生态环境学报 ›› 2021, Vol. 30 ›› Issue (9): 1916-1922.DOI: 10.16258/j.cnki.1674-5906.2021.09.016
收稿日期:
2021-05-21
出版日期:
2021-09-18
发布日期:
2021-12-08
通讯作者:
*方樟(1981年生),男,副教授,博士,主要从事土壤及地下水污染修复,地下水资源评价与优化管理方面研究。E-mail: azhang9456@126.com作者简介:
刘柱光(1997年生),男,硕士研究生,主要研究方向为土壤及地下水污染修复。E-mail: liuzhuguang22@163.com
基金资助:
LIU Zhuguang(), FANG Zhang(
), DING Xiaofan
Received:
2021-05-21
Online:
2021-09-18
Published:
2021-12-08
摘要:
燃煤电厂贮灰场堆积了大量的粉煤灰,而粉煤灰中蕴含的重金属可能会威胁到人类健康。为查明燃煤电厂贮灰场土壤重金属污染状况及对人体健康风险问题,以吉林省某燃煤电厂贮灰场及其周边地区为研究区,采集20个土壤样品进行主要重金属含量的分析。应用污染负荷指数法(PLI)评价研究区重金属污染水平,采用US EPA模型进行贮灰场重金属健康风险评价。研究区土壤Cr、Ni、Cu、Cd、Pb平均含量高于土壤环境背景值,其中Cd的平均含量是背景值的11倍,并且其含量均高于《土壤环境质量标准》(GB 15618—2018)的风险筛选值,Cd在研究区土壤中有明显的富集。土壤重金属含量分析结果显示,灰水渗漏和粉煤灰飞灰飘散是贮灰场粉煤灰重金属迁移的主要方式。土壤重金属变异系数排序为:Ni>Cu>As>Zn>Pb>36%>Cd>Cr>15%,Cd、Cr属于中度变异,贮灰场粉煤灰是其主要污染来源,Ni、Cu、As、Zn、Pb属于高度变异,除了贮灰场影响因素外,人类活动也是其重要来源。污染负荷指数法的评价结果显示,贮灰场及其西北侧灰坝下落差最大处部分土壤处于中度污染,其他采样点土壤处于轻度污染。土壤污染主要源于灰坝处灰水渗漏,受盛行风影响较小,研究区总体处于轻度污染。人体健康风险评价结果显示,经口摄入是重金属暴露风险的主要途径,研究区土壤重金属存在的非致癌和致癌风险,儿童均高于成人,7种重金属元素对成人与儿童不存在非致癌风险;Cr、Cd、As对成人和儿童均存在可接受的致癌风险,其中Cr是主要的致癌因子,应针对Cr开展必要的治理措施。
中图分类号:
刘柱光, 方樟, 丁小凡. 燃煤电厂贮灰场土壤重金属污染及健康风险评价[J]. 生态环境学报, 2021, 30(9): 1916-1922.
LIU Zhuguang, FANG Zhang, DING Xiaofan. Heavy Metal Pollution and Health Risk Assessment of Soil in Ash Yard of Coal-fired Power Plant[J]. Ecology and Environment, 2021, 30(9): 1916-1922.
