生态环境学报 ›› 2022, Vol. 31 ›› Issue (1): 70-78.DOI: 10.16258/j.cnki.1674-5906.2022.01.009
孙战1,2(), 王圣洁1*(
), 杨锦昌1, 魏永成1, 林春花2, 马海宾1,**(
)
收稿日期:
2021-11-01
出版日期:
2022-01-18
发布日期:
2022-03-10
通讯作者:
**马海宾(1976年生),男(回族),副研究员,博士,主要从事森林保护与应用微生物研究。E-mail: mahb@caf.ac.cn作者简介:
孙战(1994年生),男,硕士,主要从事植物保护研究。E-mail: damonzhan10@163.com;基金资助:
SUN Zhan1,2(), WANG Shengjie1*(
), YANG Jinchang1, WEI Yongcheng1, LIN Chunhua2, MA Haibin1,**(
)
Received:
2021-11-01
Online:
2022-01-18
Published:
2022-03-10
摘要:
为探究木麻黄(Casuarina spp.)根区土壤理化特性及酶活性与青枯病发生的关系,进而为加强生物防治提供参考。选取位于广东省潮州市饶平县大埕镇、湛江市吴川市塘尾镇和湛江市徐闻县前山镇的3个木麻黄人工林为研究对象,在每个林分下分别设置3个样地,每个样地采集木麻黄青枯病感病植株和健康植株根区土壤各3份,共54个土壤样品,并测定部分土壤理化指标和酶活性。结果表明,饶平样地感病指数为1.33,吴川样地为5.47,徐闻样地为10.53。为了便于分析,根据感病指数将这3个研究样地进行青枯病发病等级的人为划分,由轻及重划分为饶平样地(1级)、吴川样地(2级)和徐闻样地(3级)。木麻黄青枯病感病植株根区土壤pH,土壤有机质(SOM)、全氮(TN)、全磷(TP)、全钾(TK)含量以及碱解氮(AN)、有效磷(AP)、速效钾(AK)含量均较健康植株低,且TN含量差异显著(P<0.05),SOM、AP、TK、AK和AN含量差异极显著(P<0.01)。木麻黄健康植株根区土壤脲酶(URE)、酸性磷酸酶(ACP)、过氧化氢酶(CAT)、过氧化物酶(POD)以及多酚氧化酶(PPO)活性均高于感病植株;而蔗糖酶(INV)活性低于感病植株。此外,木麻黄青枯病发病等级与土壤中TK含量和AP含量呈极显著负相关关系(P<0.01),与PPO活性呈极显著正相关关系(P<0.01),与ACP、INV、CAT、POD活性均呈负相关关系。不同发病等级土壤PPO活性分别为:1级23.45 mg∙g-1∙h-1、2级30.43 mg∙g-1∙h-1、3级59.63 mg∙g-1∙h-1。综上,PPO活性可以作为反映木麻黄感染青枯病程度的酶学指标。土壤理化特性和酶活性对木麻黄起到的抗病机理是复杂的,仍需进一步从分子和生理水平上进行研究和考证;探究其抵御木麻黄青枯病的最适浓度,研究与其他元素的作用,将多种元素结合协同发挥作用。从土壤微生物角度,与生防菌协同预防植物病害的发生是未来可研究的方向。
中图分类号:
孙战, 王圣洁, 杨锦昌, 魏永成, 林春花, 马海宾. 木麻黄根区土壤理化特性及酶活性与青枯病发生关联分析[J]. 生态环境学报, 2022, 31(1): 70-78.
SUN Zhan, WANG Shengjie, YANG Jinchang, WEI Yongcheng, LIN Chunhua, MA Haibin. Correlation Analysis of the Occurrence of Bacterial Wilt and Physicochemical Properties and Enzyme Activity of Root-Zone Soil of Casuarina spp.[J]. Ecology and Environment, 2022, 31(1): 70-78.
