生态环境学报 ›› 2022, Vol. 31 ›› Issue (1): 131-141.DOI: 10.16258/j.cnki.1674-5906.2022.01.015
收稿日期:
2021-06-17
出版日期:
2022-01-18
发布日期:
2022-03-10
通讯作者:
*张妍(1986年生),女,副教授,研究方向为流域水文水循环研究。E-mail: yanz@nwu.edu.cn作者简介:
任丽江(1996年生),男,硕士研究生,研究方向为生态水文与水环境研究。E-mail: lijiangren@stumail.nwu.edu.cn
基金资助:
REN Lijiang(), ZHANG Yan(
), ZHANG Xin, SHAN Zexuan, ZHANG Chengqian
Received:
2021-06-17
Online:
2022-01-18
Published:
2022-03-10
摘要:
由于重金属的毒理性及其对水生生态系统的重要影响,水生环境的重金属污染已成为全世界关注的问题。渭河是黄河的第一大支流,近年来随着沿岸社会经济的发展,渭河的水质受到严重的威胁,但是对渭河流域地表水重金属的污染状况缺乏全面评估。以渭河流域关中段为研究区域,采集了该流域35个地表水样品,检测了12种重金属元素(Cr、Mn、Fe、Ni、Cu、Zn、As、Hg、Pb、Al、V和Ca),运用多元统计方法和健康风险评价模型研究了地表水中重金属的污染特征和健康风险。结果表明,地表水中12种金属元素的平均质量浓度大小顺序为:Ca>Fe>Cr>Al>Zn>V>Pb>Cu>As>Hg>Mn>Ni,其中Fe和Hg的质量浓度超过我国相应水质标准;采用反距离加权插值法(Inverse Distance Weighted)得出渭河流域地表水中重金属质量浓度的空间分布图,发现污染较为严重的主要地区为长安区和华州区。通过荷载分析得到4个主成分,Cr、Mn、Cu、As、Pb、Al和V为第1主成分,主要受到工业源和农业源的影响;Fe、Ni和Ca为第2主成分,主要受到地质环境和成土过程的影响;Hg和Zn分别为第3、4主成分,Hg主要受到城市生产生活的影响;Zn主要为地球化学来源。健康风险评价表明,饮用水途径引起的各种金属元素的年均健康风险均高于皮肤入渗途径,揭示饮用水是主要的暴露途径,致癌金属元素Cr和As引起的成人和儿童的年均健康风险数量级总体介于10-8—10-6 a-1,非致癌金属元素Mn、Fe、Ni、Cu、Zn、Hg、Pb、Al和V引起的成人和儿童的年均健康风险数量级总体介于10-14—10-9 a-1,发现致癌风险是影响成人和儿童的年均健康风险的主要因素,Cr是引起人群年均健康风险的主要因子,金属元素引起的年均健康风险值集中在10-13—10-11 a-1,对流域的暴露人群没有形成明显的危害。该研究的结果可为该流域重金属的污染防治和保障城镇居民的用水安全提供科学依据。
中图分类号:
任丽江, 张妍, 张鑫, 山泽萱, 张成前. 渭河流域关中段地表水重金属的污染特征与健康风险评价[J]. 生态环境学报, 2022, 31(1): 131-141.
REN Lijiang, ZHANG Yan, ZHANG Xin, SHAN Zexuan, ZHANG Chengqian. Pollution Characteristics and Health Risk Assessment of Heavy Metals in Surface Water in Guanzhong Section of the Weihe River Basin[J]. Ecology and Environment, 2022, 31(1): 131-141.