参数 Parameter | 含义 Meaning | 取值 Value | |
---|---|---|---|
成人 Adult | 儿童 Child | ||
x1 | 经口摄入的土壤量 Soil ingestion rate/(mg∙d-1) | 100 | 200 |
x2 | 吸入空气量 Inhalation rate/(mg∙d-1) | 20 | 5 |
x3 | 土壤尘生产因子 Particle emission factor/(m3∙kg-1) | 1.36×109 | 1.36×109 |
x4 | 接触土壤的皮肤面积 Skin area exposed to soil contact/cm2 | 4350 | 1600 |
x5 | 皮肤暴露率 Skin exposure rate | 0.07 | 0.2 |
x6 | 暴露时间 Exposure duration/a | 30 | 6 |
x7 | 年暴露频率 Exposure frequency/(d∙a-1) | 300 | 300 |
x8 | 体重 Body weight/kg | 60 | 15 |
x9 | 非致癌平均作用时间 Average time for non-carcinogenic effect/d | 10950 | 6570 |
致癌平均作用时间 Average time for carcinogenic effect/d | 25550 | 25550 | |
x10 | 转换系数 Conversion factor | 10-6 | 10-6 |
x11 | 皮肤吸收系数 Contact factor | 0.001 | 0.001 |
表1 人体健康风险评价参数取值
Table 1 Values of human health risk assessment parameters
参数 Parameter | 含义 Meaning | 取值 Value | |
---|---|---|---|
成人 Adult | 儿童 Child | ||
x1 | 经口摄入的土壤量 Soil ingestion rate/(mg∙d-1) | 100 | 200 |
x2 | 吸入空气量 Inhalation rate/(mg∙d-1) | 20 | 5 |
x3 | 土壤尘生产因子 Particle emission factor/(m3∙kg-1) | 1.36×109 | 1.36×109 |
x4 | 接触土壤的皮肤面积 Skin area exposed to soil contact/cm2 | 4350 | 1600 |
x5 | 皮肤暴露率 Skin exposure rate | 0.07 | 0.2 |
x6 | 暴露时间 Exposure duration/a | 30 | 6 |
x7 | 年暴露频率 Exposure frequency/(d∙a-1) | 300 | 300 |
x8 | 体重 Body weight/kg | 60 | 15 |
x9 | 非致癌平均作用时间 Average time for non-carcinogenic effect/d | 10950 | 6570 |
致癌平均作用时间 Average time for carcinogenic effect/d | 25550 | 25550 | |
x10 | 转换系数 Conversion factor | 10-6 | 10-6 |
x11 | 皮肤吸收系数 Contact factor | 0.001 | 0.001 |
元素 Element | Dk/(mg∙kg-1∙d-1) | Fk/(kg∙d∙mg-1) | |||||
---|---|---|---|---|---|---|---|
DIng | DInh | DDerm | FIng | FInh | FDerm | ||
Cu | 4.0×10-2 | 4.02×10-2 | 1.2×10-2 | — | — | — | |
Zn | 0.3 | 0.3 | 6.0×10-2 | — | — | — | |
Ni | 2.0×10-2 | 2.06×10-2 | 5.4×10-3 | — | 0.84 | — | |
Cr | 3.0×10-3 | 2.86×10-5 | 6.0×10-5 | 0.5 | 42 | — | |
Pb | 3.5×10-3 | 3.52×10-3 | 5.25×10-4 | — | — | — | |
Cd | 1.0×10-3 | 1.0×10-3 | 1.0×10-5 | 6.1 | 1.8×10-3 | 6.1 | |
As | 3.0×10-4 | 1.23×10-4 | 3.0×10-4 | 1.5 | 4.3×10-3 | 1.5 |
表2 重金属不同暴露途径的参考剂量和致癌斜率因子
Table 2 Reference doses and carcinogenic slope factors for different exposure routes of heavy metals
元素 Element | Dk/(mg∙kg-1∙d-1) | Fk/(kg∙d∙mg-1) | |||||
---|---|---|---|---|---|---|---|
DIng | DInh | DDerm | FIng | FInh | FDerm | ||
Cu | 4.0×10-2 | 4.02×10-2 | 1.2×10-2 | — | — | — | |
Zn | 0.3 | 0.3 | 6.0×10-2 | — | — | — | |
Ni | 2.0×10-2 | 2.06×10-2 | 5.4×10-3 | — | 0.84 | — | |
Cr | 3.0×10-3 | 2.86×10-5 | 6.0×10-5 | 0.5 | 42 | — | |
Pb | 3.5×10-3 | 3.52×10-3 | 5.25×10-4 | — | — | — | |
Cd | 1.0×10-3 | 1.0×10-3 | 1.0×10-5 | 6.1 | 1.8×10-3 | 6.1 | |