采样区Sampling plots | 经纬度 Latitude and longitude | 气候 Climate | 年均降雨量 The average annual rainfall/mm | 年平均气温 The annual average temperature/℃ | 土壤类型 Soil types | pH | 林分类型 Stand types | 林龄 Age of forest/ a |
---|---|---|---|---|---|---|---|---|
RP | 23°35′20″N, 117°7′22″E | 亚热带海洋性季风 | 1745.9 | 21.4 | 滨海潮沙土 | 5.90 | 纯林 | 8 |
WC | 21°21′55″N, 110°43′23″E | 亚热带季风 | 1597.8 | 22.5 | 滨海潮沙土 | 6.46 | 纯林 | 6 |
XW | 20°28′7″N, 110°31′20″E | 热带季风 | 1400 | 23.6 | 滨海潮沙土 | 5.16 | 纯林 | 7 |
表1 试验地调查结果表
Table 1 Survey results of sampling plots
采样区Sampling plots | 经纬度 Latitude and longitude | 气候 Climate | 年均降雨量 The average annual rainfall/mm | 年平均气温 The annual average temperature/℃ | 土壤类型 Soil types | pH | 林分类型 Stand types | 林龄 Age of forest/ a |
---|---|---|---|---|---|---|---|---|
RP | 23°35′20″N, 117°7′22″E | 亚热带海洋性季风 | 1745.9 | 21.4 | 滨海潮沙土 | 5.90 | 纯林 | 8 |
WC | 21°21′55″N, 110°43′23″E | 亚热带季风 | 1597.8 | 22.5 | 滨海潮沙土 | 6.46 | 纯林 | 6 |
XW | 20°28′7″N, 110°31′20″E | 热带季风 | 1400 | 23.6 | 滨海潮沙土 | 5.16 | 纯林 | 7 |
分级标准 Grading standard | 病级 Disease degree |
---|---|
树木长势极好,小枝浓绿,全株健康无病 The trees are in excellent condition, with dense green twigs, healthy and disease free throughout | 0 |
树木长势良好,小枝枯梢 Trees in good condition, twigs with dead tips | 1 |
树木长势一般,1/3小枝凋萎 Trees of average growth, 1/3 of twigs withered | 2 |
树木长势较差,1/3至2/3小枝凋萎 Poor tree growth, 1/3 to 2/3 of twigs withered | 3 |
树木长势差,2/3以上小枝凋萎 Poor tree growth, with more than 2/3 of twigs withered | 4 |
病株枯死,小枝全部凋萎 The disease plant dead and all twigs withered | 5 |
表2 青枯病危害程度分级标准
Table 2 Grading standard for the damage degree of bacterial wilt
分级标准 Grading standard | 病级 Disease degree |
---|---|
树木长势极好,小枝浓绿,全株健康无病 The trees are in excellent condition, with dense green twigs, healthy and disease free throughout | 0 |
树木长势良好,小枝枯梢 Trees in good condition, twigs with dead tips | 1 |
树木长势一般,1/3小枝凋萎 Trees of average growth, 1/3 of twigs withered | 2 |
树木长势较差,1/3至2/3小枝凋萎 Poor tree growth, 1/3 to 2/3 of twigs withered | 3 |
树木长势差,2/3以上小枝凋萎 Poor tree growth, with more than 2/3 of twigs withered | 4 |
病株枯死,小枝全部凋萎 The disease plant dead and all twigs withered | 5 |
病级 Disease degree | 0 | 1 | 2 | 3 | 4 | 5 | ||
---|---|---|---|---|---|---|---|---|
感病株数 Number of diseased plants | RP | 49 | 0 | 0 | 1 | 0 | 0 | |
49 | 0 | 0 | 0 | 0 | 1 | |||
49 | 0 | 1 | 0 | 0 | 0 | |||
WC | 47 | 0 | 0 | 1 | 0 | 2 | ||
46 | 0 | 1 | 1 | 0 | 2 | |||
47 | 0 | 0 | 1 | 0 | 2 | |||
XW | 45 | 0 | 1 | 0 | 0 | 4 | ||
43 | 0 | 1 | 1 | 0 | 5 | |||
44 | 0 | 1 | 0 | 0 | 5 | |||
感病指数 Disease index | RP | WC | XW | |||||
1.33±0.88c | 5.47±0.67b | 10.53±2.33a |
表3 感病指数调查结果表
Table 3 Disease index survey results
病级 Disease degree | 0 | 1 | 2 | 3 | 4 | 5 | ||
---|---|---|---|---|---|---|---|---|
感病株数 Number of diseased plants | RP | 49 | 0 | 0 | 1 | 0 | 0 | |
49 | 0 | 0 | 0 | 0 | 1 | |||