元素 Elements | C/(cm∙h-1) | D/(mg∙kg-1∙d-1) | f/(kg∙d∙mg-1) | ||||
---|---|---|---|---|---|---|---|
饮用水暴露 Drinking water exposure | 皮肤暴露 Skin exposure | 饮用水暴露 Drinking water exposure | 皮肤暴露 Skin exposure | ||||
致癌性 Carcinogenicity | Cr | 0.002 | 0.003 | 0.003 | 0.5 | 20 | |
As | 0.0018 | 0.0003 | 0.000123 | 1.5 | 3.66 | ||
非致癌性 Non-carcinogenic | Mn | 0.0001 | 0.046 | 0.0008 | |||
Fe | 0.0001 | 0.3 | 0.045 | ||||
Ni | 0.0001 | 0.02 | 0.0054 | ||||
Cu | 0.0006 | 0.04 | 0.012 | ||||
Zn | 0.0006 | 0.3 | 0.06 | ||||
Hg | 0.0018 | 0.0003 | 0.0003 | ||||
Pb | 0.000004 | 0.0014 | 0.00042 | ||||
Al | 0.01 | 0.14 | 0.14 | ||||
V | 0.0021) | 0.007 | 0.00007 |
表1 健康风险评价方法相关参数值
Table 1 Values of parameters related to the health risk assessment
元素 Elements | C/(cm∙h-1) | D/(mg∙kg-1∙d-1) | f/(kg∙d∙mg-1) | ||||
---|---|---|---|---|---|---|---|
饮用水暴露 Drinking water exposure | 皮肤暴露 Skin exposure | 饮用水暴露 Drinking water exposure | 皮肤暴露 Skin exposure | ||||
致癌性 Carcinogenicity | Cr | 0.002 | 0.003 | 0.003 | 0.5 | 20 | |
As | 0.0018 | 0.0003 | 0.000123 | 1.5 | 3.66 | ||
非致癌性 Non-carcinogenic | Mn | 0.0001 | 0.046 | 0.0008 | |||
Fe | 0.0001 | 0.3 | 0.045 | ||||
Ni | 0.0001 | 0.02 | 0.0054 | ||||
Cu | 0.0006 | 0.04 | 0.012 | ||||
Zn | 0.0006 | 0.3 | 0.06 | ||||
Hg | 0.0018 | 0.0003 | 0.0003 | ||||
Pb | 0.000004 | 0.0014 | 0.00042 | ||||
Al | 0.01 | 0.14 | 0.14 | ||||
V | 0.0021) | 0.007 | 0.00007 |
元素 Elements | 最大值 Max/(μg∙L-1) | 最小值 Min/(μg∙L-1) | 平均值 Ave/(μg∙L-1) | 标准差 Standard deviation | 变异系数 Coefficients of variation/% | 标准限值1) Standard limit values/(μg∙L-1) | 标准限值2) Standard limit values/(μg∙L-1) |
---|---|---|---|---|---|---|---|
Cr | 14.31 | 5.59 | 9.73 | 1.84 | 18.93 | 50 | 50 |
Mn | 1.23 | 0.59 | 0.86 | 0.17 | 20.08 | 100 | 100 |
Fe | 1160.69 | 134.21 | 382.41 | 164.68 | 43.07 | 300 | 300 |
Ni | 6.30 | 0.00 | 0.78 | 1.09 | 139.49 | — | 20 |
Cu | 4.36 | 0.68 | 2.09 | 0.98 | 46.73 | 1000 | 1000 |
Zn | 64.84 | 0.00 | 7.30 | 13.21 | 180.83 | 1000 | 1000 |
As | 8.03 | 0.00 | 1.48 | 1.76 | 118.87 | 50 | 10 |
Hg | 3.73 | 0.86 | 0.98 | 0.47 | 48.01 | 0.1 | 1 |
Pb | 3.28 | 2.84 | 2.93 | 0.10 | 3.54 | 50 | 10 |
Al | 20.55 | 0.00 | 8.29 | 5.24 | 63.22 | — | 200 |
V | 6.20 | 1.23 | 3.27 | 1.14 | 35.02 | — | 50 |
Ca | 46100 | 8200 | 23642.86 | 7250.63 | 30.67 | — | — |
表2 地表水重金属质量浓度的统计特征
Table 2 Statistic characteristics of heavy metal concentrations in surface water
元素 Elements | 最大值 Max/(μg∙L-1) | 最小值 Min/(μg∙L-1) | 平均值 Ave/(μg∙L-1) | 标准差 Standard deviation | 变异系数 Coefficients of variation/% | 标准限值1) Standard limit values/(μg∙L-1) | 标准限值2) Standard limit values/(μg∙L-1) |
---|---|---|---|---|---|---|---|
Cr | 14.31 | 5.59 | 9.73 | 1.84 | 18.93 | 50 | 50 |
Mn | 1.23 | 0.59 | 0.86 | 0.17 | 20.08 | 100 | 100 |
Fe | 1160.69 | 134.21 | 382.41 | 164.68 | 43.07 | 300 | 300 |
Ni | 6.30 | 0.00 | 0.78 | 1.09 | 139.49 | — | 20 |
Cu | 4.36 | 0.68 | 2.09 | 0.98 | 46.73 | 1000 | 1000 |
Zn | 64.84 | 0.00 | 7.30 | 13.21 | 180.83 | 1000 | 1000 |
As | 8.03 | 0.00 | 1.48 | 1.76 | 118.87 | 50 | 10 |
Hg | 3.73 | 0.86 | 0.98 | 0.47 | 48.01 | 0.1 | 1 |
Pb | 3.28 | 2.84 | 2.93 | 0.10 | 3.54 | 50 | 10 |
