生态环境学报 ›› 2021, Vol. 30 ›› Issue (5): 957-967.DOI: 10.16258/j.cnki.1674-5906.2021.05.008
黄成1(), 吴月颖1, 吉恒宽1, 陈丽铭1, 李倍莹2, 符传良3, 李建宏4, 吴蔚东1, 吴治澎1,*(
)
收稿日期:
2020-12-07
出版日期:
2021-05-18
发布日期:
2021-08-06
通讯作者:
* 吴治澎,男。E-mail:peter@hainanu.edu.cn作者简介:
黄成(1997年生),男,硕士研究生,研究方向为土壤质量退化与调控研究。E-mail:15155549693@163.com
基金资助:
HUANG Cheng1(), WU Yueying1, JI Hengkuan1, CHEN Liming1, LI Beiying2, FU Chuanliang3, LI Jianhong4, WU Weidong1, WU Zhipeng1,*(
)
Received:
2020-12-07
Online:
2021-05-18
Published:
2021-08-06
摘要:
为探究海南典型水稻土不同粒径土壤中溶解态有机质(DOM)的含量组成对铁氧化还原特征的影响机制,分别采集海南5种成土母质发育的水稻土(玄武岩、花岗岩、砂页岩、海相沉积物、河流冲积物),利用紫外-可见光谱技术分析不同粒径土壤中DOM的碳含量及其光谱特征,利用Logistics模型对不同水稻土培养过程中Fe(Ⅲ)还原特征进行表征;采用冗余分析手段分析各水稻土在厌氧培养过程中,不同粒径土壤中DOM组分及光谱参数对Fe(Ⅲ)还原特征影响。结果表明,在厌氧培养过程中,不同母质发育水稻土Fe(Ⅱ)含量不同,其中玄武岩发育水稻土Fe(Ⅱ)含量最大(8.45 mg∙g-1),根据Logistics模型发现不同母质发育水稻土的还原潜势(a)和Fe(Ⅲ)还原速率(vmax)存在差异且玄武岩发育水稻土的a、vmax最大。海相沉积物发育水稻土的溶解态有机碳(DOC)含量最高(0.712 g∙kg-1),5种水稻土的DOC均在最小粒径(<1 kDa)含量最多,随着培养时间增长各类水稻土中DOC含量均下降,紫外-可见光谱结果显示5种母质发育的水稻土的芳香性和疏水性随着DOC粒径的减小而下降,三维荧光光谱结果表明,不同母质发育水稻土中各组分的荧光强度均随培养时间增长而增强,而在粒径0.45—0.7 µm、1—10 kDa中各组分荧光强度增强;在粒径10 kDa—0.45 µm、<1 kDa中各组分荧光强度降低;BIX、HIX、FI值均随着粒径的减小而增大。冗余分析结果显示,HIX、SUVA260、C1、C2组分可促进水稻土铁还原过程,不同的培养阶段下铁还原受不同DOM组分的影响,但是C1组分始终影响Fe(Ⅲ)的还原,小粒径的C3、C4组分(<1 kDa)对铁还原有更大贡献。了解海南岛水稻土铁还原对不同分子量DOM的响应,对农业环境具有重要意义。
中图分类号:
黄成, 吴月颖, 吉恒宽, 陈丽铭, 李倍莹, 符传良, 李建宏, 吴蔚东, 吴治澎. 海南典型水稻土厌氧铁还原特征对DOM分子特性的响应[J]. 生态环境学报, 2021, 30(5): 957-967.
HUANG Cheng, WU Yueying, JI Hengkuan, CHEN Liming, LI Beiying, FU Chuanliang, LI Jianhong, WU Weidong, WU Zhipeng. Response of Iron Reduction Characteristics to DOM Molecular Properties under Anaerobic Conditions in Typical Paddy Soils of Hainan Island[J]. Ecology and Environment, 2021, 30(5): 957-967.