49 | 0 | 1 | 0 | 0 | 0 | |||
WC | 47 | 0 | 0 | 1 | 0 | 2 | ||
46 | 0 | 1 | 1 | 0 | 2 | |||
47 | 0 | 0 | 1 | 0 | 2 | |||
XW | 45 | 0 | 1 | 0 | 0 | 4 | ||
43 | 0 | 1 | 1 | 0 | 5 | |||
44 | 0 | 1 | 0 | 0 | 5 | |||
感病指数 Disease index | RP | WC | XW | |||||
1.33±0.88c | 5.47±0.67b | 10.53±2.33a |
土壤指标 Indicators of soil | 地区 Regions | DRS | HRS |
---|---|---|---|
pH | RP | 5.29±0.12a | 5.50±0.06a |
WC | 6.17±0.10 bB | 6.70±0.11aA | |
XW | 5.04±0.07a | 5.16±0.07a | |
EC/ (μS∙cm-1) | RP | 30.70±7.60a | 33.30±7.61a |
WC | 40.27±7.70a | 30.00±6.23a | |
XW | 40.43±2.08a | 32.47±5.61a | |
w(SOM)/ (g∙kg-1) | RP | 3.07±0.30bB | 4.37±0.36aA |
WC | 5.44±0.14b | 6.21±0.19a | |
XW | 2.41±0.18bB | 3.63±0.15aA | |
w(TN)/ (g∙kg-1) | RP | 0.17±0.01b | 0.22±0.03a |
WC | 0.21±0.02a | 0.26±0.04a | |
XW | 0.14±0.01a | 0.16±0.02a | |
w(AN)/ (mg∙kg-1) | RP | 29.23±2.15a | 33.69±0.98a |
WC | 17.37±0.57bB | 26.79±1.74aA | |
XW | 23.00±1.22bB | 27.83±1.01aA | |
w(TP)/ (g∙kg-1) | RP | 0.12±0.01bB | 0.21±0.01aA |
WC | 0.14±0.04a | 0.21±0.02a | |
XW | 0.07±0.01a | 0.07±0.01a | |
w(AP)/ (mg∙kg-1) | RP | 12.01±1.97a | 16.31±1.66a |
WC | 5.73±1.63bB | 18.23±1.05aA | |
XW | 1.02±0.15bB | 1.86±0.08aA | |
w(TK)/ (g∙kg-1) | RP | 8.90±0.02a | 9.33±0.19a |
WC | 5.00±0.37a | 5.71±0.20a | |
XW | 2.55±0.61a | 2.83±0.57a | |
w(AK)/ (mg∙kg-1) | RP | 41.41±0.82bB | 55.37±1.52aA |
WC | 18.85±2.52bB | 27.83±0.81aA | |
XW | 20.97±1.85bB | 37.61±2.41aA |
表4 3样地感病植株和健康植株根区土壤理化特性比较
Table 4 Comparison of physicochemical properties between diseased and healthy plants root-zone soil in the three regions
土壤指标 Indicators of soil | 地区 Regions | DRS | HRS |
---|---|---|---|
pH | RP | 5.29±0.12a | 5.50±0.06a |
WC | 6.17±0.10 bB | 6.70±0.11aA | |
XW | 5.04±0.07a | 5.16±0.07a | |
EC/ (μS∙cm-1) | RP | 30.70±7.60a | 33.30±7.61a |
WC | 40.27±7.70a | 30.00±6.23a | |
XW | 40.43±2.08a | 32.47±5.61a | |
w(SOM)/ (g∙kg-1) | RP | 3.07±0.30bB | 4.37±0.36aA |
WC | 5.44±0.14b | 6.21±0.19a | |
XW | 2.41±0.18bB | 3.63±0.15aA | |
w(TN)/ (g∙kg-1) | RP | 0.17±0.01b | 0.22±0.03a |
WC | 0.21±0.02a | 0.26±0.04a | |
XW | 0.14±0.01a | 0.16±0.02a | |
w(AN)/ (mg∙kg-1) | RP | 29.23±2.15a | 33.69±0.98a |
WC | 17.37±0.57bB | 26.79±1.74aA | |
XW | 23.00±1.22bB | 27.83±1.01aA | |
w(TP)/ (g∙kg-1) | RP | 0.12±0.01bB | 0.21±0.01aA |
WC | 0.14±0.04a | 0.21±0.02a | |
XW | 0.07±0.01a | 0.07±0.01a | |
w(AP)/ (mg∙kg-1) | RP | 12.01±1.97a | 16.31±1.66a |
WC | 5.73±1.63bB | 18.23±1.05aA | |
XW | 1.02±0.15bB | 1.86±0.08aA | |
w(TK)/ (g∙kg-1) | RP | 8.90±0.02a | 9.33±0.19a |
WC | 5.00±0.37a | 5.71±0.20a | |
XW | 2.55±0.61a | 2.83±0.57a | |
w(AK)/ (mg∙kg-1) | RP | 41.41±0.82bB | 55.37±1.52aA |
WC | 18.85±2.52bB | 27.83±0.81aA | |
XW | 20.97±1.85bB | 37.61±2.41aA |
图1 3样地感病植株根区土壤理化特性比较 RP:饶平;WC:吴川;XW:徐闻。土壤指标缩写同表4。同一指标中,不同小写和大写字母表示差异显著(P<0.05)和极显著(P<0.01)