Al | 20.55 | 0.00 | 8.29 | 5.24 | 63.22 | — | 200 |
V | 6.20 | 1.23 | 3.27 | 1.14 | 35.02 | — | 50 |
Ca | 46100 | 8200 | 23642.86 | 7250.63 | 30.67 | — | — |
Elements | Cr | Mn | Fe | Ni | Cu | Zn | As | Hg | Pb | Al | V | Ca |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Cr | 1 | |||||||||||
Mn | 0.503** | 1 | ||||||||||
Fe | -0.108 | -0.090 | 1 | |||||||||
Ni | 0.128 | 0.032 | 0.426* | 1 | ||||||||
Cu | 0.439** | 0.287 | 0.063 | 0.392* | 1 | |||||||
Zn | -0.250 | -0.147 | -0.166 | 0.363* | 0.178 | 1 | ||||||
As | 0.294 | 0.222 | -0.276 | 0.018 | 0.471** | -0.095 | 1 | |||||
Hg | -0.238 | -0.174 | -0.076 | -0.103 | 0.028 | 0.120 | -0.119 | 1 | ||||
Pb | 0.477** | 0.664** | -0.185 | -0.024 | 0.362* | 0.027 | 0.421* | -0.141 | 1 | |||
Al | 0.368* | 0.772** | -0.272 | -0.104 | 0.345* | -0.146 | 0.406* | -0.189 | 0.713** | 1 | ||
V | 0.429* | 0.307 | -0.134 | 0.297 | 0.741** | -0.002 | 0.706** | -0.208 | 0.312 | 0.403* | 1 | |
Ca | -0.048 | -0.15 | 0.789** | 0.642** | 0.298 | 0.042 | -0.220 | 0.036 | -0.260 | -0.179 | 0.167 | 1 |
表3 重金属质量浓度的Pearson相关性系数
Table 3 Pearson’s correlation coefficient for mass concentration of heavy metals
Elements | Cr | Mn | Fe | Ni | Cu | Zn | As | Hg | Pb | Al | V | Ca |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Cr | 1 | |||||||||||
Mn | 0.503** | 1 | ||||||||||
Fe | -0.108 | -0.090 | 1 | |||||||||
Ni | 0.128 | 0.032 | 0.426* | 1 | ||||||||
Cu | 0.439** | 0.287 | 0.063 | 0.392* | 1 | |||||||
Zn | -0.250 | -0.147 | -0.166 | 0.363* | 0.178 | 1 | ||||||
As | 0.294 | 0.222 | -0.276 | 0.018 | 0.471** | -0.095 | 1 | |||||
Hg | -0.238 | -0.174 | -0.076 | -0.103 | 0.028 | 0.120 | -0.119 | 1 | ||||
Pb | 0.477** | 0.664** | -0.185 | -0.024 | 0.362* | 0.027 | 0.421* | -0.141 | 1 | |||
Al | 0.368* | 0.772** | -0.272 | -0.104 | 0.345* | -0.146 | 0.406* | -0.189 | 0.713** | 1 | ||
V | 0.429* | 0.307 | -0.134 | 0.297 | 0.741** | -0.002 | 0.706** | -0.208 | 0.312 | 0.403* | 1 | |
Ca | -0.048 | -0.15 | 0.789** | 0.642** | 0.298 | 0.042 | -0.220 | 0.036 | -0.260 | -0.179 | 0.167 | 1 |
成分 Components | 初始特征值 Initial eigenvalue | 提取载荷平方和 Extract the sum of squares of the load | 旋转载荷平方和 Rotating load sum of squares | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
总计 Total | 方差百分比 Percentage of variance | 累积 Cumulative/ % | 总计 Total | 方差百分比 Percentage of variance | 累积 Cumulative/ % | 总计 Total | 方差百分比 Percentage of variance | 累积 Cumulative/ % | |||
1 | 3.887 | 32.394 | 32.394 | 3.887 | 32.394 | 32.394 | 2.843 | 23.695 | 23.695 | ||
2 | 2.555 | 21.289 | 53.682 | 2.555 | 21.289 | 53.682 | 2.456 | 20.465 | 44.160 | ||
3 | 1.516 | 12.635 | 66.317 | 1.516 | 12.635 | 66.317 | 2.452 | 20.437 | 64.597 | ||
4 | 1.111 | 9.260 | 75.577 | 1.111 | 9.260 | 75.577 | 1.318 | 10.980 | 75.577 | ||
5 | 0.950 | 7.913 | 83.490 | ||||||||
6 | 0.663 | 5.526 | 89.017 | ||||||||
7 | 0.435 | 3.623 | 92.640 | ||||||||
8 | 0.353 | 2.946 | 95.586 | ||||||||
9 | 0.195 | 1.629 | 97.214 | ||||||||
10 | 0.146 | 1.219 | 98.433 | ||||||||
11 | 0.121 | 1.005 | 99.438 | ||||||||
12 | 0.067 | 0.562 | 100.000 |
表4 重金属元素主成分方差累积量