As | 3.0×10-4 | 1.23×10-4 | 3.0×10-4 | 1.5 | 4.3×10-3 | 1.5 |
统计指标 Statistical indicators | pH | w(heavy metal)/(mg·kg-1) | ||||||
---|---|---|---|---|---|---|---|---|
Cr | Ni | Cu | Zn | As | Cd | Pb | ||
最小值 Min | 5.74 | 37.19 | 15.51 | 10.92 | 31.06 | 1.83 | 0.62 | 21.28 |
最大值 Max | 9.15 | 83.13 | 137.95 | 126.28 | 164.61 | 14.27 | 1.84 | 71.66 |
平均值±标准差 Mean±SD | 7.64±0.74 | 55.63±12.23 | 30.52±25.80 | 32.73±25.29 | 86.29±43.91 | 4.20±3.03 | 1.11±0.31 | 36.38±13.48 |
变异系数Cv/% | 10 | 22 | 85 | 77 | 51 | 72 | 28 | 37 |
背景值 Background value | 6.1 | 47.16 | 23.19 | 17.22 | 90.05 | 5.66 | 0.1101 | 25.61 |
风险筛选值 Risk screening value | — | 250 | 190 | 100 | 300 | 25 | 0.6 | 170 |
表3 研究区土壤重金属含量特征
Table 3 Characteristics of heavy metal content in soil of the study area
统计指标 Statistical indicators | pH | w(heavy metal)/(mg·kg-1) | ||||||
---|---|---|---|---|---|---|---|---|
Cr | Ni | Cu | Zn | As | Cd | Pb | ||
最小值 Min | 5.74 | 37.19 | 15.51 | 10.92 | 31.06 | 1.83 | 0.62 | 21.28 |
最大值 Max | 9.15 | 83.13 | 137.95 | 126.28 | 164.61 | 14.27 | 1.84 | 71.66 |
平均值±标准差 Mean±SD | 7.64±0.74 | 55.63±12.23 | 30.52±25.80 | 32.73±25.29 | 86.29±43.91 | 4.20±3.03 | 1.11±0.31 | 36.38±13.48 |
变异系数Cv/% | 10 | 22 | 85 | 77 | 51 | 72 | 28 | 37 |
背景值 Background value | 6.1 | 47.16 | 23.19 | 17.22 | 90.05 | 5.66 | 0.1101 | 25.61 |
风险筛选值 Risk screening value | — | 250 | 190 | 100 | 300 | 25 | 0.6 | 170 |
标准类型 Criterion | pH | 重金属元素 Heavy metal | ||||||
---|---|---|---|---|---|---|---|---|
Cr | Ni | Cu | Zn | As | Cd | Pb | ||
>背景值 >Background value | 95% | 75% | 60% | 80% | 40% | 15% | 100% | 85% |
>风险筛选值 >Risk screening value | — | 0 | 0 | 5% | 0 | 0 | 100% | 0 |
表4 土壤重金属污染超标比例
Table 4 Proportion of soil heavy metal pollution exceeding the criterion
标准类型 Criterion | pH | 重金属元素 Heavy metal | ||||||
---|---|---|---|---|---|---|---|---|
Cr | Ni | Cu | Zn | As | Cd | Pb | ||
>背景值 >Background value | 95% | 75% | 60% | 80% | 40% | 15% | 100% | 85% |
>风险筛选值 >Risk screening value | — | 0 | 0 | 5% | 0 | 0 | 100% | 0 |
人群 Exposed crowd | 重金属 Heavy metal | 非致癌日均暴露剂量 Non-carcinogenic daily average exposure/(mg∙kg-1∙d-1) | 致癌日均暴露剂量 Carcinogenic daily average exposure/(mg∙kg-1∙d-1) | 危险系数 H | 致癌指数 R | |||||
---|---|---|---|---|---|---|---|---|---|---|
经口摄入 Oral intake | 呼吸摄入 Inhalation | 皮肤接触 Skin contact | 经口摄入 Oral intake | 呼吸摄入 Inhalation | 皮肤接触 Skin contact | |||||
成人 Adult | Cr | 7.62×10-5 | 1.12×10-8 | 2.32×10-7 | 3.27×10-5 | 4.80×10-9 | — | 0.030 | 1.65×10-5 | |
Ni | 4.18×10-5 | 6.15×10-9 | 1.27×10-7 | — | 2.64×10-9 | — | 0.002 | 2.21×10-9 | ||
Cu | 4.48×10-5 | 6.59×10-9 | 1.37×10-7 | — | — | — | 0.001 | — | ||
Zn | 1.18×10-4 | 1.74×10-8 | 3.60×10-7 | — | — | — | 0.001 | — | ||