Figure 1 Comparison of physicochemical properties of diseased plants root-zone soil in three regions RP: Raoping; WC: Wuchuan; XW: Xuwen. Abbreviations for soil indicators are shown in Table 4. Different lowercase and capital letters marked in the same indicator represent significant difference (P<0.05) and extremely significant difference (P<0.01)
类别 Category | 发病等级 Disease degree | pH | SOM | TN | TP | TK | EC | AP | AK | AN |
---|---|---|---|---|---|---|---|---|---|---|
发病等级 Disease degree | 1.000 | |||||||||
pH | -0.423 | 1.000 | ||||||||
SOM | -0.264 | 0.762* | 1.000 | |||||||
TN | -0.474 | 0.611 | 0.883** | 1.000 | ||||||
TP | -0.503 | 0.571 | 0.653 | 0.527 | 1.000 | |||||
TK | -0.949** | 0.318 | 0.250 | 0.517 | 0.485 | 1.000 | ||||
EC | 0.211 | 0.025 | 0.483 | 0.600 | 0.000 | -0.050 | 1.000 | |||
AP | -0.896** | 0.561 | 0.350 | 0.500 | 0.644 | 0.800** | -0.183 | 1.000 | ||
AK | -0.609 | -0.374 | -0.285 | 0.067 | 0.172 | 0.720* | -0.084 | 0.477 | 1.000 | |
AN | -0.476 | -0.420 | -0.527 | -0.318 | 0.118 | 0.452 | -0.460 | 0.385 | 0.739* | 1.000 |
表5 感病植株根区土壤理化特性与青枯病发病等级的相关性分析
Table 5 Correlations between physicochemical properties of diseased plants root-zone soil and disease degree of bacterial wilt
类别 Category | 发病等级 Disease degree | pH | SOM | TN | TP | TK | EC | AP | AK | AN |
---|---|---|---|---|---|---|---|---|---|---|
发病等级 Disease degree | 1.000 | |||||||||
pH | -0.423 | 1.000 | ||||||||
SOM | -0.264 | 0.762* | 1.000 | |||||||
TN | -0.474 | 0.611 | 0.883** | 1.000 | ||||||
TP | -0.503 | 0.571 | 0.653 | 0.527 | 1.000 | |||||
TK | -0.949** | 0.318 | 0.250 | 0.517 | 0.485 | 1.000 | ||||
EC | 0.211 | 0.025 | 0.483 | 0.600 | 0.000 | -0.050 | 1.000 | |||
AP | -0.896** | 0.561 | 0.350 | 0.500 | 0.644 | 0.800** | -0.183 | 1.000 | ||
AK | -0.609 | -0.374 | -0.285 | 0.067 | 0.172 | 0.720* | -0.084 | 0.477 | 1.000 | |
AN | -0.476 | -0.420 | -0.527 | -0.318 | 0.118 | 0.452 | -0.460 | 0.385 | 0.739* | 1.000 |
土壤酶活性 Enzyme activity of soil | 地区 Regions | DRS | HRS |
---|---|---|---|
URE/ (mg∙kg-1∙h-1) | RP | 155.60±0.60a | 161.08±4.09a |
WC | 157.23±2.65a | 163.54±0.98a | |
XW | 156.79±0.31b | 165.25±0.86a | |
ACP/ (μg∙g-1∙h-1) | RP | 36.60±4.83a | 53.67±5.30a |
WC | 10.56±0.18a | 20.98±4.80a | |
XW | 24.49±4.53bB | 66.73±11.94aA | |
INV/ (0.1 mg∙kg-1∙h-1) | RP | 1.05±0.09a | 0.77±0.13a |
WC | 0.83±0.17a | 0.46±0.20a | |
XW | 1.20±0.32b | 0.49±0.10a | |
CAT/ (0.1 mg∙g-1∙h-1) | RP | 0.65±0.01b | 0.76±0.07a |
WC | 0.71±0.01b | 0.82±0.01a | |
XW | 0.56±0.02a | 0.62±0.01a | |
POD/ (mg∙g-1∙h-1) | RP | 0.80±0.01a | 0.91±0.04a |
WC | 0.39±0.04a | 0.43±0.02a | |
XW | 0.44±0.02bB | 0.75±0.15aA | |
PPO/ (mg∙g-1∙h-1) | RP | 23.45±1.80bB | 74.97±3.24aA |
WC | 30.43±3.22bB | 59.17±9.46aA | |
XW | 59.63±8.87b | 79.70±4.30a |
表6 3样地感病植株和健康植株根区土壤酶活性的比较
Table 6 Comparison of enzyme activity of root-zone soil between diseased and healthy plants in three regions