Table 4 Variance accumulation of heavy metals concentration
成分 Components | 初始特征值 Initial eigenvalue | 提取载荷平方和 Extract the sum of squares of the load | 旋转载荷平方和 Rotating load sum of squares | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
总计 Total | 方差百分比 Percentage of variance | 累积 Cumulative/ % | 总计 Total | 方差百分比 Percentage of variance | 累积 Cumulative/ % | 总计 Total | 方差百分比 Percentage of variance | 累积 Cumulative/ % | |||
1 | 3.887 | 32.394 | 32.394 | 3.887 | 32.394 | 32.394 | 2.843 | 23.695 | 23.695 | ||
2 | 2.555 | 21.289 | 53.682 | 2.555 | 21.289 | 53.682 | 2.456 | 20.465 | 44.160 | ||
3 | 1.516 | 12.635 | 66.317 | 1.516 | 12.635 | 66.317 | 2.452 | 20.437 | 64.597 | ||
4 | 1.111 | 9.260 | 75.577 | 1.111 | 9.260 | 75.577 | 1.318 | 10.980 | 75.577 | ||
5 | 0.950 | 7.913 | 83.490 | ||||||||
6 | 0.663 | 5.526 | 89.017 | ||||||||
7 | 0.435 | 3.623 | 92.640 | ||||||||
8 | 0.353 | 2.946 | 95.586 | ||||||||
9 | 0.195 | 1.629 | 97.214 | ||||||||
10 | 0.146 | 1.219 | 98.433 | ||||||||
11 | 0.121 | 1.005 | 99.438 | ||||||||
12 | 0.067 | 0.562 | 100.000 |
元素 Elements | 成分 Components | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
Cr | 0.684 | 0.068 | -0.246 | -0.130 |
Mn | 0.740 | -0.052 | -0.391 | 0.340 |
Fe | -0.272 | 0.724 | -0.485 | -0.064 |
Ni | 0.098 | 0.838 | 0.106 | 0.226 |
Cu | 0.658 | 0.509 | 0.316 | -0.088 |
Zn | -0.097 | 0.214 | 0.644 | 0.665 |
As | 0.690 | -0.048 | 0.340 | -0.420 |
Hg | -0.223 | -0.011 | 0.453 | -0.018 |
Pb | 0.784 | -0.170 | -0.111 | 0.351 |
Al | 0.807 | -0.207 | -0.201 | 0.229 |
V | 0.733 | 0.337 | 0.348 | -0.348 |
Ca | -0.135 | 0.910 | -0.216 | -0.010 |
表5 重金属元素主成分分析
Table 5 Principal component analysis of heavy metals concentration
元素 Elements | 成分 Components | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
Cr | 0.684 | 0.068 | -0.246 | -0.130 |
Mn | 0.740 | -0.052 | -0.391 | 0.340 |
Fe | -0.272 | 0.724 | -0.485 | -0.064 |
Ni | 0.098 | 0.838 | 0.106 | 0.226 |
Cu | 0.658 | 0.509 | 0.316 | -0.088 |
Zn | -0.097 | 0.214 | 0.644 | 0.665 |
As | 0.690 | -0.048 | 0.340 | -0.420 |
Hg | -0.223 | -0.011 | 0.453 | -0.018 |
Pb | 0.784 | -0.170 | -0.111 | 0.351 |
Al | 0.807 | -0.207 | -0.201 | 0.229 |
V | 0.733 | 0.337 | 0.348 | -0.348 |
Ca | -0.135 | 0.910 | -0.216 | -0.010 |
元素 Elements | 成人 Adult/a-1 | 儿童 Child/a-1 | ||
---|---|---|---|---|
饮用水 途径 Drinking pathway | 致癌性 Carcinogenicity | Cr | 2.41×10-6 | 2.63×10-6 |
As | 1.10×10-6 | 1.20×10-6 | ||
非致癌性 | Mn | 9.28×10-12 | 1.01×10-11 | |
Fe | 6.32×10-10 | 6.89×10-10 | ||
Ni | 1.93×10-11 | 2.11×10-11 | ||
Cu | 2.60×10-11 | 2.83×10-11 | ||
Zn | 1.21×10-11 | 1.32×10-11 | ||
Hg | 1.62×10-9 | 1.77×10-9 | ||
Pb | 1.04×10-9 | 1.13×10-9 | ||
Al | 2.93×10-11 | 3.20×10-11 | ||
V | 2.31×10-10 | 2.53×10-10 | ||
皮肤途径 Dermal pathway | 致癌性 | Cr | 1.00×10-6 | 7.00×10-7 |
As | 2.50×10-8 | 1.76×10-8 | ||
非致癌性 | Mn | 2.76×10-13 | 1.94×10-13 | |
Fe | 2.18×10-12 | 1.53×10-12 | ||
Ni | 3.71×10-14 | 2.60×10-14 | ||
Cu | 2.69×10-13 | 1.88×10-13 | ||
Zn | 1.87×10-13 | 1.32×10-13 | ||
Hg | 1.51×10-11 | 1.06×10-11 | ||
Pb | 7.17×10-14 | 5.04×10-14 | ||
Al | 1.52×10-12 | 1.07×10-12 | ||