As | 5.75×10-6 | 8.45×10-10 | 1.75×10-8 | 2.46×10-6 | 3.62×10-10 | 7.50×10-9 | 0.019 | 3.70×10-6 | ||
Cd | 1.52×10-6 | 2.24×10-10 | 4.63×10-9 | 6.52×10-7 | 9.58×10-11 | 1.98×10-9 | 0.002 | 3.99×10-6 | ||
Pb | 4.98×10-5 | 7.33×10-9 | 1.52×10-7 | — | — | — | 0.015 | — | ||
儿童 Child | Cr | 6.10×10-4 | 1.12×10-8 | 9.75×10-7 | 5.23×10-5 | 9.61×10-10 | — | 0.220 | 2.62×10-5 | |
Ni | 3.34×10-4 | 6.15×10-9 | 5.35×10-7 | — | 5.27×10-10 | — | 0.017 | 4.43×10-10 | ||
Cu | 3.59×10-4 | 6.59×10-9 | 5.74×10-7 | — | — | — | 0.009 | — | ||
Zn | 9.46×10-4 | 1.74×10-8 | 1.51×10-6 | — | — | — | 0.003 | — | ||
As | 4.60×10-5 | 8.45×10-10 | 7.35×10-8 | 3.94×10-6 | 7.24×10-11 | 6.30×10-9 | 0.153 | 5.92×10-6 | ||
Cd | 1.22×10-5 | 2.24×10-10 | 1.95×10-8 | 1.04×10-6 | 1.92×10-11 | 1.67×10-9 | 0.014 | 6.37×10-6 | ||
Pb | 3.99×10-4 | 7.33×10-9 | 6.38×10-7 | — | — | — | 0.115 | — |
表5 人体健康风险评价结果
Table 5 Human health risk assessment results
人群 Exposed crowd | 重金属 Heavy metal | 非致癌日均暴露剂量 Non-carcinogenic daily average exposure/(mg∙kg-1∙d-1) | 致癌日均暴露剂量 Carcinogenic daily average exposure/(mg∙kg-1∙d-1) | 危险系数 H | 致癌指数 R | |||||
---|---|---|---|---|---|---|---|---|---|---|
经口摄入 Oral intake | 呼吸摄入 Inhalation | 皮肤接触 Skin contact | 经口摄入 Oral intake | 呼吸摄入 Inhalation | 皮肤接触 Skin contact | |||||
成人 Adult | Cr | 7.62×10-5 | 1.12×10-8 | 2.32×10-7 | 3.27×10-5 | 4.80×10-9 | — | 0.030 | 1.65×10-5 | |
Ni | 4.18×10-5 | 6.15×10-9 | 1.27×10-7 | — | 2.64×10-9 | — | 0.002 | 2.21×10-9 | ||
Cu | 4.48×10-5 | 6.59×10-9 | 1.37×10-7 | — | — | — | 0.001 | — | ||
Zn | 1.18×10-4 | 1.74×10-8 | 3.60×10-7 | — | — | — | 0.001 | — | ||
As | 5.75×10-6 | 8.45×10-10 | 1.75×10-8 | 2.46×10-6 | 3.62×10-10 | 7.50×10-9 | 0.019 | 3.70×10-6 | ||
Cd | 1.52×10-6 | 2.24×10-10 | 4.63×10-9 | 6.52×10-7 | 9.58×10-11 | 1.98×10-9 | 0.002 | 3.99×10-6 | ||
Pb | 4.98×10-5 | 7.33×10-9 | 1.52×10-7 | — | — | — | 0.015 | — | ||
儿童 Child | Cr | 6.10×10-4 | 1.12×10-8 | 9.75×10-7 | 5.23×10-5 | 9.61×10-10 | — | 0.220 | 2.62×10-5 | |
Ni | 3.34×10-4 | 6.15×10-9 | 5.35×10-7 | — | 5.27×10-10 | — | 0.017 | 4.43×10-10 | ||
Cu | 3.59×10-4 | 6.59×10-9 | 5.74×10-7 | — | — | — | 0.009 | — | ||
Zn | 9.46×10-4 | 1.74×10-8 | 1.51×10-6 | — | — | — | 0.003 | — | ||
As | 4.60×10-5 | 8.45×10-10 | 7.35×10-8 | 3.94×10-6 | 7.24×10-11 | 6.30×10-9 | 0.153 | 5.92×10-6 | ||
Cd | 1.22×10-5 | 2.24×10-10 | 1.95×10-8 | 1.04×10-6 | 1.92×10-11 | 1.67×10-9 | 0.014 | 6.37×10-6 | ||
Pb | 3.99×10-4 | 7.33×10-9 | 6.38×10-7 | — | — | — | 0.115 | — |
[1] |
ADRIANO D C, WENZEL W W, VANGRONSVELD J, et al., 2004. Role of assisted natural remediation in environmental cleanup[J]. Geoderma, 122(2-4): 121-142.
