac in water using peracetic acid activated by zero valent copper[J]. Separation and Purification Technology, 276(14): 119319.
DOI URL |
[97] |
ZHANG T T, YANG Y L, GAO J F, et al., 2020. Synergistic degradation of chloramphenicol by ultrasound-enhanced nanoscale zero-valent iron/persulfate treatment[J]. Separation and Purification Technology, 240(8): 116575.
DOI URL |
[98] |
ZHANG X J, ZHU X B, LI H, et al., 2023b. Combination of peroxymonosulfate and Fe(Ⅵ) for enhanced degradation of sulfamethoxazole: The overlooked roles of high-valent iron species[J]. Chemical Engineering Journal, 453(2): 139742.
DOI URL |
[99] |
ZHANG Y H, LIU G B, XUE Y Z, et al., 2024. Boron promoted Fe3+/peracetic acid process for sulfamethazine degradation: Efficiency, role of boron, and identification of the reactive species[J]. Journal of Environmental Sciences, 135(5): 72-85.
DOI URL |
[100] |
ZHANG Z B, DUAN Y P, DAI C M, et al., 2022b. Oxidation of sulfamethazine by peracetic acid activated with biochar: Reactive oxygen species contribution and toxicity change[J]. Environmental Pollution, 313: 120170.
DOI URL |
[101] |
ZHAO H L, REN Y, LIU C, et al., 2023. In-depth insights into Fe(III)-doped g-C3N4 activated peracetic acid: Intrinsic reactive species, catalytic mechanism and environmental application[J]. Journal of Hazardous Materials, 459: 132117.
DOI URL |
[102] | ZHAO X H, LI J, MU S Y, et al., 2021. Efficient removal of mercury ions with MoS2-nanosheet-decorated PVDF composite adsorption membrane[J]. Environmental Pollution, 268(Part B): 115705. |
[103] |
ZHOU G F, ZHOU R Y, LIU Y Q, et al., 2022a. Efficient degradation of sulfamethoxazole using peracetic acid activated by zero-valent cobalt[J]. Journal of Environmental Chemical Engineering, 10(3): 107783.
DOI URL |
[104] |
ZHOU L J, YING G G, LIU S, et al., 2013. Excretion masses and environmental occurrence of antibiotics in typical swine and dairy cattle farms in China[J]. Science of the Total Environment, 444: 183-195.
DOI URL |
[105] | ZHOU R Y, FU Y S, ZHOU G F, et al., 2022b. Heterogeneous degradation of organic contaminants by peracetic acid activated with FeCo2S4 modified g-C3N4: Identification of reactive species and catalytic mechanism[J]. Separation and Purification Technology, 282(Part B): 120082. |
[106] |
ZHOU R Y, ZHOU G F, LIU Y Q, et al., 2022c. Activated peracetic acid by Mn3O4 for sulfamethoxazole degradation: A novel heterogeneous advanced oxidation process[J]. Chemosphere, 306: 135506.
DOI URL |
[107] |
ZHU T T, SU Z X, LAI W X, et al., 2021. Insights into the fate and removal of antibiotics and antibiotic resistance genes using biological wastewater treatment technology[J]. Science of the Total Environment, 776: 145906.
DOI URL |
[108] |
ZUO J, XU X Q, WAN Q Q, et al., 2022. Inactivation of fungal spores in water with peracetic acid: Efficiency and mechanism[J]. Chemical Engineering Journal, 427(3): 131753.
DOI URL |
[109] | 陈建发, 2023. 乙酸碳源对氧化沟工艺处理低碳氮比工业废水脱氮性能的影响[J]. 绵阳师范学院学报, 42(11): 31-39. |
CHEN J F, 2023. Effects of acetic acid carbon source on nitrification removal performance of industrial wastewater with low carbon nitrogen ratio treated by oxidation ditch process[J]. Journal of Mianyang Teachers’ College, 42(11): 31-39. | |
[110] | 廖宏翔, 肖安琪, 2023. 城镇污水处理厂外加碳源分析和可降耗措施探究[J]. 四川化工, 26(2): 49-51, 56. |
LIAO H X, XIAO A Q, 2023. Analysis of the external carbon sources in urban sewage treatment plants and exploration of the measures for reducing consumption[J]. Sichuan Chemical Industry, 26(2): 49-51, 56. | |
[111] | 王晶文, 2022. 过渡金属活化过氧乙酸降解水中磺胺甲恶唑效果及机理研究[D]. 武汉: 华中科技大学. |
WANG J W, 2022. Efficiency and mechanism of sulfamethoxazole degradation in transition metal-activated peracetic acid system[D]. Wuhan: Huazhong University of Science and Technology. | |
[112] | 袁敏, 周琪, 杨殿海, 等, 2008. 乙酸钠为碳源时缺氧生物滤池深度脱氮研究[J]. 水处理技术, 34(6): 23-25. |
YUAN M, ZHOU Q, YANG D H, et al., 2008. Acetate sodium as external carbon source for nitrogen removal in anoxic biological fiter[J]. Technology of Water Treatment, 34(6): 23-25. |
[1] | 郝蕾, 翟涌光, 戚文超, 兰穹穹. 2001-2020年内蒙古植被碳源/碳汇时空动态及对气候因子的响应[J]. 生态环境学报, 2023, 32(5): 825-834. |
[2] | 吴昊平, 秦红杰, 贺斌, 尤毅, 陈金峰, 邹春萍, 杨思雨, 郝贝贝. 基于碳中和的农业面源污染治理模式发展态势刍议[J]. 生态环境学报, 2022, 31(9): 1919-1926. |
[3] | 朱梦圆, 宋艳宇, 高思齐, 宫超, 刘桢迪, 马秀艳, 袁佳宝, 杨旭. 三江平原不同植被类型湿地土壤微生物碳源代谢多样性特征[J]. 生态环境学报, 2022, 31(12): 2310-2319. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||