土壤酶活性 Enzyme activity of soil | 地区 Regions | DRS | HRS |
---|---|---|---|
URE/ (mg∙kg-1∙h-1) | RP | 155.60±0.60a | 161.08±4.09a |
WC | 157.23±2.65a | 163.54±0.98a | |
XW | 156.79±0.31b | 165.25±0.86a | |
ACP/ (μg∙g-1∙h-1) | RP | 36.60±4.83a | 53.67±5.30a |
WC | 10.56±0.18a | 20.98±4.80a | |
XW | 24.49±4.53bB | 66.73±11.94aA | |
INV/ (0.1 mg∙kg-1∙h-1) | RP | 1.05±0.09a | 0.77±0.13a |
WC | 0.83±0.17a | 0.46±0.20a | |
XW | 1.20±0.32b | 0.49±0.10a | |
CAT/ (0.1 mg∙g-1∙h-1) | RP | 0.65±0.01b | 0.76±0.07a |
WC | 0.71±0.01b | 0.82±0.01a | |
XW | 0.56±0.02a | 0.62±0.01a | |
POD/ (mg∙g-1∙h-1) | RP | 0.80±0.01a | 0.91±0.04a |
WC | 0.39±0.04a | 0.43±0.02a | |
XW | 0.44±0.02bB | 0.75±0.15aA | |
PPO/ (mg∙g-1∙h-1) | RP | 23.45±1.80bB | 74.97±3.24aA |
WC | 30.43±3.22bB | 59.17±9.46aA | |
XW | 59.63±8.87b | 79.70±4.30a |
类别 Category | 发病等级 Disease degree | 土壤酶活性Enzyme activity | |||||||
---|---|---|---|---|---|---|---|---|---|
URE | ACP | INV | CAT | POD | PPO | ||||
发病等级Disease degree | 1.000 | ||||||||
URE | 0.316 | 1.000 | |||||||
ACP | -0.369 | -0.200 | 1.000 | ||||||
INV | -0.053 | 0.133 | -0.050 | 1.000 | |||||
CAT | -0.476 | -0.151 | -0.485 | -0.335 | 1.000 | ||||
POD | -0.580 | 0.050 | 0.767* | 0.100 | -0.243 | 1.000 | |||
PPO | 0.896** | -0.067 | -0.200 | -0.017 | -0.519 | -0.500 | 1.000 |
表7 感病植株根区土壤酶活性与青枯病发病等级的相关性分析
Table 7 Correlations between enzyme activity in diseased plants root-zone soil and disease degree of bacterial wilt
类别 Category | 发病等级 Disease degree | 土壤酶活性Enzyme activity | |||||||
---|---|---|---|---|---|---|---|---|---|
URE | ACP | INV | CAT | POD | PPO | ||||
发病等级Disease degree | 1.000 | ||||||||
URE | 0.316 | 1.000 | |||||||
ACP | -0.369 | -0.200 | 1.000 | ||||||
INV | -0.053 | 0.133 | -0.050 | 1.000 | |||||
CAT | -0.476 | -0.151 | -0.485 | -0.335 | 1.000 | ||||
POD | -0.580 | 0.050 | 0.767* | 0.100 | -0.243 | 1.000 | |||
PPO | 0.896** | -0.067 | -0.200 | -0.017 | -0.519 | -0.500 | 1.000 |
[1] |
BONANOMI G, ANTIGNANI V, CAPODILUPO M, et al., 2010. Identifying the characteristics of organic soil amendments that suppress soilborne plant diseases[J]. Soil Biology and Biochemistry, 42(2): 136-144.
DOI URL |
[2] |
BONGIORNO G, POSTMA J, BÜNEMANN E K, et al., 2019. Soil suppressiveness to Pythium ultimum in ten European long-term field experiments and its relation with soil parameters[J]. Soil Biology and Biochemistry, 133: 174-187.
DOI URL |
[3] |
GIANFREDA L, RAO M A, 2008. Interactions between xenobiotics and microbial and enzymatic soil activity[J]. Critical Reviews in Environmental Science and Technology, 38(4): 269-310.
DOI URL |
[4] |
KHAN S, HESHAM A E L, QIAO M, et al., 2010. Effects of Cd and Pb on soil microbial community structure and activities[J]. Environmental Science and Pollution Research, 17(2): 288-296.