母质 Parent material | 有效硅 质量分数 ω(Effective Si)/ (mg∙kg-1) | 全硅质量分数 ω(Total Si)/ (mg∙kg-1) | pH | SOM 质量分数 ω(SOM)/ (g∙kg-1) | 速效氮 质量分数 ω(Available N)/ (mg∙kg-1) | 速效磷 质量分数 ω(Available P)/ (mg∙kg-1) | 速效钾 质量分数 ω(Available K)/ (mg∙kg-1) | 游离Fe2O3 质量分数 ω(Free Fe2O3)/ (g∙kg-1) | 非晶体氧化铁质量分数 ω(Amorphous Fe)/ (g∙kg-1) |
---|---|---|---|---|---|---|---|---|---|
玄武岩 XW | 56.78±3.45a | 298.54±23.15c | 4.31±0.05d | 17.24±1.03b | 61.48±2.11d | 4.70±0.11d | 100.05±8.09a | 24.92±1.08a | 10.78±0.11a |
花岗岩 HG | 54.3±4.73a | 386.32±16.21a | 5.43±0.09c | 19.72±1.41b | 88.12±6.01a | 5.46±0.22c | 100.36±8.11a | 12.71±0.19bc | 7.73±0.30b |
砂页岩 SY | 53.43±6.48a | 302.34±15.15c | 5.43±0.08c | 17.29±1.98b | 75.15±4.61c | 6.23±0.28a | 81.45±6.08b | 14.01±0.41b | 7.69±0.14b |
海相沉积物HXCJ | 54.67±2.51a | 356.66±13.90b | 7.42±0.01a | 24.26±2.21a | 80.28±3.11b | 5.86±0.12b | 64.35±5.06d | 9.11±0.89c | 5.39±0.13c |
河流冲积物HLCJ | 53.42±2.49a | 342.11±4.85b | 6.42±0.03b | 22.47±2.51a | 91.89±3.51a | 5.44±0.15c | 73.62±0.46c | 9.98±0.99c | 5.59±0.21c |
表1 5种不同成土母质发育水稻土基本理化性质
Table 1 Basic physical and chemical properties of paddy soils developed from five different parent materials
母质 Parent material | 有效硅 质量分数 ω(Effective Si)/ (mg∙kg-1) | 全硅质量分数 ω(Total Si)/ (mg∙kg-1) | pH | SOM 质量分数 ω(SOM)/ (g∙kg-1) | 速效氮 质量分数 ω(Available N)/ (mg∙kg-1) | 速效磷 质量分数 ω(Available P)/ (mg∙kg-1) | 速效钾 质量分数 ω(Available K)/ (mg∙kg-1) | 游离Fe2O3 质量分数 ω(Free Fe2O3)/ (g∙kg-1) | 非晶体氧化铁质量分数 ω(Amorphous Fe)/ (g∙kg-1) |
---|---|---|---|---|---|---|---|---|---|
玄武岩 XW | 56.78±3.45a | 298.54±23.15c | 4.31±0.05d | 17.24±1.03b | 61.48±2.11d | 4.70±0.11d | 100.05±8.09a | 24.92±1.08a | 10.78±0.11a |
花岗岩 HG | 54.3±4.73a | 386.32±16.21a | 5.43±0.09c | 19.72±1.41b | 88.12±6.01a | 5.46±0.22c | 100.36±8.11a | 12.71±0.19bc | 7.73±0.30b |
砂页岩 SY | 53.43±6.48a | 302.34±15.15c | 5.43±0.08c | 17.29±1.98b | 75.15±4.61c | 6.23±0.28a | 81.45±6.08b | 14.01±0.41b | 7.69±0.14b |
海相沉积物HXCJ | 54.67±2.51a | 356.66±13.90b | 7.42±0.01a | 24.26±2.21a | 80.28±3.11b | 5.86±0.12b | 64.35±5.06d | 9.11±0.89c | 5.39±0.13c |
河流冲积物HLCJ | 53.42±2.49a | 342.11±4.85b | 6.42±0.03b | 22.47±2.51a | 91.89±3.51a | 5.44±0.15c | 73.62±0.46c | 9.98±0.99c | 5.59±0.21c |
Logistic 方程参数 Logistic model parameters | ||||
---|---|---|---|---|
母质 Parent material | a/ (mg∙g-1) | vmax/ [mg∙(g∙d)-1] | tvmax/ d | r2 |
玄武岩 XW | 7.93±0.12 | 1.28±0.15 | 1.02±0.09 | 0.975 |
花岗岩 HG | 7.50±0.09 | 0.68±0.06 | 5.25±0.38 | 0.956 |
砂页岩 SY | 6.33±0.04 | 0.99±0.12 | 2.97±0.23 | 0.922 |
海相沉积物 HXCJ | 3.91±0.15 | 0.47±0.00 | 4.46±0.09 | 0.943 |
河流冲积物 HLCJ | 4.55±0.02 | 0.86±0.05 | 2.24±0.13 | 0.966 |
表2 水稻土厌氧培养过程中铁还原特征动力学拟合参数
Table 2 The Logistic kinetics parameters of microbial Fe (Ⅲ) reduction during anaerobic incubation of paddy soils
Logistic 方程参数 Logistic model parameters | ||||
---|---|---|---|---|
母质 Parent material | a/ (mg∙g-1) | vmax/ [mg∙(g∙d)-1] | tvmax/ d | r2 |
玄武岩 XW | 7.93±0.12 | 1.28±0.15 | 1.02±0.09 | 0.975 |
