[1] |
ALCACIO T, HESTERBERG D, CHOU J, et al., 2011. Molecular scale characteristics of Cu (Ⅱ) bonding in goethite-humate complexes[J]. Geochimca et Cosmochimca Acta, 65(9): 1355-1366.
DOI
URL
|
[2] |
ANTONIADIS V, LEVIZOU E, SHAHEEN S, et al., 2017. Trace elements in the soil-plant interface: Phytoavailability, translocation, and phytoremediation-A review[J]. Earth-Science Reviews, 171: 621-645.
DOI
URL
|
[3] |
BORGGAARD O, HOLM P, STROBELI V, 2019. Potential of dissolved organic matter (DOM) to extract As, Cd, Co, Cr, Cu, Ni, Pb and Zn from polluted soils: A review[J]. Geoderma, 343: 235-246.
DOI
URL
|
[4] |
CHEN L Y, HAN L F, SUN K, et al., 2012. Molecular transformation of dissolved organic carbon of rhizosphere soil induced by flooding and copper pollution[J]. Geoderma, 407: 115563-115571.
DOI
URL
|
[5] |
CHRISTIANSEN K, BORGGAAD O, HOLM P, et al., 2015. Experimental determinations of soil cupper toxicity to lettuce (Lactuca sativa) growth in highly different copper spiked and aged soils[J]. Environmental Science and Pollution Research, 22: 5283-5292.
DOI
URL
|
[6] |
CUI Y S, DU X, WENG L P, et al., 2008. Effects of rice straw on the speciation of cadmium (Cd) and copper (Cu) in soils[J]. Geoderma, 146(1-2): 370-377.
DOI
URL
|
[7] |
DILLING J, KAISER K, 2002. Estimation of the hydrophobic fraction of dissolved organic matter in water samples using UV photometry[J]. Water Research, 36(20): 5037-5044.
DOI
URL
|
[8] |
DORADO J, GONZÁLEZ-VILA F, ZANCADA M, et al., 2003. Pyrolytic descriptors responsive to changes in humic acid characteristics after long-term sustaninable management of dryland farming systems in central Spain[J]. Journal of Analytical&Applied Pyrolysis, 68(16): 299-314.
|
[9] |
GAO S J, GAO J S, CAO W D, et al., 2018. Effects of long-term green manure application on the content and structure of dissolved organic matter in red paddy soil[J]. Journal of Integrative Agriculture, 17(8): 1852-1860.
DOI
URL
|
[10] |
GU B H, SCHMITT J, CHEN Z H, et al., 1995. Adsorption and desorption of different organic matter fraction on iron oxides[J]. Geochim et Cosmoehim Acta, 59(2): 219-229.
|
[11] |
HE X S, XI B D, WEI Z M, et al., 2011. Spectroscopic characterization of water extractable organic matter during composting of municipal solid waste[J]. Chemosphere, 82(4): 541-548.
DOI
URL
|
[12] |
KAISER K, ZECH W, 1997. Competitive sorption of dissolved organic matter fractions to soils and related mineral phase[J]. Soil Science Society of America Journal, 61(1): 64-69.
DOI
URL
|
[13] |
KUZYAKOV Y, 2010. Priming effects: Interactions between living and dead organic matter[J]. Soil Biology and Biochemistry, 42(9): 1363-1371.
DOI
URL
|
[14] |
LI Q, DU H H, CHEN W L, et al., 2018. Aging shapes the distribution of copper in soil aggregate size fractions[J]. Environmental Pollution, 233: 569-576.
DOI
URL
|
[15] |
LI Q, HU X P, HAO J L. et al., 2020. Characterization of Cu distribution in clay-sized soil aggregates by NanoSIMS and micro-XRF[J]. Chemosphere, 249: 126143-126149.
DOI
URL
|
[16] |
MEERS E, LESAGE E, LAMSAL S, et al., 2005. Enhanced phytoextraction: I. Effect of EDTA and citric acid on heavy metal mobility in a calcareous soil[J]. International Journal of Phytoremediation, 7(2): 129-142.
DOI
URL
|
[17] |
VENEGAS A, RIGOL A, VIDAL M, 2016. Changes in heavy metals extractability from contaminated soils remediated with organic waste or biochar[J]. Geoderma, 279: 132-140.
DOI
URL
|
[18] |
SHAHEEN S, RINKLEBE J, 2014. Geochemical fractions of chromium copper, and zinc and their vertical distribution in floodplain soil profiles along the Central Elbe River, Germany[J]. Geoderma, 228-229: 142-159.
|
[19] |
SHAHEEN S, TSADILAS C, NIAZI N, et al., 2018. Impact of biosolid application rates on competitive sorption and distribution coefficients of Cd, Cu, Ni, Pb, and Zn in an Alfisol and Entisol [J]. Process Safety and Environmental protection, 115: 38-48.
DOI
URL
|
[20] |
SHI H Z, LI Q, HUANG Q Y, et al., 2018. Distribution and mobility of exogenous copper as influenced by aging and components interactions in three Chinese soils[J]. Environmental Science and Pollution Research, 25: 10771-10781.
