生态环境学报 ›› 2023, Vol. 32 ›› Issue (1): 166-174.DOI: 10.16258/j.cnki.1674-5906.2023.01.018
杨瑞1,2(), 孙蔚旻2,*(
), 李永斌2, 郭丽芳2, 焦念元1,*(
)
收稿日期:
2022-10-24
出版日期:
2023-01-18
发布日期:
2023-04-06
通讯作者:
孙蔚旻(1979年生),男,博士,研究员,研究方向为类金属砷/锑与MTBE等的微生物转化机制研究。E-mail: wmsun@soil.gd.cn作者简介:
杨瑞(1996年生),男,研究方向为生态修复研究。E-mail: 764005863@qq.com
基金资助:
YANG Rui1,2(), SUN Weimin2,*(
), LI Yongbin2, GUO Lifang2, JIAO Nianyuan1,*(
)
Received:
2022-10-24
Online:
2023-01-18
Published:
2023-04-06
摘要:
尾矿重金属环境污染严重,由于有毒金属的浸出严重污染了附近的栖息地,矿山尾矿引起了越来越多的关注。然而,养分限制,特别是磷(P)缺乏,会阻碍植物生长,破坏尾矿的植物修复。溶磷菌能通过分泌质子、有机酸等方式把土壤中难溶性的无机磷活化,提高土壤有效磷含量,促进植物对磷的吸收利用。从湖南锡矿山和广东凡口两个尾矿的先锋植物根际土中采用解磷固体培养基筛选溶磷菌,分离得到5株具有溶磷特性的溶磷菌,根据16S rRNA基因序列分析,对分离出的溶磷菌分别命名为Gordonia sp. G2、Intrasporangium sp. G16、Pseudomonas sp. Y1、Pseudomonas sp. Y22和Bacillus sp. Y38。分离筛选出的5株溶磷菌PSI范围为3.14—5.01之间,其中G2溶磷能力最强,Y38相比其他菌株溶磷能力最弱。共有3个菌株G16、G2和Y22具备固氮酶活性,其中G16的固氮酶活性最高(6808.34 μmol·h-1·mL-1)。同时对菌株的最适pH研究表明,大部分菌株可以在中性偏酸性环境下生长良好。为进一步验证尾矿溶磷菌的植物促生潜力,进行盆栽试验,结果表明,与对照组相比,接种G2、G16、Y38显著促进了植物干质量和鲜质量、株高的增加,分别提高了196.7%、96.7%、80.0%,而接种Y1、Y38显著增加了植株磷含量,相比对照组显著提高了74.12%和30.25%。研究结果表明,尾矿溶磷菌具有较大的植物促生潜力,其中G2和Y1菌株在尾矿生态修复中发挥重要作用,有助于推动新型生物肥料的研究,为尾矿绿色生态修复提供新的途径。
中图分类号:
杨瑞, 孙蔚旻, 李永斌, 郭丽芳, 焦念元. 尾矿先锋植物根际溶磷菌的分离鉴定与其促生研究[J]. 生态环境学报, 2023, 32(1): 166-174.
YANG Rui, SUN Weimin, LI Yongbin, GUO Lifang, JIAO Nianyuan. Isolation, Identification and Plant Growth Promotion of Rhizosphere Phosphorus-dissolving Bacteria from Tailings Pioneer Plants[J]. Ecology and Environment, 2023, 32(1): 166-174.