花岗岩 HG | 7.50±0.09 | 0.68±0.06 | 5.25±0.38 | 0.956 |
砂页岩 SY | 6.33±0.04 | 0.99±0.12 | 2.97±0.23 | 0.922 |
海相沉积物 HXCJ | 3.91±0.15 | 0.47±0.00 | 4.46±0.09 | 0.943 |
河流冲积物 HLCJ | 4.55±0.02 | 0.86±0.05 | 2.24±0.13 | 0.966 |
图4 不同成土母质发育水稻土DOC含量百分比的粒径分布特征
Fig. 4 Grain size distribution characteristics of DOC content percentage of paddy soils developed from different parent materials
图6 不同成土母质发育水稻土下各粒径DOM的SUVA254(a)、SUVA260(b)值
Fig. 6 SUVA254 (a) and SUVA260 (b) values for each DOM particle size in paddy soils with different parent materials
图8 不同成土母质发育水稻土不同粒径下DOM荧光组分百分比分布图
Fig. 8 Percentage distribution of DOM fluorescence components in paddy soils with different grain sizes under different parent soils
图10 各成土母质发育水稻土DOM各粒径下BIX(a)、FI(b)、HIX(c)值
Fig. 10 BIX (a), FI (b), and HIX (c) values for each grain size of DOM of paddy soils with different soil-forming materials
图11 不同阶段各发育母质水稻土环境因子与Fe(Ⅲ) 还原特征的RDA图初始-a、PⅠ-b、PⅡ-c、PⅢ-d
Fig. 11 RDA diagrams of soil environmental factors and Fe (III) reduction characteristics of developing parent materials at different stagesInitial-a, PⅠ-b, PⅡ-c, PⅢ-d
[1] | AMON R M W, BENNER R, 1996. Bacterial utilization of different size classes of dissolved organic matter[J]. Limnology and Oceanography, 41(1): 41-51. |
[2] | BI R, LU Q, YU W M, et al., 2013. Electron transfer capacity of soil dissolved organic matter and its potential impact on soil respiration[J]. Journal of Soils and Sediments, 13(9): 1553-1560. |
[3] | BIRDWELL J E, VALSARAJ K T, 2010. Characterization of dissolved organic matter in fogwater by excitation-emission matrix fluorescence spectroscopy[J]. Atmospheric Environment, 44(27): 3246-3253. |
[4] | BURGOS W D, FANG Y, ROYER R A, et al., 2003. Reaction-based modeling of quinone-mediated bacterial iron(III) reduction[J]. Geochimica et Cosmochimica Acta, 67(15): 2735-2748. |
[5] | DILLING J, KAISER K, 2003. Erratum to “Estimation of the hydrophobic fraction of dissolved organic matter in water samples using UV photometry”[J]. Water Research, 37(9): 2257. |
[6] | GRYBOS M, DAVRANCHE M, GRUAU G, et al., 2009. Increasing pH drives organic matter solubilization from wetland soils under reducing conditions[J]. Geoderma, 154(1): 13-19. |
[7] | HUANG Y, SUN W J, 2006. Changes in topsoil organic carbon of croplands in mainland China over the last two decades[J]. Chinese Science Bulletin, 51(15): 1785-1803. |
[8] | HUGUET A, VACHER L, RELEXANS S, et al., 2009. Properties of fluorescent dissolved organic matter in the Gironde Estuary[J]. Organic Geochemistry, 40(6): 706-719. |
[9] | JOHNSTON S J, BURTON E D, AASO T, et al., 2014. Sulfur, iron and carbon cycling following hydrological restoration of acidic freshwater wetlands[J]. Chemical Geology, 371: 9-26. |
[10] | KÖGEL-KNABNER I, AMELUNG W, CAO Z H, et al., 2010. Biogeochemistry of paddy soils[J]. Geoderma, 157(1): 1-14. |
[11] | LI H Y, WANG H, WANG H T, et al., 2018. The chemodiversity of paddy soil dissolved organic matter correlates with microbial community at continental scales[J]. Microbiome, 6(1): 187. |