V | 2.40×10-12 | 1.68×10-12 |
表6 金属元素分别经饮用水途径和皮肤入渗途径产生的人群健康风险
Table 6 Per capita annual health risks caused by metals thoμgh the drinking and skin penetration pathway, respectively
元素 Elements | 成人 Adult/a-1 | 儿童 Child/a-1 | ||
---|---|---|---|---|
饮用水 途径 Drinking pathway | 致癌性 Carcinogenicity | Cr | 2.41×10-6 | 2.63×10-6 |
As | 1.10×10-6 | 1.20×10-6 | ||
非致癌性 | Mn | 9.28×10-12 | 1.01×10-11 | |
Fe | 6.32×10-10 | 6.89×10-10 | ||
Ni | 1.93×10-11 | 2.11×10-11 | ||
Cu | 2.60×10-11 | 2.83×10-11 | ||
Zn | 1.21×10-11 | 1.32×10-11 | ||
Hg | 1.62×10-9 | 1.77×10-9 | ||
Pb | 1.04×10-9 | 1.13×10-9 | ||
Al | 2.93×10-11 | 3.20×10-11 | ||
V | 2.31×10-10 | 2.53×10-10 | ||
皮肤途径 Dermal pathway | 致癌性 | Cr | 1.00×10-6 | 7.00×10-7 |
As | 2.50×10-8 | 1.76×10-8 | ||
非致癌性 | Mn | 2.76×10-13 | 1.94×10-13 | |
Fe | 2.18×10-12 | 1.53×10-12 | ||
Ni | 3.71×10-14 | 2.60×10-14 | ||
Cu | 2.69×10-13 | 1.88×10-13 | ||
Zn | 1.87×10-13 | 1.32×10-13 | ||
Hg | 1.51×10-11 | 1.06×10-11 | ||
Pb | 7.17×10-14 | 5.04×10-14 | ||
Al | 1.52×10-12 | 1.07×10-12 | ||
V | 2.40×10-12 | 1.68×10-12 |
[1] |
FILIMON M N, CARABA I V, POPESCU R, et al., 2021. Potential ecological and human health risks of heavy metals in soils in selected copper mining areas-A case study: The bor area[J]. International Journal of Environmental Research and Public Health, DOI: 10.3390/ijerph18041516.
DOI |
[2] | GUAN J L, WANG L, PEI X L, et al., 2012. Trends of major pollutants found in Weihe River in Shaanxi Province[J]. Bulletin of Soil and Water Conservation, 32(6): 51-54. |
[3] | LI H, NITIVATTANANON V, LI P, et al., 2015. Municipal solid waste management health risk assessment from air emissions for China by applying life cycle analysis[J]. Waste Management & Research, 33(5): 401-409. |
[4] |
PAUL D, 2017. Research on heavy metal pollution of river Ganga: A review[J]. Annals of Agrarian Science, 15(2): 278-286.
DOI URL |
[5] | USEPA, 1992. Guidelines for exposure assessment[J]. Federal Register, 57(104): 22888-22938. |
[6] | XU P P, ZHANG Q Y, QIAN H, et al., 2019. Characterization of geothermal water in the piedmont region of Qinling Mountains and Lantian-Bahe Group in Guanzhong Basin, China[J]. Environmental Earth Sciences, 8(15): 1-17. |
[7] |
ZHAO G J, MU X M, TIAN P, et al., 2013. Climate changes and their impacts on water resources in semiarid regions: a case study of the Wei River basin, China[J]. Hydrology Processes, 27(26): 3852-3863.
DOI URL |
[8] | 陈峰, 杨梅桂, 杨清华, 等, 2017. 原子吸收分光光度法间接测定海水中的总硬度[J]. 医学动物防制, 33(5): 589-591. |
CHEN F, YANG M G, YANG Q H, et al., 2017. Indirect atomic absorption spectrophotometric method for determination of total hardness in seawater[J]. Journal of Medical Pest Control, 33(5): 589-591. | |
[9] | 陈庆典, 李海斌, 任鹏, 等, 2019. 不同水源中钙镁元素的含量及pH测定的对比分析[J]. 安徽建筑大学学报, 27(6): 95-113. |
CHENG Q D, LI H B, REN P, et al., 2019. Comparison of Calcium and Magnesium contents and pH determination in different water sources[J]. Journal of Anhui Jianzhu University, 27(6): 95-113. | |
[10] | 邓礼强, 王飞, 韩剑桥, 等, 2020. 渭河关中段水系演变及其对城镇化的响应[J]. 水土保持研究, 27(4): 256-261. |