DOI URL |
[2] | DAVIDSON R M, 2000. Modes of occurrence of trace elements in coal: Results from an international collaborative program[J]. Abstracts of Papers of American Chemical Society, 220: U388-U388. |
[3] |
EZIZ M, MOHAMMAD A, MAMUT A, et al., 2018. A human health risk assessment of heavy metals in agricultural soils of Yanqi Basin, Silk Road Economic Belt, China[J]. Human and Ecological Risk Assessment, 24(5-6): 1352-1366.
DOI URL |
[4] |
GAO J, WANG L C, 2018. Ecological and human health risk assessments in the context of soil heavy metal pollution in a typical industrial area of Shanghai, China[J]. Environmental Science and Pollution Research, 25(27): 27090-27105.
DOI URL |
[5] |
GUPTA D K, RAI U N, TRIPATHI R D, et al., 2002. Impacts of fly-ash on soil and plant responses[J]. Journal of Plant Research, 115(1122): 401-409.
DOI URL |
[6] |
JAMIL S, ABHILASH P C, SINGH A, et al., 2009. Fly ash trapping and metal accumulating capacity of plants: Implication for green belt around thermal power plants[J]. Landscape and Urban Planning, 92(2): 136-147.
DOI URL |
[7] |
JONES K C, 1991. Contaminant trends in soils and crops[J]. Environmental Pollution, 69(4): 311-325.
DOI URL |
[8] |
RAJ D, MAITI S K, 2020. Risk assessment of potentially toxic elements in soils and vegetables around coal-fired thermal power plant: A case study of Dhanbad, India[J]. Environmental Monitoring and Assessment, 192(11): 699.
DOI URL |
[9] |
SHOEVA T E, KAMINSKII Y D, 2010. Kyzyl ash disposal area as a source of unfavorable effect on the environment[J]. Contemporary Problems of Ecology, 3(6): 647-652.
DOI URL |
[10] | SWAINE D J, 2000. Why trace elements are important[J]. Fuel Process Technology, 65(1): 21-33. |
[11] | TOMLINSON D L, WILSON J G, HARRIS C R, et al., 1980. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index[J]. Helgolnder Meeresuntersuchungen, 33(1): 566-575. |
[12] | US EPA, 1989. Risk assessment guidance for superfund: volume II environmental evaluation manual, interim final[J]. Saúde Pública, 804(7): 636-640. |
[13] |
VASEEM H, BANERJEE T K, 2013. Contamination of Metals in Different Tissues of Rohu (Labeo rohita, Cyprinidae) Collected from the Indian River Ganga[J]. Bulletin of Environmental Contamination and Toxicology, 91(1): 36-41.
DOI URL |
[14] |
WANG M S, HAN Q, GUI C L, et al., 2019. Differences in the risk assessment of soil heavy metals between newly built and original parks in Jiaozuo, Henan Province, China[J]. Science of the Total Environment, 676: 1-10.
DOI URL |
[15] |
ZHANG Y, WU D, WANG C, et al., 2020. Impact of coal power generation on the characteristics and risk of heavy metal pollution in nearby soil[J]. Ecosystem Health and Sustainability, DOI: 10.1080/20964129.2020.1787092.