菌名 | 形态 | 颜色 | 表面形态 |
---|---|---|---|
G2 | 圆形 | 淡黄色 | 湿润 |
G16 | 圆形 | 淡黄色 | 干燥 |
Y1 | 圆形 | 白色 | 湿润 |
Y22 | 圆形 | 淡黄色 | 湿润 |
Y38 | 圆形 | 白色 | 湿润 |
表1 溶磷菌在LB固体培养基中的菌落特征
Table 1 Colony characteristics of phosphate solubilizing bacteria in LB solid medium
菌名 | 形态 | 颜色 | 表面形态 |
---|---|---|---|
G2 | 圆形 | 淡黄色 | 湿润 |
G16 | 圆形 | 淡黄色 | 干燥 |
Y1 | 圆形 | 白色 | 湿润 |
Y22 | 圆形 | 淡黄色 | 湿润 |
Y38 | 圆形 | 白色 | 湿润 |
菌名 | 固氮酶活性/ (μmol·h-1·mL-1) | 产吲哚乙酸能力 | 产铁载体 | 溶磷圈/ cm |
---|---|---|---|---|
G2 | 584.81 | + | + | 5.01 |
G16 | 6808.34 | + | - | 4.03 |
Y1 | + | - | 4.57 | |
Y22 | 4600.68 | + | + | 4.89 |
Y38 | + | + | 3.14 |
表2 所选溶磷菌生理和生物化学特性
Table 2 Physiological and biochemical characteristics of the selected phospholysis bacteria
菌名 | 固氮酶活性/ (μmol·h-1·mL-1) | 产吲哚乙酸能力 | 产铁载体 | 溶磷圈/ cm |
---|---|---|---|---|
G2 | 584.81 | + | + | 5.01 |
G16 | 6808.34 | + | - | 4.03 |
Y1 | + | - | 4.57 | |
Y22 | 4600.68 | + | + | 4.89 |
Y38 | + | + | 3.14 |
菌名 | As3+的浓度/( mmol·L-1) | |||||
---|---|---|---|---|---|---|
0 (CK) | 20 | 30 | 40 | 50 | 60 | |
G2 | ++ | ++ | ++ | ++ | + | - |
G16 | ++ | ++ | ++ | + | - | - |
Y1 | ++ | ++ | ++ | ++ | + | - |
Y22 | ++ | ++ | ++ | ++ | + | - |
Y38 | ++ | ++ | ++ | + | - | - |
表3 不同浓度As3+对菌株的生长影响
Table 3 Effect of heavy metal As3+ on the growth of strain
菌名 | As3+的浓度/( mmol·L-1) | |||||
---|---|---|---|---|---|---|
0 (CK) | 20 | 30 | 40 | 50 | 60 | |
G2 | ++ | ++ | ++ | ++ | + | - |
G16 | ++ | ++ | ++ | + | - | - |
Y1 | ++ | ++ | ++ | ++ | + | - |
Y22 | ++ | ++ | ++ | ++ | + | - |
Y38 | ++ | ++ | ++ | + | - | - |
菌名 | 类型 | 特性/% | 登录号 |
---|---|---|---|
G2 | Gordonia amicalis (T3) | 99.86 | EU427321.1 |
G16 | Intrasporangium calvum (DSM 43043) | 98.73 | NR_042185.1 |
Y1 | Pseudomonas putida (F1-1-2) | 100.00 | KX349990.1 |
Y22 | Pseudomonas monteilii (B45) | 99.65 | KT380512.1 |
Y38 | Bacillus huizhouensis (JZY2-12) | 99.79 | MT071364.1 |
表4 基于16S rRNA基因序列的溶磷菌的鉴定
Table 4 Identification of phospholysis bacteria based on 16S rRNA gene sequences
菌名 | 类型 | 特性/% | 登录号 |
---|---|---|---|
G2 | Gordonia amicalis (T3) | 99.86 | EU427321.1 |
G16 | Intrasporangium calvum (DSM 43043) | 98.73 | NR_042185.1 |
Y1 | Pseudomonas putida (F1-1-2) | 100.00 | KX349990.1 |
Y22 | Pseudomonas monteilii (B45) | 99.65 | KT380512.1 |
Y38 | Bacillus huizhouensis (JZY2-12) | 99.79 | MT071364.1 |
[1] |
ADIANSYAH J S, ROSANO M, VINK S, et al., 2015. A framework for a sustainable approach to mine tailings management: Disposal strategies[J]. Journal of Cleaner Production, 108: 1050-1062.
DOI URL |
[2] | AHEMAD M, 2015. Phosphate-solubilizing bacteria-assisted phytoremediation of metalliferous soils: A review[J]. Biotech, 5(2): 111-121. |
[3] |
ALORI E T, GLICK B R, BABALOLA O O, 2017. Microbial phosphorus solubilization and its potential for use in sustainable agriculture[J]. Frontiers in microbiology, 8: 00971.
DOI URL |
[4] |
BHANSE P, KUMAR M, SINGH L, et al., 2022. Role of plant growth-promoting rhizobacteria in boosting the phytoremediation of stressed soils: Opportunities, challenges, and prospects[J]. Chemosphere, 303(Part 1): 134954.