DENG L Q, WANG F, HAN J Q, et al., 2020. Change of Weihe River system and its response to urbanization in Guanzhong area[J]. Research of Soil and Water Conservation, 27(4): 256-261. | |
[11] | 段雯娟, 2014. 中国人群暴露参数[J]. 地球 (6): 80-83. |
DUAN W J, 2014. Exposure factors of Chinese population[J]. Earth (6): 80-83. | |
[12] | 方敦, 2014. 基于ArcGIS和ArcScene的污染场地土壤铬三维空间格局研究[J]. 湖北民族学院学报(自然科学版), 32(2): 237-240. |
FANG D, 2014. 3D spatial pattern study of Cr in contaminated site based on ArcGIS and ArcScene[J]. Journal of Hubei Minzu University (Natural Science Edition), 32(2): 237-240. | |
[13] | 方红卫, 孙世群, 朱雨龙, 等, 2009. 主成分分析法在水质评价中的应用及分析[J]. 环境科学与管理, 34(12): 152-154. |
FANG H W, SUN S Q, ZHU Y L, et al., 2009. Application and analysis of principal component analysis in water quality assessment[J]. Environmental Science and Management, 34(12): 152-154. | |
[14] | 郭巍, 2011. 水质水量结合评价渭河干流(陕西段)水资源变化[J]. 水资源与水工程学报, 22(5): 115-120. |
GUO W, 2011. Integrated evaluation of water quality and quantity in Weihe River reach of Shaanxi Province[J]. Journal of Water Resources and Water Engineering, 22(5): 115-120. | |
[15] | 蒋育凤, 安艳玲, 王柱红, 等, 2021. 赤水河河水溶解态微量元素空间分布及来源分析[J]. 长江流域资源与环境, 30(5): 1202-1210. |
JIANG Y F, AN Y L, WANG Z H, et al., 2021. Analysis spatial distribution and sources of dissolved trace elements in the water of Chishui River[J]. Resources and Environment in the Yangtze Basin, 30(5): 1202-1210. | |
[16] | 蓝俊康, 丁凯, 王焰新, 2005. 钙矾石对Pb, Zn, Cd的化学俘获[J]. 桂林工学院学报, 25(3): 330-334. |
LAN J K, DING K, WANG Y X, 2005. Research on chemical entrapment of Pb, Zn, Cd by ettringite[J]. Journal of Guilin University of Technology, 25(3): 330-334. | |
[17] | 雷凯, 2008. 渭河西安段水体及水系沉积物重金属环境地球化学研究[D]. 西安: 陕西师范大学. |
LEI K, 2008. Environmental geochemistry of heavy metals in water body and sediment in Xi’an section of the Weihe River[D]. Xi’an: Shaanxi Normal University. | |
[18] | 李春晖, 杨志峰, 郑小康, 等, 2007. 黄河干流主要重金属污染特征及其与流量关系[J]. 水资源与水工程学报, 18(6): 1-3. |
LI C H, YANG Z F, ZHENG X K, et al., 2007. Pollution characters by heavy metals and its relationship with flows in the Yellow River[J]. Journal of Water Resources and Water Engineering, 18(6): 1-3. | |
[19] | 李玄添, 张风宝, 杨明义, 2020. 渭河陕西段沉积物重金属空间分布及来源解析[J]. 应用生态学报, 31(12): 4225-4234. |
LI X T, ZHANG F B, YANG M Y, 2020. Spatial variation and source identification of heavy metals in sediments in Shaanxi section of Weihe River, Northwest China[J]. Chinese Journal of Applied Ecology, 31(12): 4225-4234. | |
[20] | 刘臣辉, 吕信红, 范海燕, 2011. 主成分分析法用于环境质量评价的探讨[J]. 环境科学与管理, 36(3): 183-186. |
LIU C H, LYV X H, FAN H Y, 2011. Study of applying principal component analysis to environmental quality assessment[J]. Environmental Science and Management, 36(3): 183-186. | |
[21] | 孙超, 陈振楼, 张翠, 等, 2009. 上海市主要饮用水源地水重金属健康风险初步评价[J]. 环境科学研究, 22(1): 60-65. |
SUN C, CHEN Z L, ZHANG C, et al., 2009. Health risk assessment of heavy metals in drinking water sources in Shanghai, China[J]. Research of Environmental Sciences, 22(1): 60-65. | |
[22] | 田渭花, 王蕾, 关建玲, 等, 2017. 渭河陕西段水体重金属污染现状及其来源探析[J]. 环境工程技术学报, 7(6): 684-690. |