DOI |
[16] |
ZHENG S N, WANG Q, YUAN Y Z, et al., 2020. Human health risk assessment of heavy metals in soil and food crops in the Pearl River Delta urban agglomeration of China[J]. Food Chemistry, DOI: 10.1016/j.foodchem.2020.126213.
DOI |
[17] |
ZOU Y P, LI Y H, HU L, et al., 2020. Health risk assessment of arsenic in soils from three thermal power plants in Southwest China[J]. Human and Ecological Risk Assessment, 26(5): 1221-1233.
DOI URL |
[18] | 曹冉, 孜比布拉∙司马义, 杨胜天, 等, 2020. 典型蔬菜基地土壤重金属健康风险评价[J]. 江苏农业科学, 48(4): 246-253. |
CAO R, CUMINBIBRA I, YANG S T, et al., 2020. Health risk assessment of heavy metals in typical vegetable base soils[J]. Jiangsu Agricultural Sciences, 48(4): 246-253 | |
[19] | 陈耿, 刘军, 杨立辉, 等, 2016. 燃煤电厂周边地区积尘重金属污染特征与健康风险评价[J]. 中山大学学报 (自然科学版), 55(1): 107-113. |
CHEN G, LIU J, YANG L H, et al., 2016. Pollution characteristics and health risk assessment of heavy metals in dust surrounding a coal-fired power plant[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 55(1): 107-113. | |
[20] | 程家丽, 张信伟, 唐阵武, 2016. 典型燃煤电厂周边蔬菜重金属累积特征及人体健康风险[J]. 卫生研究, 45(2): 241-245. |
CHENG J L, ZHANG X W, TANG Z W, 2016. Accumulation and health risks of heavy metals in vegetables around a typical coal-fired power plant[J]. Journal of Hygiene Research, 45(2): 241-245. | |
[21] | 崔龙鹏, 刘培陶, 白建峰, 等, 2008. 淮南粉煤灰处置场周围土壤中若干金属污染调查[J]. 土壤通报, 39(3): 660-664. |
CUI L P, LIU P T, BAI J F, et al., 2008. Investigation of metal contamination in soils surrounding huainan coal ash disposal sites[J]. Chinese Journal of Soil Science, 39(3): 660-664. | |
[22] | 窦路, 2016. 煤炭行业现状及环保型煤炭开采利用[J]. 地球 (9): 402. |
DOU L, 2016. Current status of the coal industry and environmental protection coal mining and utilization[J]. The Earth (9): 402. | |
[23] | 党志, 刘丛强, 李忠, 2001. 煤矸石中微量重金属元素化学活性的实验模拟研究[J]. 华南理工大学学报 (自然科学版), 29(12): 1-5. |
DANG Z, LIU C Q, LI Z, 2001. Experimental simulation of chemical activity of heavy metals in coal gangue[J]. Journal of South China University of Technology (Natural Science Edition), 29(12): 1-5. | |
[24] | 郝炜, 2007. 粉煤灰内金属浸溶特性的试验和模拟研究[D]. 武汉: 华中科技大学. |
HAO W, 2007. The experimental investigation and simulation on the leaching behavior of metals in fly ash of power plant[D]. Wuhan: Huazhong University of Science and Technology. | |
[25] | 环境保护部, 2013. 中国人群暴露参数手册 (成人卷)[M]. 北京: 中国环境出版社 |
MEP, 2013. Exposure factors handbook of Chinese population adults (Adults)[M]. Beijing: China Environmental Press. | |