DOI URL |
[5] |
KIZILKAYA R, ASKIN T, BAYRAKL B, et al., 2004. Microbiological characteristics of soils contaminated with heavy metals[J]. European Journal of Soil Biology, 40(2): 95-102.
DOI URL |
[6] |
LI X G, DING C F, HUA K, et al., 2014. Soil sickness of peanuts is attributable to modifications in soil microbes induced by peanut root exudates rather than to direct allelopathy[J]. Soil Biology and Biochemistry, 78: 149-159.
DOI URL |
[7] |
LOOBY C L, TRESEDER K K, 2018. Shifts in soil fungi and extracellular enzyme activity with simulated climate change in a tropical montane cloud forest[J]. Soil Biology and Biochemistry, 117: 87-96.
DOI URL |
[8] |
SCHELL M A, 2000. Control of virulence and pathogenicity genes of Ralstonia solanacearum by an elaborate sensory network[J]. Annual Review of Phytopathology, 38: 263-292.
DOI URL |
[9] |
SHEN Z Z, PENTON C, LV N, et al., 2018. Banana fusarium wilt disease incidence is influenced by shifts of soil microbial communities under different monoculture spans[J]. Microbial Ecology, 75(3): 739-750.
DOI URL |
[10] |
SUBBARAO K V, HUBBARD J C, SCHULBACH K F, 1997. Comparison of lettuce diseases and yield under subsurface drip and furrow irrigation[J]. Phytopathology, 87(8): 877.
DOI URL |
[11] |
SUKUL P, 2006. Enzymatic activities and microbial biomass in soil as influenced by metalaxyl residues[J]. Soil Biology and Biochemistry, 38(2): 320-326.
DOI URL |
[12] |
ZHANG Q M, ZHU L S, WANG J, et al., 2014. Effects of fomesafen on soil enzyme activity, microbial population, and bacterial community composition[J]. Environ Monit Assess, 186(5): 2801-2812.
DOI URL |
[13] |
ZHU W, LIU L, ZOU P, et al., 2010. Effect of decabromodiphenyl ether (BDE 209) on soil microbial activity and bacterial community composition[J]. World Journal of Microbiology and Biotechnology, 26(10): 1891-1899.
DOI URL |
[14] | 白世红, 马风云, 李树生, 等, 2012. 黄河三角洲不同退化程度人工刺槐林土壤酶活性、养分和微生物相关性研究[J]. 中国生态农业学报, 20(11): 1478-1483. |
BAI S H, MA F Y, LI S S, et al., 2012. Relational analysis of soil enzyme activities, nutrients and microbes in Robinia pseudoacacia plantations in the Yellow River Dalta with different degradation degrees[J]. Chinese Journal of Eco-Agriculture, 20(11): 1478-1483.
DOI URL |
|
[15] | 鲍士旦, 2000. 土壤农化分析[M]. 北京: 农业出版社: 30-83. |
BAO S D, 2000. Agrochemical Analysis of Soil[M]. Beijing: Agricultural Press: 30-83. | |
[16] | 曹小玉, 李际平, 张彩彩, 等, 2014. 不同龄组杉木林土壤有机碳和理化性质的变化特征及其通径分析[J]. 水土保持学报, 28(4): 200-205. |
CAO X Y, LI J P, ZHANG C C, et al., 2014. Variation of contents of organic carbon and physic-chemical properties of soil and path analysis for their relations in different age-group Chinese fir plantations[J]. Journal of Soil and Water Conservation, 28(4): 200-205. | |
[17] | 陈洪, 2000. 木麻黄抗旱生理生化部分特性的研究[J]. 福建农业学报, 15(1): 48-54. |
CHEN H, 2000. Studies on the part physiological and chemical characters of drought tolerance in Casuarina equisetifolia[J]. Fujian Journal of Agricultural Sciences, 15(1): 48-54. | |