TIAN W H, WANG L, GUAN J L, et al., 2017. Heavy metal pollution and source analysis of Weihe River in Shaanxi Province[J]. Journal of Environmental Engineering Technology, 7(6): 684-690. | |
[23] | 王洪涛, 张俊华, 丁少峰, 等, 2016. 开封城市河流表层沉积物重金属分布、污染来源及风险评估[J]. 环境科学学报, 36(12): 4520-4530. |
WANG H T, ZHANG J H, DING S F, et al., 2016. Distribution characteristics, sources identification and risk assessment of heavy metals in surface sediments of urban rivers in Kaifeng[J]. Acta Scientiae Circumstantiae, 36(12): 4520-4530. | |
[24] | 王若师, 许秋瑾, 张娴, 等, 2012. 东江流域典型乡镇饮用水源地重金属污染健康风险评价[J]. 环境科学, 33(9): 3083-3088. |
WANG R S, XU Q J, ZHANG X, et al., 2012. Health risk assessment of heavy metals in typical township water sources in Dongjiang River Basin[J]. Environmental Science, 33(9): 3083-3088. | |
[25] | 王玉强, 2012. 渭河干流中下游铬 (Ⅵ) 污染迁移转化规律[D]. 杨凌: 西北农林科技大学. |
WANG Y Q, 2012. Migration and transformation patterns of Cr (VI) pollution in the middle and lower reaches of the Weihe River main stream[D]. Yangling: Northwest Agriculture and Forestry University. | |
[26] | 徐勇, 江涛, 杨茜, 等, 2019. 夏季渤海中部表层沉积物重金属空间分布及污染评价[J]. 渔业科学进展, 40(5): 52-61. |
XU Y, JIANG T, YANG Q, et al., 2019. Distribution characteristics and pollution assessment of heavy metals in the surface sediments of the central region of the Bohai Sea during the summer[J]. Progress in Fishery Sciences, 40(5): 52-61. | |
[27] | 杨小刚, 宋进喜, 陈佳, 等, 2014. 渭河陕西段潜流带沉积物重金属变化初步分析[J]. 环境科学学报, 34(8): 2051-2061. |
YANG X G, SONG J X, CHEN J, et al., 2014. Variation of heavy metal concentrations in hyporheic sediments for the Weihe River of Shaanxi Province[J]. Acta Scientiae Circumstantiae, 34(8): 2051-2061. | |
[28] | 杨学福, 关建玲, 段晋明, 等, 2014. 渭河西安段水体重金属污染现状及其健康风险评价[J]. 水土保持通报, 34(2): 152-156. |
YANG X F, GUAN J L, DUAN J M, et al., 2014. Heavy metal pollution and related health risk of Weihe River in Xi’an section[J]. Bulletin of Soil and Water Conservation, 34(2): 152-156. | |
[29] | 杨学福, 关建玲, 王蕾, 等, 2013. 渭河陕西段水体中重金属的时空动态变化特征研究[J]. 安全与环境学报, 13(6): 115-119. |
YANG X F, GUAN J L, WANG L, et al., 2013. Spatial and temporal variation features of heavy metal pollutants in the Weihe River in Shaanxi[J]. Journal of Safety and Environment, 13(6): 115-119. | |
[30] | 余汉章, 1987. 陕西水文[M]. 西安: 陕西科学技术出版社: 4-29. |
YU H Z, 1987. Hydrology of Shaanxi[M]. Xi'an: Shaanxi Science and Technology Press: 4-29. | |
[31] | 张家泉, 田倩, 许大毛, 等, 2017. 大冶湖表层水和沉积物中重金属污染特征与风险评价[J]. 环境科学, 38(6): 2355-2363. |
ZHANG J Q, TIAN Q, XU D M, et al., 2017. Pollution characteristics and risk assessment of heavy metals in water and sediment from Daye Lake[J]. Environmental Science, 38(6): 2355-2363. | |
[32] | 张丽梅, 赵广举, 穆兴民, 等, 2018. 基于Budyko假设的渭河径流变化归因识别[J]. 生态学报, 38(21): 7607-7617. |
ZHANG L M, ZHAO G J, MU X M, et al., 2018. Attribution of runoff variation in the Weihe River Basin based on the Budyko hypothesis[J]. Acta Ecologica Sinica, 38(21): 7607-7617. | |
[33] | 张清华, 韦永著, 曹建华, 等, 2018. 柳江流域饮用水源地重金属污染与健康风险评价[J]. 环境科学, 39(4): 1598-1607. |
ZHANG Q H, WEI Y Z, CAO J H, et al., 2018. Heavy metal pollution of the drinking water sources in the Liujiang River Basin, and related health risk assessments[J]. Environmental Science, 39(4): 1598-1607.