DOI URL |
[5] |
BASHAN Y, KAMNEY A A, DE-BASHAN L E, 2013. A proposal for isolating and testing phosphate-solubilizing bacteria that enhance plant growth[J]. Biology and Fertility of Soils, 49(1): 1-2.
DOI URL |
[6] |
JANA U, CHASSANY V, BERTRAND G, et al., 2012. Analysis of arsenic and antimony distribution within plants growing at an old mine site in Ouche (Cantal, France) and identification of species suitable for site revegetation[J]. Journal of environmental management, 110: 188-193.
DOI PMID |
[7] |
JEONG S, MOON H S, SHIN D, et al., 2013. Survival of introduced phosphate-solubilizing bacteria (PSB) and their impact on microbial community structure during the phytoextraction of Cd-contaminated soil[J]. Journal of hazardous materials, 263: 441-449.
DOI URL |
[8] |
LONG X X, CHEN X M, WONG J W C, et al., 2013. Feasibility of enhanced phytoextraction of Zn contaminated soil with Zn mobilizing and plant growth promoting endophytic bacteria[J]. Transactions of Nonferrous Metals Society of China, 23(8): 2389-2396.
DOI URL |
[9] |
LIU H L, WANG H, WANG G J, 2012. Intrasporangium chromatireducens sp. nov., a chromate-reducing actinobacterium isolated from manganese mining soil, and emended description of the genus Intrasporangium[J]. International journal of systematic and evolutionary microbiology, 62(Part 2): 403-408.
DOI URL |
[10] | LI Z G, PENG A J, QU L B, 2009. Effects of microbial remediation inocula on microbial community in gold-tailings soil with secondary tillage[J]. Hunan Agricultural Sciences, 5: 46-49. |
[11] |
MA Y, RAJKUMAR M, FREITAS H, 2009. Inoculation of plant growth promoting bacterium Achromobacter xylosoxidans strain Ax10 for the improvement of copper phytoextraction by Brassica juncea[J]. Journal of Environmental Management, 90(2): 831-837.
DOI URL |
[12] |
MARSCHNER P, CROWLEY D, RENGEL Z, 2011. Rhizosphere interactions between microorganisms and plants govern iron and phosphorus acquisition along the root axis-model and research methods[J]. Soil Biology and Biochemistry, 43(5): 883-894.
DOI URL |
[13] |
MA Y, RAJKUMAR M, ZHANG C, et al., 2016a. Beneficial role of bacterial endophytes in heavy metal phytoremediation[J]. Journal of environmental management, 174: 14-25.
DOI URL |
[14] |
MA Y, RAJKUMAR M, ZHANG C, et al., 2016b. Inoculation of Brassica oxyrrhina with plant growth promoting bacteria for the improvement of heavy metal phytoremediation under drought conditions[J]. Journal of Hazardous Materials, 320: 36-44.
DOI URL |
[15] |
MEI C S, CHRETIEN R L, AMARADASA B S, et al., 2021. Characterization of phosphate solubilizing bacterial endophytes and plant growth promotion in vitro and in greenhouse[J]. Microorganisms, 9(9): 1935.
DOI URL |
[16] |
PANDA B, RAHMAN H, PANDA J, 2016. Phosphate solubilizing bacteria from the acidic soils of Eastern Himalayan region and their antagonistic effect on fungal pathogens[J]. Rhizosphere, 2: 62-71.
DOI URL |
[17] |
REZAKHANI L, MOTESHAREZADEH B, TEHRANI M M, et al., 2019. Phosphate-solubilizing bacteria and silicon synergistically augment phosphorus (P) uptake by wheat (Triticum aestivum L.) plant fertilized with soluble or insoluble P source[J]. Ecotoxicology and Environmental Safety, 173: 504-513.
DOI URL |
[18] |
RAJKUMAR M, FREITAS H, 2008. Influence of metal resistant-plant growth-promoting bacteria on the growth of Ricinus communis in soil contaminated with heavy metals[J]. Chemosphere, 71(5): 834-842.
DOI URL |
[19] |
RICHARDSON A E, SIMPSON R J, 2011. Soil microorganisms mediating phosphorus availability update on microbial phosphorus[J]. Plant physiology, 156(3): 989-996.