[12] | MCKNIGHT D M, BOYER E W, WESTERHOFF P K, et al., 2001. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity[J]. Limnology and Oceanography, 46(1): 38-48. |
[13] | PAN W N, KAN J J, INAMDAR S, et al., 2016. Dissimilatory microbial iron reduction release DOC (dissolved organic carbon) from carbon-ferrihydrite association[J]. Soil Biology and Biochemistry, 103: 232-240. |
[14] | RASILO T, OJALA A, HUOTARI J, et al., 2015. Concentrations and quality of DOC along the terrestrial-aquatic continuum in a boreal forested catchment[J]. Freshwater Science, 34(2): 440-455. |
[15] | SAHRAWAT K L, 2003. Organic matter accumulation in submerged soils[J]. Advances in Agronomy, 81: 169-201. |
[16] | SALVE P R, LOHKARE H, GOBRE T, et al., 2012. Characterization of chromophoric dissolved organic matter (CDOM) in rainwater using fluorescence spectrophotometry[J]. Bulletin of Environmental Contamination and Toxicology, 88(2): 215-218. |
[17] | SCOTT D T, MCKNIGHT D M, BLUNT-HARRIS E L, et al., 1998. Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms[J]. Environmental Science & Technology, 32(19): 372-372. |
[18] | WU J, 2011. Carbon accumulation in paddy ecosystems in subtropical China: Evidence from landscape studies[J]. European Journal of Soil Science, 62(1): 29-34. |
[19] | 鲍士旦, 2002. 土壤农化分析[M]. 3版. 北京: 中国农业出版社:22-162. |
BAO S D, 2000. Soil Agrochemical Analysis[M]. ThirdEdition. Beijing: China Agriculture Press:22-162. | |
[20] | 陈志诚, 赵文君, 龚子同, 2003. 海南岛土壤发生分类类型在系统分类中的归属[J]. 土壤学报, 40(2): 170-177. |
CHEN Z C, ZHAO W J, GONG Z T, 2003. Correlation of soil taxa of Hainan Island between chinese soil genetic classification and Chinese soil taxonomy[J]. Acta Pedologica Sinica, 40(2): 170-177. | |
[21] | 何伟, 白泽琳, 李一龙, 等, 2016. 溶解性有机质特性分析与来源解析的研究进展[J]. 环境科学学报, 36(2): 359-372. |
HE W, BAI Z L, LI Y L, et al., 2016. Advances in the characteristics analysis and source identification of the dissolved organic matter[J]. Acta Scientiae Circumstantiae, 36(2): 359-372. | |
[22] | 贾蓉, 2017. 水稻土中微生物发酵过程对氧化铁还原的贡献[D]. 咸阳: 西北农林科技大学. |
JIA R, 2017. Contribution of microbial fermentation to iron(III) Reduction in submerged paddy soils[D]. Xianyang: Northwest A&F University. | |
[23] | 姜杰, 杨浈, 任谦, 等, 2015. 土壤腐殖质氧化还原电位及其相应电子转移能力分布[J]. 环境化学, 34(2): 219-224. |
JIANG J, YANG Z, REN Q, et al., 2015. Distribution of soil humic acids redox potentials and corresponding electron transfer amounts[J]. Environmental Chemistry, 34(2): 219-224. | |
[24] | 李红岩, 高峰, 杨敏, 2011. 微生物异化Fe(Ⅲ)还原及其作用机制研究[J]. 环境科学与技术, 34(10): 100-105. |
LI H Y, GAO F, YANG M, 2011. Review on microbial dissimilatory reduction of Fe(Ⅲ) and its mechanism[J]. Environmental Science & Technology, 34(10): 100-105. | |
[25] | 李睿, 屈明, 2004. 土壤溶解性有机质的生态环境效应[J]. 生态环境, 13(2): 271-275. |
LI R, QU M, 2004. Effects of dissolved organic matter on environment[J]. Ecology and Environment, 13(2): 271-275. | |