[18] | 方中达, 1979. 植病研究方法[M]. 北京: 农业出版社: 6-13. |
FANG Z D, 1979. Plant disease research methods[M]. Beijing: Agricultural Press: 6-13. | |
[19] | 关松荫, 1986. 土壤酶及其研究法[M]. 北京: 农业出版社: 294-297. |
GUAN S Y, 1986. Soil Enzyme and Its Research Methods[M]. Beijing: Agricultural Press: 294-297. | |
[20] | 何川, 刘国顺, 李祖良, 等, 2011. 连作对植烟土壤有机碳和酶活性的影响及其与土传病害的关系[J]. 河南农业大学学报, 45(6): 701-705. |
HE C, LIU G S, LI Z L, et al., 2011. Effect of continuous cropping on tobacco soil organic carbon, enzyme activities, and its relationship with soil-borne diseases[J]. Journal of Henan Agricultural University, 45(6): 701-705. | |
[21] | 何昕, 蒋佳峰, 董元华. 2017, 钾素对番茄青枯病抗性的影响及机理研究[J]. 安徽农业科学, 45(36): 154-156. |
HE X, JIANG J F, DONG Y H, 2017. Effect of potassium on tomato bacterial wilt resistance and its mechanism[J]. Journal of Anhui Agricultural Sciences, 45(36): 154-156. | |
[22] | 廖梓良, 孙世中, 刘建香, 等, 2009. 设施栽培香石竹根际土壤酶活与土传病害相关性研究[J]. 云南师范大学学报 (自然科学版), 29(3): 59-63. |
LIAO Z L, SUN S Z, LIU J X, et al., 2009. Relevance study between soil enzyme activity and soil-borne diseases in rhizosphere soil of Dianthus caryophyllus L. under cultivation[J]. Journal of Yunnan Normal University (Natural Sciences Edition), 29(3): 59-63. | |
[23] | 刘华峰, 张素荣, 代杰瑞, 等, 2020. 章丘区刁镇和辛寨镇表层土壤全氮与碱解氮特征及影响因素[J]. 地质调查与研究, 43(3): 240-245. |
LIU H F, ZHANG S R, DAI J R, et al., 2020. Characteristics and influencing factors of total nitrogen and alkaline-hydrolyzed nitrogen in surface soil from Diaozhen town and Xinzhai town in Zhangqiu district[J]. North China Geology, 43(3): 240-245. | |
[24] | 马海宾, 康丽华, 江业根, 等, 2011. 我国木麻黄青枯病防治研究进展与对策[J]. 防护林科技 (5): 44-45, 48. |
MA H B, KANG L H, JIANG Y G, et al., 2011. Research progress and countermeasures on the control of Casuarina bacterial wilt in my country[J]. Protection Forest Science and Technology (5): 44-45, 48. | |
[25] | 苏妮尔, 沈海龙, 丁佩军, 等, 2020. 不同坡位红皮云杉林木生长与土壤理化性质比较[J]. 森林工程, 36(2): 6-11, 19. |
SU N E, SHEN H L, DING P J, et al., 2020. Comparison of tree growth and soil physical and chemical properties of Picea koraiensis plantation at different slope positions[J]. Forest Engineering, 36(2): 6-11, 19. | |
[26] | 孙战, 张勇, 马海宾, 2020. 粤西木麻黄青枯病成灾原因及防治策略[J]. 温带林业研究, 3(3): 6-10, 49. |
SUN Z, ZHANG Y, MA H B, 2020. Causes and prevention strategies on the outbreak of Casuarina equisetifolia bacterial wilt in western Guangdong province[J]. Journal of Temperate Forestry Research, 3(3): 6-10, 49. | |
[27] | 王相平, 杨劲松, 张胜江, 等, 2020. 改良剂施用对干旱盐碱区棉花生长及土壤性质的影响[J]. 生态环境学报, 29(4): 757-762. |
WANG X P, YANG J S, ZHANG S J, et al., 2020. Effects of different amendments application on cotton growth and soil properties in arid areas[J]. Ecology and Environmental Sciences, 29(4): 757-762. | |
[28] | 吴志华, 李天会, 张华林, 等, 2010. 沿海防护林树种木麻黄和相思生长和抗风性状比较研究[J]. 草业学报, 19(4): 166-175. |