DOI PMID |
[20] |
RODRÍGUEZ H, FRAGA R, GONZALEZ T, et al., 2006. Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria[J]. Plant and Soil, 287(1): 15-21.
DOI URL |
[21] |
SUN X X, XU R, DONG Y R, et al., 2020. Investigation of the ecological roles of putative keystone taxa during tailing revegetation[J]. Environmental Science & Technology, 54(18): 11258-11270.
DOI URL |
[22] |
SUN X X, SONG B R, XU R, et al., 2021. Root-associated (rhizosphere and endosphere) microbiomes of the Miscanthus sinensis and their response to the heavy metal contamination[J]. Journal of Environmental Sciences, 104(6): 387-398.
DOI URL |
[23] |
SARAVANAN V S, MADHAIYAN M, 2007. Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus[J]. Chemosphere, 66(9): 1794-1798.
DOI URL |
[24] |
SHENG X F, XIA J J, 2006. Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria[J]. Chemosphere, 64(6): 1036-1042.
DOI URL |
[25] |
SULTANA M, VOGLER S, ZARGAR K, et al., 2012. New clusters of arsenite oxidase and unusual bacterial groups in enrichments from arsenic-contaminated soil[J]. Archives of microbiology, 194(7): 623-635.
DOI PMID |
[26] | SHARIATI S, POURBABAEE A A, ALIKHANI H A, et al., 2021. Biodegradation of DEHP by a new native consortium An6 (Gordonia sp. and Pseudomonas sp.) adapted with phthalates, isolated from a natural strongly polluted wetland[J]. Environmental Technology & Innovation, 24: 101936. |
[27] |
SULEMAN M, YASMIN S, RASUL M, et al., 2018. Phosphate solubilizing bacteria with glucose dehydrogenase gene for phosphorus uptake and beneficial effects on wheat[J]. PloS one, 13(9): e0204408.
DOI URL |
[28] |
TIAN J, GE F, ZHANG D Y, et al., 2021. Roles of Phosphate solubilizing microorganisms from managing soil phosphorus deficiency to mediating biogeochemical P cycle[J]. Biology, 10(2): 158.
DOI URL |
[29] |
WILKINSON B H, MCELROY B J, 2007. The impact of humans on continental erosion and sedimentation[J]. Geological society of America bulletin, 119(1-2): 140-156.
DOI URL |
[30] | XUE Y Y, YE W, YANG S, et al., 2019. Isolation and identification of P-dissolving fungi strain and its effects on phosphate-solubilizing and plant growth promotion[J]. Agricultural Research in the Arid Areas, 37(4): 253-262. |
[31] |
XIE J G, YAN Z Q, WANG G F, et al., 2021. A bacterium isolated from soil in a Karst rocky desertification region has efficient phosphate-solubilizing and plant growth-promoting ability[J]. Frontiers in Microbiology, 11: 625450.
DOI URL |
[32] |
SHEN Z J, WANG Y P, SUN Y S, et al., 2014. Effect of vegetation succession on organic carbon, carbon of humus acids and dissolved organic carbon in soils of copper mine tailings sites[J]. Pedosphere, 24(2): 271-279.