[26] | 黄安, 杨联安, 杜挺, 2014. 基于主成分分析的土壤养分综合评价[J]. 干旱区研究, 31(5): 819-825. |
HUANG A, YANG L A, DU T, et al., 2014. Comprehensive assessment of soil nutrients based on PCA[J]. Arid Zone Research, 31(5): 819-825. | |
[27] | 黄双, 2007. 吉林热电厂灰库渗漏分析[D]. 长春: 吉林大学. |
HUANG S, 2007. The seepage analysis of ash reservoir of jilin pypoelectricity company[D]. Changchun: Jilin University. | |
[28] | 姜林, 王岩, 2004. 场地环境评价指南[M]. 北京: 中国环境科学出版社 |
JIANG L, WANG Y, 2004. Environmental site assessment guideline[M]. Beijing: China Environmental Science Press. | |
[29] | 金丕兴, 1993. 吉林省土壤环境背景值研究[J]. 吉林地质科技情报 (3): 13-24. |
JIN P X, 1993. Research on the background value of soil environment in Jilin province[J]. Jilin Geological Science and Technology Information (3): 13-24. | |
[30] | 施宸皓, 王云燕, 柴立元, 等, 2020. 洞庭湖湿地周围表层土壤重金属污染及其人体健康风险评价[J]. 中国有色金属学报, 30(1): 150-161. |
SHI C H, WANG Y Y, CHAI L Y, et al., 2020. Assessment of heavy metal and human health risk in surface soils around Dongting Lake wetland, China[J]. The Chinese Journal of Nonferrous Metals, 30(1): 150-161. | |
[31] | 孙敏, 唐莹, 郝亚婷, 等, 2021. 红枫湖水源地附近粉煤灰堆积场重金属存在形态及静态淋溶规律[J]. 环境化学, 40(3): 678-686. |
SUN M, TANG Y, HAO Y T, et al., 2021. Heavy metal existence and static leaching rules in fly ash accumulation field near Hongfeng Lake water source[J]. Environmental Chemistry, 40(3): 678-686. | |
[32] | 王洪义, 刘克, 2011. 粉煤灰污染环境原因分析及回收利用[J]. 科技信息 (14): 698. |
WANG H Y, LIU K, 2011. Analysis of environmental pollution caused by fly ash and its recycling[J]. Science & Technology Information (14): 698. | |
[33] | 王婕, 刘桂建, 方婷, 等, 2013. 基于污染负荷指数法评价淮河 (安徽段) 底泥中重金属污染研究[J]. 中国科学技术大学学报, 43(2): 97-103. |
WANG J, LIU G J, FANG T, et al., 2013 Assessment of pollution characteristics of heavy metals in the sediments of Huaihe River (Anhui Section) by pollution load index[J]. Journal of University of Science and Technology of China, 43(2): 97-103. | |
[34] | 王立婷, 刘仁志, 2020. 土壤污染风险评价研究进展[J]. 中国环境管理, 12(2): 62-68. |
WANG L T, LIU R Z, 2020. Research progress on soil pollution risk assessment[J]. Chinese Journal of Environmental Management, 12(2): 62-68. | |
[35] | 徐友宁, 张江华, 柯海玲, 等, 2014. 某金矿区农田土壤重金属污染的人体健康风险[J]. 地质通报, 33(8): 1239-1252. |
Xu Y N, Zhang J H, Ke H L, et al., 2014. Human health risk under the condition of farmland soil heavy metals pollution in a gold mining area.[J]Geological Bulletin of China, 33(8): 1239-1252. | |
[36] | 闫晓露, 郑欢, 赵烜杭, 等, 2020. 辽东湾北部河口区土壤重金属污染源识别及健康风险评价[J]. 环境科学学报, 40(8): 3028-3039. |