WU Z H, LI T H, ZHANG H L, et al., 2010. Studies on growth and wind-resistance traits of Casuarina and Acacia stands from coastal protection forest[J]. Acta Prataculturae Sinica, 19(4): 166-175. | |
[29] | 徐海娇, 唐珊珊, 周如军, 等, 2017. 白头翁菌核病发生危害调查及其病原菌生物学特性[J]. 植物保护学报, 44(2): 232-239. |
XU H J, TANG S S, ZHOU R J, et al., 2017. Occurrence of sclerotinia rot of Pulsatilla koreana and biological characteristics of Sclerotinia nivalis[J]. Journal of Plant Protection, 44(2): 232-239. | |
[30] | 杨珍, 戴传超, 王兴祥, 等, 2019. 作物土传真菌病害发生的根际微生物机制研究进展[J]. 土壤学报, 56(1): 12-22. |
YANG Z, DAI C C, WANG X X, et al., 2019. Advance in research on rhizosphere microbial mechanisms of crop soil-borne fungal diseases[J]. Acta Pedologica Sinica, 56(1): 12-22. | |
[31] | 游春梅, 陆晓菊, 官会林, 2014. 三七设施栽培根腐病害与土壤酶活性的关联性[J]. 云南师范大学学报(自然科学版), 34(6): 25-29. |
YOU C M, LU X J, GUAN H L, 2014. The relevance of notoginseng root rot to the enzyme activity in soil[J]. Journal of Yunnan Normal University (Natural Sciences Edition), 34(6): 25-29. | |
[32] | 于威, 依艳丽, 杨蕾, 2016. 土壤中钙、氮含量对番茄枯萎病抗性的影响[J]. 中国土壤与肥料 (1): 134-140. |
YU W, YI Y L, YANG L, 2016. Effect of different available calcium and nitrogen in soil on effectiveness of disease resistance to blight of tomato[J]. Soil and Fertilizer Sciences in China (1): 134-140. | |
[33] | 张广雨, 褚德朋, 刘元德, 等, 2019. 生物炭及海藻肥对烟草生长、土壤性状及青枯病发生的影响[J]. 中国烟草科学, 40(5): 15-22. |
ZHANG G Y, CHU D P, LIU Y D, et al., 2019. Effects of biochar and seaweed fertilizers on tobacco growth, soil properties and bacterial wilt occurrence[J]. Chinese Tobacco Science, 40(5): 15-22. | |
[34] | 仲崇禄, 1994. 世界木麻黄科植物的引种和育种[J]. 世界林业研究, 1: 82-84. |
ZHONG C L, 1994. Introduction and breeding of Casuarinaceae in the world[J]. World Forestry Research, 1: 82-84. | |
[35] | 朱永官, 彭静静, 韦中, 等, 2021. 土壤微生物组与土壤健康[J]. 中国科学 (生命科学), 51(1): 1-11. |
ZHU Y G, PENG J J, WEI Z, et al., 2021. Linking the soil microbiome to soil health[J]. Scientia Sinica (Series C), 51(1): 1-11. |
[1] | 李海鹏, 黄月华, 孙晓东, 曹启民, 符芳兴, 孙楚涵. 海南农田不同质地砖红壤及其细菌群落与番茄青枯病发生的关联分析[J]. 生态环境学报, 2023, 32(6): 1062-1069. |
[2] | 盛美君, 李胜君, 杨昕玥, 王蕊, 李洁, 李刚, 修伟明. 华北潮土农田土壤酶活性对土地利用强度的响应特征探讨[J]. 生态环境学报, 2023, 32(2): 299-308. |
[3] | 邓晓, 武春媛, 杨桂生, 李怡, 李勤奋. 椰壳生物炭对海南滨海土壤的改良效果[J]. 生态环境学报, 2022, 31(4): 723-731. |
[4] | 梁嘉伟, 余炜敏, 姚钰玲, 胡绮琪, 陆丹绵, 王荣萍, 廖新荣, 黄赛花. 生物有机肥对土壤质量及蔬菜产量的影响[J]. 生态环境学报, 2022, 31(3): 497-503. |
[5] | 李春环, 王攀, 韩翠, 许艺馨, 黄菊莹. 硫氮沉降下西北荒漠煤矿区周边土壤性质的变化特点[J]. 生态环境学报, 2022, 31(1): 170-180. |
[6] | 王瑞, 宋祥云, 柳新伟. 黄河三角洲不同植被类型土壤酶活性的季节变化[J]. 生态环境学报, 2022, 31(1): 62-69. |
[7] | 李欣, 陈小华, 顾海蓉, 钱晓雍, 沈根祥, 赵庆节, 白玉杰. 典型农田土壤酶活性分布特征及影响因素分析[J]. 生态环境学报, 2021, 30(8): 1634-1641. |
[8] | 陈思, 王灿, 李想, 李明锐, 湛方栋, 李元, 祖艳群, 何永美. 不同UV-B辐射增幅对稻田土壤酶活性、活性有机碳含量及温室气体排放的影响[J]. 生态环境学报, 2021, 30(6): 1260-1268. |
[9] | 杨洪炳, 肖以华, 李明, 许涵, 史欣, 郭晓敏. 典型城市森林旱季土壤团聚体稳定性与微生物胞外酶活性耦合关系[J]. 生态环境学报, 2021, 30(10): 1976-1989. |
[10] | 刘红梅, 李睿颖, 高晶晶, 朱平, 路杨, 高洪军, 张贵龙, 张秀芝, 彭畅, 杨殿林. 保护性耕作对土壤团聚体及微生物学特性的影响研究进展[J]. 生态环境学报, 2020, 29(6): 1277-1284. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||