DOI URL |
[33] | 崔永亮, 袁星, 涂卫国, 等, 2018. 尾矿土中解磷细菌的筛选及对镉的耐受研究[J]. 资源开发与市场, 34(6): 838-843. |
CUI Y L, YUAN X, TU W G, et al., 2018. Analysis on screening and identification of phosphorus dissolving bacteria from V-Ti magnetite tailings and the tolerance to cadmium[J]. Resource Development & Market, 34(6): 838-843. | |
[34] | 范延辉, 王君, 尚帅, 等, 2022. 两株根际真菌的耐盐, 溶磷, 促生效果及其分类鉴定[J]. 土壤通报, 53(1): 127-134. |
FAN Y H, WANG J, SHANG S, et al., 2022. Salt-tolerant, phosphate-dissolving and growth-promoting effects of two rhizosphere fungi and their classification and Identification[J]. Chinese Journal of Soil Science, 53(1): 127-134. | |
[35] | 谷艳, 2018. 氧化尾矿与白茅根际尾矿中可培养溶磷菌比较研究[J]. 土壤通报, 49(1): 119-125. |
GU Y, 2018. Comparison of phosphate-solubilizing bacteria from oxidized tailings and rhizosphere tailings of Imperata cylindrical[J]. Chinese Journal of Soil Science, 49(1): 119-125. | |
[36] | 姜威, 孟利强, 陈靖宇, 等, 2019. 环境因素对Bacillus amyloliquefaciens TF28在土壤中定殖的影响[J]. 西北农业学报, 28(9): 1479-1484. |
JIANG W, MENG L Q, CHEN J Y, et al., 2019. Effect of environmental factor on colonization of bacillus amyloliquedaciens TF28 in soil[J]. Acta Agriculturae Boreali-occidentalis Sinica, 28(9): 1479-1484. | |
[37] | 李晓莹, 徐学华, 郭江, 等, 2014. 不同造林树种对铁尾矿基质理化性质和土壤动物的影响[J]. 生态学报, 34(20): 5746-5757. |
LI X Y, XU X H, GUO J, et al., 2014. Effects of different forestation species on the substrate physicochemical properties and soil fauna in iron tailings[J]. Acta Ecologica Sinica, 34(20): 5746-5757. | |
[38] |
李玉娥, 姚拓, 荣良燕, 2010. 溶磷菌溶磷和分泌IAA特性及对苜蓿生长的影响[J]. 草地学报, 18(1): 84-88.
DOI |
LI Y E, YAO T, RONG L Y, 2010. Characteristics of IAA secretion and phosphate dissolving of phosphate-solubilizing bacteria and its effect on alfalfa growth[J]. Acta Agrestia Sinica, 18(1): 84-88. | |
[39] | 刘辉, 吴小芹, 叶建仁, 等, 2021. 荧光假单胞菌的溶磷机制及其在杨树菌根际的定殖动态[J]. 林业科学, 57(3): 90-97. |
LIU H, WU X Q, YE J R, et al., 2021. Phosphate-dissolving mechanisms of Pseudomonas fluorescens and its colonizing dynamics in the mycorrhizosphere of poplars[J]. Scientia Silvae Sinicae, 57(3): 90-97. | |
[40] | 谭志远, 彭桂香, 徐培智, 等, 2009. 普通野生稻 (Oryza rufipogon) 内生固氮菌多样性及高固氮酶活性[J]. 科学通报 (13): 1885-1893. |
TAN Z Y, PENG G X, XU P Z, et al., 2009. Diversity of endophytic nitrogen-fixing bacteria and high nitrogen-fixing enzyme activity in common wild rice (Oryza rufipogon) high nitrogen fixing enzyme activity[J]. Chinese Science Bulletin (13): 1885-1893. | |
[41] | 田江, 2014. 尾矿废弃地土壤中解磷菌的筛选、鉴定和特性研究[D]. 北京: 北京林业大学. |
TIAN J, 2014. Isolation, identification and characterization of phosphate solubilizing microorganisms from the mining tail soils[D]. Beijing: Beijing Forestry University. | |
[42] |
王俊娟, 阎爱华, 王薇, 等, 2016. 铁尾矿区油松根际溶磷泛菌D2的筛选鉴定及溶磷特性[J]. 应用生态学报, 27(11): 3705-3711.
DOI |
WANG J J, YAN A H, WANG W, et al., 2016. Screening, identification and phosphate-solubilizing characteristics of phosphate-solubilizing bacteria strain D2 (Pantoea sp.) in rhizosphere of Pinus tabuliformis in iron tailings yard[J]. Chinese Journal of Applied Ecology, 27(11): 3705-3711.
DOI |
|
[43] | 张国霞, 茅庆, 何忠义, 等, 2006. 陵水普通野生稻 (Oryza rufipogon) 内生菌的固氮及溶磷特行[J]. 应用与环境生物学报, 12(4): 457-460. |
ZHANG G X, MAO Q, HE Z Y, et al., 2006. Detection of nitrogenase activity and phosphorus dissolving ability of endophytic isolates from Oryza rufipogon in Lingshui[J]. Chinese Journal of Applied & Environmental Biology, 12(4): 457-460. | |
[44] | 周德明, 李蓉, 2012. 杉木根际固氮菌筛选及其溶磷性与分泌IAA特性研究[J]. 四川师范大学学报 (自然科学版), 35(4): 562-566. |
ZHOU D M, LI R, 2012. Screening of nitrogen-fixing bacteria in rhizosphere of Cunninghaimia lanceolata and investigation on their properties of phosphate-solubilizing and IAA-producing[J]. Journal of Sichuan Normal University (Natural Science), 35(4): 562-566. | |
[45] |
朱慧明, 张彦, 杨洪江, 2015. 高产铁载体假单胞菌的筛选及其对铁氧化物的利用[J]. 生物技术通报, 31(9): 177-182.