DOI URL |
|
[34] | 张蓉珍, 张幸, 2008. 渭河流域陕西段近50年生态环境演变[J]. 干旱区资源与环境, 22(2): 37-42. |
ZHANG R Z, ZHANG X, 2008. The evolution of the ecological environment in Shaanxi part of Weihe River Basin in recent 50 years[J]. Journal of Arid Land Resources and Environment, 22(2): 37-42. | |
[35] | 张烨, 胡清升, 2020. 陕西统计年鉴[M]. 北京: 中国统计出版社: 73-319. |
ZHANG Y, HU Q S, 2020. Shaanxi statistical yearbook[M]. Beijing: China Statistics Press: 73-319. | |
[36] | 张勇, 郭纯青, 孙平安, 等, 2019. 基于空间分析荞麦地流域地下水健康风险评价[J]. 中国环境科学, 39(11): 4762-4768. |
ZHANG Y, GUO C Q, SUN P A, et al., 2019. Groundwater health risk assessment based on spital analysis in the Qiaomaidi watershed[J]. China Environmental Science, 39(11): 4762-4768. | |
[37] | 赵玉, 2020. 渭河干流浅层地下水与地表水中重金属Cd污染特征及风险评价[J]. 地球科学与环境学报, 42(2): 267-277. |
ZHAO Y, 2020. Characteristics and risk assessment of heavy metal Cd pollution of shallow groundwater and surface water in main stream of Weihe River, China[J]. Journal of Earth Sciences and Environment, 42(2): 267-277. | |
[38] | 周巾枚, 蒋忠诚, 徐光黎, 等, 2019. 铁矿周边地下水金属元素分布及健康风险评价[J]. 中国环境科学, 39(5): 1934-1944. |
ZHOU J M, JIANG Z C, XU G L, et al., 2019. Distribution and health risk assessment of metals in groundwater around iron mine[J]. China Environmental Science, 39(5): 1934-1944. | |
[39] | 周晓强, 2018. 渭河干流陕西段水环境变化趋势分析[J]. 地下水, 40(5): 75-76. |
ZHOU X Q, 2018. Trend analysis of water environment changes in the Shaanxi section of the Wei River main stream[J]. Ground Water, 40(5): 75-76. |
[1] | 董洁芳, 邓椿, 张仲伍. 渭河流域PM2.5时空演化及人口暴露风险[J]. 生态环境学报, 2023, 32(6): 1078-1088. |
[2] | 杜丹丹, 高瑞忠, 房丽晶, 谢龙梅. 旱区盐湖盆地土壤重金属空间变异及对土壤理化因子的响应[J]. 生态环境学报, 2023, 32(6): 1123-1132. |
[3] | 巫晨煜, 许帆帆, 魏士博, 樊晶晶, 刘观鹏, 王坤. 渭河流域地表植被覆盖对气候变化的响应研究[J]. 生态环境学报, 2023, 32(5): 835-844. |
[4] | 董智今, 张呈春, 展秀丽, 张维福. 宁夏河东沙地生物土壤结皮及其下伏土壤养分的空间分布特征[J]. 生态环境学报, 2023, 32(5): 910-919. |
[5] | 杨春亮, 刘旻霞, 王千月, 苗乐乐, 肖音迪, 王敏. 单户与联户放牧经营下草玉梅与嵩草种群空间格局及其关联性[J]. 生态环境学报, 2023, 32(4): 651-659. |
[6] | 冯树娜, 吕家珑, 何海龙. KI淋洗对黄绵土汞污染的去除效果及土壤理化性状的影响[J]. 生态环境学报, 2023, 32(4): 776-783. |
[7] | 陈敏毅, 朱航海, 佘伟铎, 尹光彩, 黄祖照, 杨巧玲. 珠三角某遗留造船厂场地土壤重金属人体健康风险评估及源解析[J]. 生态环境学报, 2023, 32(4): 794-804. |
[8] | 郝金虎, 韦玮, 李胜男, 马牧源, 李肖夏, 杨洪国, 姜琦宇, 柴沛东. 基于GEE平台的京津冀长时序水体时空格局及其影响因素[J]. 生态环境学报, 2023, 32(3): 556-566. |
[9] | 童银栋, 黄兰兰, 杨宁, 张奕妍, 李子芃, 邵波. 全球水体微囊藻毒素分布特征及其潜在环境风险分析[J]. 生态环境学报, 2023, 32(1): 129-138. |
[10] | 肖洁芸, 周伟, 石佩琪. 土壤重金属含量高光谱反演[J]. 生态环境学报, 2023, 32(1): 175-182. |
[11] | 吴胜义, 王飞, 徐干君, 马浩, 党禹杰, 吴菲. 川西北高山峡谷区森林碳储量及空间分布研究--以四川洛须自然保护区为例[J]. 生态环境学报, 2022, 31(9): 1735-1744. |
[12] | 黄宏, 郑欣芸, 李迎东, 赵旭, 俞锦辰, 汪振华. 大陈岛海域不同年龄褐菖鲉对重金属富集作用研究[J]. 生态环境学报, 2022, 31(9): 1885-1891. |
[13] | 马闯, 王雨阳, 周通, 吴龙华. 污染土壤颗粒态有机质镉锌富集特征及其解吸行为研究[J]. 生态环境学报, 2022, 31(9): 1892-1900. |
[14] | 石文静, 周翰鹏, 孙涛, 黄金涛, 杨文焕, 李卫平. 矿区周边土壤重金属污染优先控制因子及健康风险评价研究[J]. 生态环境学报, 2022, 31(8): 1616-1628. |
[15] | 李秀华, 赵玲, 滕应, 骆永明, 黄标, 刘冲, 刘本乐, 赵其国. 贵州汞矿区周边农田土壤汞镉复合污染特征空间分布及风险评估[J]. 生态环境学报, 2022, 31(8): 1629-1636. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||