YAN X L, ZHENG H, ZHAO X H, et al., 2020. Source identification and health risk assessment of soil heavy metal in the estuary of Northern Liaodong Bay, China[J]. Acta Scientiae Circumstantiae, 40(8): 3028-3039. | |
[37] | 杨彦, 陆晓松, 李定龙, 2014. 我国环境健康风险评价研究进展[J]. 环境与健康杂志, 31(4): 357-363. |
YANG Y, LU X S, LI D L, 2014. Research progress of environmental health risk assessment in China[J]. Journal of Environmental Health, 31(4): 357-363. | |
[38] | 曾法强, 楼国权, 2010. 粉煤灰在水和碱溶液中pH值的变化研究[J]. 中外公路, 30(3): 281-284. |
ZENG F Q, LOU G Q, 2010. Study on the change of pH value of fly ash in water and alkali solution[J]. Journal of China & Foreign Highway, 30(3): 281-284. | |
[39] | 张阿龙, 高瑞忠, 张生, 等, 2018. 吉兰泰盐湖盆地土壤铬、汞、砷污染的负荷特征与健康风险评价[J]. 干旱区研究, 35(5): 1057-1067. |
ZHANG A L, GAO R Z, ZHANG S, et al., 2018 Pollution Load Characteristics and Health Risk Assessment of Heavy Metals Cr, Hg and As in the Jilantai Salt Lake Basin[J]. Arid Zone Research, 35(5): 1057-1067. |
[1] | 杜丹丹, 高瑞忠, 房丽晶, 谢龙梅. 旱区盐湖盆地土壤重金属空间变异及对土壤理化因子的响应[J]. 生态环境学报, 2023, 32(6): 1123-1132. |
[2] | 李传福, 朱桃川, 明玉飞, 杨宇轩, 高舒, 董智, 李永强, 焦树英. 有机肥与脱硫石膏对黄河三角洲盐碱地土壤团聚体及其有机碳组分的影响[J]. 生态环境学报, 2023, 32(5): 878-888. |
[3] | 陈俊芳, 吴宪, 刘啸林, 刘娟, 杨佳绒, 刘宇. 不同土壤水分下元素化学计量对微生物多样性的塑造特征[J]. 生态环境学报, 2023, 32(5): 898-909. |
[4] | 董智今, 张呈春, 展秀丽, 张维福. 宁夏河东沙地生物土壤结皮及其下伏土壤养分的空间分布特征[J]. 生态环境学报, 2023, 32(5): 910-919. |
[5] | 周沁苑, 董全民, 王芳草, 刘玉祯, 冯斌, 杨晓霞, 俞旸, 张春平, 曹铨, 刘文亭. 放牧方式对高寒草地瑞香狼毒根际土壤团聚体及有机碳特征的影响[J]. 生态环境学报, 2023, 32(4): 660-667. |
[6] | 潘昱伶, 璩向宁, 李琴, 王磊, 王筱平, 谭鹏, 崔庚, 安雨, 佟守正. 黄河宁夏段典型滩涂湿地土壤理化因子空间分布特征及其对微地形的响应[J]. 生态环境学报, 2023, 32(4): 668-677. |
[7] | 赵维彬, 唐丽, 王松, 刘玲玲, 王树凤, 肖江, 陈光才. 两种生物炭对滨海盐碱土的改良效果[J]. 生态环境学报, 2023, 32(4): 678-686. |
[8] | 冯树娜, 吕家珑, 何海龙. KI淋洗对黄绵土汞污染的去除效果及土壤理化性状的影响[J]. 生态环境学报, 2023, 32(4): 776-783. |
[9] | 陈敏毅, 朱航海, 佘伟铎, 尹光彩, 黄祖照, 杨巧玲. 珠三角某遗留造船厂场地土壤重金属人体健康风险评估及源解析[J]. 生态环境学报, 2023, 32(4): 794-804. |
[10] | 张林, 齐实, 周飘, 伍冰晨, 张岱, 张岩. 北京山区针阔混交林地土壤有机碳含量的影响因素研究[J]. 生态环境学报, 2023, 32(3): 450-458. |
[11] | 秦浩, 李蒙爱, 高劲, 陈凯龙, 张殷波, 张峰. 芦芽山不同海拔灌丛土壤细菌群落组成和多样性研究[J]. 生态环境学报, 2023, 32(3): 459-468. |
[12] | 唐海明, 石丽红, 文丽, 程凯凯, 李超, 龙泽东, 肖志武, 李微艳, 郭勇. 长期施肥对双季稻田根际土壤氮素的影响[J]. 生态环境学报, 2023, 32(3): 492-499. |
[13] | 刘抗旱, 郑刘根, 张理群, 丁丹, 单士锋. 复合型植物源活化剂强化蜈蚣草修复砷污染土壤的效应研究[J]. 生态环境学报, 2023, 32(3): 635-642. |
[14] | 樊慧琳, 张佳敏, 李欢, 王艳玲. 坡耕地稻田剖面磷的储存格局与流失风险研究[J]. 生态环境学报, 2023, 32(2): 283-291. |
[15] | 宋孝帅, 丁武泉, 刘新敏, 李廷真. 离子特异性效应对紫色土孔隙状况的影响机制研究[J]. 生态环境学报, 2023, 32(2): 292-298. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||