DOI |
ZHU H M, ZHANG Y, YANG H J, 2015. Screening of pseudomonas strains producing high-yield siderophore and its utilization of iron hydroxides[J]. Biotechnology Bulletin, 31(9): 177-182. |
[1] | 王家一, 孙亭亭, 沙润钰, 谌婷红, 邢冉, 秦伯强, 施文卿. 富营养化湖泊蓝藻打捞减污降碳效果模拟研究[J]. 生态环境学报, 2023, 32(6): 1108-1114. |
[2] | 王超, 杨倩楠, 张池, 刘同旭, 张晓龙, 陈静, 刘科学. 丹霞山不同土地利用方式土壤磷组分特征及其有效性[J]. 生态环境学报, 2023, 32(5): 889-897. |
[3] | 王铁铮, 瞿心悦, 刘春香, 李有志. 东江湖水质时空变化规律及其与流域土地利用的关系[J]. 生态环境学报, 2023, 32(4): 722-732. |
[4] | 张广毅, 张嘉涛, 王晓伟. 湖泊底泥微生物燃料电池中磷形态分布及释放研究[J]. 生态环境学报, 2023, 32(3): 590-598. |
[5] | 樊慧琳, 张佳敏, 李欢, 王艳玲. 坡耕地稻田剖面磷的储存格局与流失风险研究[J]. 生态环境学报, 2023, 32(2): 283-291. |
[6] | 黄伟佳, 刘春, 刘岳, 黄斌, 李定强, 袁再健. 南岭山地不同海拔土壤生态化学计量特征及影响因素[J]. 生态环境学报, 2023, 32(1): 80-89. |
[7] | 李晓晖, 艾仙斌, 李亮, 王玺洋, 辛在军, 孙小艳. 新型改性稻壳生物炭材料对镉污染土壤钝化效果的研究[J]. 生态环境学报, 2022, 31(9): 1901-1908. |
[8] | 施建飞, 靳正忠, 周智彬, 王鑫. 额尔齐斯河流域典型尾矿库区周边土壤重金属污染评价[J]. 生态环境学报, 2022, 31(5): 1015-1023. |
[9] | 赵隽宇, 黄小芮, 石媛媛, 宋贤冲, 覃祚玉, 唐健. 南亚热带多代连栽桉树人工林根际土壤FTIR特征分析[J]. 生态环境学报, 2022, 31(4): 688-694. |
[10] | 魏岚, 黄连喜, 李翔, 王泽煌, 陈伟盛, 黄庆, 黄玉芬, 刘忠珍. 生物炭基质可显著地促进香蕉幼苗生长[J]. 生态环境学报, 2022, 31(4): 732-739. |
[11] | 贺斌, 胡茂川. 广东省各区县农业面源污染负荷估算及特征分析[J]. 生态环境学报, 2022, 31(4): 771-776. |
[12] | 李嘉义, 孙蔚旻, 孙晓旭, 孔天乐, 李宝琴, 刘振鸿, 高品. 尾矿硫氧化微生物的分离鉴定与功能验证[J]. 生态环境学报, 2022, 31(4): 785-792. |
[13] | 苏焱, 全妍红, 宦紫嫣, 姚佳, 苏小娟. 磷改性生物炭对云南某铅锌矿周边农田铅锌污染土壤修复效果的影响[J]. 生态环境学报, 2022, 31(3): 593-602. |
[14] | 崔键, 杜易, 丁程成, 李金凤, 高方述, 常雅军, 张继彪, 刘晓静, 姚东瑞. 中国湖泊水体磷的赋存形态及污染治理措施进展[J]. 生态环境学报, 2022, 31(3): 621-633. |
[15] | 盛基峰, 李垚, 于美佳, 韩艳英, 叶彦辉. 氮磷添加对高寒草地土壤养分和相关酶活性的影响[J]. 生态环境学报, 2022, 31(12): 2302-2309. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||