[26] | 李雅妮, 徐华成, 江和龙, 2020. 鄱阳湖水体溶解有机质分子量分布、荧光特征及对重金属分布的影响[J]. 湖泊科学, 32(4): 1029-1040. |
LI Y N, XU H C, JIANG H L, 2020. Molecular weight distribution, fluorescence characteristics of dissolved organic matter and their effect on the distribution of heavy metals of Lake Poyang[J]. Journal of Lake Sciences, 32(4): 1029-1040. | |
[27] | 梁俭, 江韬, 卢松, 等, 2016. 淹水条件下三峡库区典型消落带土壤释放DOM的光谱特征: 紫外-可见吸收光谱[J]. 环境科学, 37(7): 2496-2505. |
LIANG J, JIANG T, LU S, et al., 2016. Spectral characteristics of dissolved organic matter (DOM) releases from soils of typical water-level fluctuation zones of Three Gorges Reservoir Areas: Fluorescence spectra[J]. Environmental Science, 37(7): 2496-2505. | |
[28] | 刘娜娜, 李斌, 刘瑞霞, 等, 2014. 浑太水系水体中不同粒径有机胶体荧光光谱特性[J]. 环境科学, 35(11): 4103-4110. |
LIU N N, LI B, LIU R X, 2014. Fluorescence characteristics of fractionated colloidal organic matter in freshwater from Hunhe and Taizihe Watersheds[J]. Environmental Science, 35(11): 4103-4110. | |
[29] | 刘沛, 周卫军, 谭洁, 等, 2018. 水稻土有机碳及腐殖质结构特征的研究进展[J]. 南方农业, 12(33): 183-185. |
LIU P, ZHOU W J, TAN J, et al., 2018. Progress in the Characterization of Paddy Soil Organic Carbon and Humus Structures[J]. South China Agriculture, 12(33): 183-185. | |
[30] | 吕烈武, 王朝弼, 吴蔚东, 等, 2020. 海南岛典型水稻土硅形态空间分布特征及其有效性的影响因素[J]. 广东农业科学, 47(3): 81-89. |
LV L W, WANG C B, WU W D, et al., 2020. Spatial distribution characteristics of silicon fractions and factors influencing their availability in typical paddy soils in Hainan Island[J]. Guangdong Agricultural Sciences, 47(3): 81-89. | |
[31] | 马琦琦, 李刚, 魏永, 2020. 城郊关键带土壤中溶解性有机质的光谱特性及其时空变异[J]. 环境化学, 39(2): 455-466. |
MA Q Q, LI G, WEI Y, 2020. Spectral characteristics and spatiotemporal variation of DOM in peri-urban critical zone[J]. Environmental Chemistry, 39(2): 455-466. | |
[32] | 曲植, 李丽娜, 贾蓉, 2018. 水稻土中水溶性有机碳对铁还原过程的贡献[J]. 植物营养与肥料学报, 24(2): 346-356. |
QU Z, LI L N, JIA R, 2018. Contribution of water dissolved organic carbon to iron (Ⅲ) reduction in paddy soils[J]. Journal of Plant Nutrition and Fertilizers, 24(2): 346-356. | |
[33] | 阮梦豫, 2019. 九龙江河水中溶解有机物的光学特征及其粒径分布[D]. 厦门: 厦门大学. |
RUAN M Y, 2019. Optical characterization and size distribution of dissolved organic matter in the Jiulong River[D]. Xiamen: Xiamen University. | |
[34] | 孙正, 2019. 水稻土中铁的还原过程对于有机碳的分解的影响[D]. 武汉: 华中农业大学. |
SUN Z, 2019. The effect of iron reduction in paddy soil on decomposition of organic carbon[D]. Wuhan: Huazhong Agricultural University. | |
[35] | 索慧慧, 2019. 生物炭和有机物料对水稻土DOM及厌氧铁还原过程的影响[D]. 咸阳: 西北农林科技大学. |
SUO H H, 2019. Effect of biochar and organic materials on DOM and anaerobic iron reduction in paddy soils[D]. Xianyang: Northwest A&F University. | |
[36] | 王季斐, 2020. 不同磷含量水稻土微界面有机质转化的微观过程研究[D]. 赣州: 江西理工大学. |
WANG J F, 2020. The microscopic process of organic matter transformation on microsurface in paddy soil with different phosphorus contents[D]. Ganzhou: Jiangxi University of Science and Technology. | |