DOI
URL
|
[21] |
STROBELI B W, 2001. Influence of vegetation on low-molecular-weight carboxylic acids in soil solution--a review[J]. Geoderma, 99(3-4): 169-198.
DOI
URL
|
[22] |
STROBEL B, BORGGAAD O, HANSEN H, et al., 2005. Dissolved organic carbon and decreasing pH mobilize cadmium and copper in soil[J]. European Journal of Soil Science, 56(2): 189-196.
DOI
URL
|
[23] |
YANG S, LI Y, SI S S, et al., 2021. Feasibility of a combined solubilization and eluent drainage system to remove Cd and Cu from agricultural soil[J]. Science of the total environment, 807(2): 150733-150742.
DOI
URL
|
[24] |
ZSOLNAY A, 2003. Dissolved organic matter: Artefacts, definitions, and functions[J]. Geoderma, 113(3-4): 187-209.
DOI
URL
|
[25] |
白瑛, 1986. 胶体吸附与土壤重金属容量[J]. 农业环境科学学报 (2): 23-27.
|
|
BAI Y, 1986. The colloid sorption and capacity of the heavy metal in soil[J]. Journal of Agro-environment science (2): 23-27.
|
[26] |
常单娜, 曹卫东, 白金顺, 等, 2017. 绿肥对华北潮土土壤可溶性有机物的影响[J]. 光谱学与光谱分析, 37(1): 221-226.
|
|
CHANG D N, CAO W D, BAI J S, et al., 2017. Effects of green manures on soil dissolved organic matter in moisture soil in north china[J]. Spectroscopy and Spectral Analysis, 37(1): 221-226.
|
[27] |
陈同斌, 陈志军, 2002. 水溶性有机质对土壤中镉吸附行为的影响[J]. 应用生态学报, 13(2): 183-186.
|
|
CHEN T B, CHEN Z J, 2002. Cadmium sorption in soil influenced by dissolved organic matter derived from rice straw and sediment[J]. Chinese Journal of Applied Ecology, 13(2): 183-186.
|
[28] |
丛源, 陈岳龙, 杨忠芳, 等, 2009. 北京市农田土壤重金属的化学形态及其对生态系统的潜在危害[J]. 土壤, 41(1): 37-41.
|
|
CONG Y, CHEN Y L, YANG Z F, et al., 2009. Chemical forms of heavy metals in soil and potential hazards to ecosystem in Beijng farmlands[J]. Soils, 41(1): 37-41.
|
[29] |
环境保护部国土资源部, 2014. 全国污染调查公告[R].
|
|
The Ministry of Environmental protection and The Ministry of Land and Resources, 2014. Report on the national soil contamination survey[R].
|
[30] |
石含之, 吴志超, 王旭, 等, 2019. 土壤外源镉老化过程中形态变化及影响因素[J]. 江苏农业学报, 35(6): 1360-1367.
|
|
SHI H Z, WU Z C, WANG X, et al., 2019. Changes of chemical forms and influencing factors of soil exogenous cadmium during the aging process[J]. Jiangsu Journal of Agricultural Sciences, 35(6): 1360-1367.
|
[31] |
汤宏, 沈健林, 张杨珠, 等, 2013. 秸秆还田与水分管理对稻田土壤微生物量碳、氮及溶解性有机碳、氮的影响[J]. 水土保持学报, 27(1): 240-246.
|
|
TANG H, SHEN J L, ZHANG Y Z, et al., 2013. The effects of straw incorporation and water management on soil microbial biomass carbon, nitrogen and dissolved organic matter, nitrogen in rice paddy field[J]. Journal of Soil and Water Conservation, 27(1): 240-246.
|
[32] |
王育来, 孙即梁, 杨长明, 等, 2013. 河岸带土壤溶解性有机质垂直分布特征及其性质研究[J]. 农业环境科学学报, 32(12): 2413-2421.
|
|
WANG Y L, SUN J L, YANG C M, et al., 2013. Distrubition of dissolved matter and its properties in soils across different riparian zones[J]. Journal of Agro-Environment Science, 32(12): 2413-2421.
|
[33] |
杨新明, 庄涛, 韩磊, 等, 2019. 小清河污灌区农田土壤重金属形态分析及风险评价[J]. 环境化学, 38(3): 644-652.
|
|
YANG X M, ZHUANG T, HAN L, et al., 2019. Fraction distrubition and ecological risk assessment of heavy metals in farmland soil from the sewage irrigated area of Xiaoqing River[J]. Environmenal Chemistry, 38(3): 644-652.
|
[34] |
祝亮, 伍钧, 周江敏, 等, 2008. 溶解性有机质对Cu在土壤中吸附-解吸行为的影响[J]. 农业环境科学学报, 27(5): 1779-1785.
|
|
ZHU L, WU J, ZHOU J M, et al., 2008. Effects of dissolved organic matter on sorption-desorption behavior of Copper in soil[J]. Journal of Agro-Environment Science, 27(5): 1779-1785.
|