[37] | 王齐磊, 江韬, 赵铮, 等, 2015. 三峡库区典型农业小流域土壤溶解性有机质的紫外-可见及荧光特征[J]. 环境科学, 36(3): 879-887. |
WANG Q L, JIANG T, ZHAO Z, et al., 2015. Ultraviolet-visible (uv-vis) and fluorescence spectral characteristics of soil dissolved organic matter (DOM) in typical agricultural watershed of Three Gorges Reservoir Region[J]. Environmental Science, 36(3): 879-887. | |
[38] | 吴金水, 葛体达, 胡亚军, 2015. 稻田土壤关键元素的生物地球化学耦合过程及其微生物调控机制[J]. 生态学报, 35(20): 6626-6634. |
WU J S, GE T D, HU Y J, 2015. A review on the coupling of bio-geochemical process for key elements and microbial regulation mechanisms in paddy rice Ecosystems[J]. Acta Ecologica Sinica, 35(20): 6626-6634. | |
[39] | 吴月颖, 吉恒宽, 吴蔚东, 等, 2020. 海南北部滨海区不同土地利用模式下土壤DOM粒径分布与光谱特性[J]. 农业资源与环境学报, 37(5): 654-665. |
WU Y Y, JI H K, WU W D, et al., 2020. Size fractionation and optical properties of DOM under different land use types in the coastal area of northern Hainan Island[J]. Journal of Agricultural Resources and Environment, 37(5): 654-665. | |
[40] | 许金鑫, 王初, 姚东京, 等, 2020. 崇明东滩湿地土壤溶解性有机质的光谱特征研究[J/OL]. 环境工程:1-10[2020-12-05]. http://kns.cnki.net/kcms/detail/11.2097.X.20200609.1459.028.html. |
XU J X, WANG C, YAO D J, et al., 2020. Spectral characteristics of soil dissolved organic matter in Chongming Dongtan Wetland[J/OL]. Environmental Engineering:1-10 [2020-12-05]. http://kns.cnki.net/kcms/detail/11.2097.X.20200609.1459.028.htm. | |
[41] | 许伟, 2009. 水溶性有机物的电子转移能力及其对微生物异化铁还原影响的研究[D]. 成都: 四川师范大学. |
XU W, 2009. Electron transfer capability of dissolved organic matter and its effects on microbial dissimilatory Fe(III) reduction[D]. Chengdu: Sichuan Normal University. | |
[42] | 许志诚, 罗微, 洪义国, 等, 2006. 腐殖质在环境污染物生物降解中的作用研究进展[J]. 微生物学通报, 33(6): 122-127. |
XU Z C, LUO W, HONG Y G, et al., 2006. Recent development in effects of the humic substances on the biodergradation of priority pollutants in environment[J]. Microbiology China, 33(6): 122-127. | |
[43] | 易维洁, 曲东, 黄婉玉, 等, 2010. 淹水培养时间对水稻土中Fe(III)还原能力的影响[J]. 农业环境科学学报, 29(9): 1723-1729. |
YI W J, QU D, HUANG W Y, et al., 2010. Effect of Flooding Time on Dissimilatory Iron (III) Reduction in Paddy Soil[J]. Journal of Agro-Environment Science, 29(9): 1723-1729. | |
[44] | 周江敏, 陈华林, 代静玉, 2011. 溶解性有机质在土壤固碳中的意义[J]. 土壤通报, 42(6): 1508-1514. |
ZHOU J M, CHEN H L, DAI J Y, 2011. Significance of dissolved organic matter on carbon sequestration in soil[J]. Chinese Journal of Soil Science, 42(6): 1508-1514. |
[1] | 杜丹丹, 高瑞忠, 房丽晶, 谢龙梅. 旱区盐湖盆地土壤重金属空间变异及对土壤理化因子的响应[J]. 生态环境学报, 2023, 32(6): 1123-1132. |
[2] | 李善家, 王兴敏, 刘海锋, 孙梦格, 雷雨昕. 河西走廊荒漠植物多样性及其对环境因子的响应[J]. 生态环境学报, 2023, 32(3): 429-438. |
[3] | 董乐恒, 王旭刚, 陈曼佳, 王子豪, 孙丽蓉, 石兆勇, 吴琪琪. 光照和避光条件下石灰性水稻土Fe氧化还原与Cu活性关系研究[J]. 生态环境学报, 2022, 31(7): 1448-1455. |
[4] | 马辉英, 李昕竹, 马鑫钰, 贡璐. 新疆天山北麓中段不同植被类型下土壤有机碳组分特征及其影响因素[J]. 生态环境学报, 2022, 31(6): 1124-1131. |
[5] | 陈瑶, 李云红, 邵英男, 刘玉龙, 刘延坤. 阔叶红松林物种多样性与土壤理化特征研究[J]. 生态环境学报, 2022, 31(4): 679-687. |
[6] | 玄锦, 李祖婵, 邹诚, 秦子博, 吴雅华, 黄柳菁. 江心洲景观类型和格局对植物多样性的多尺度影响——以闽江流域福州段为例[J]. 生态环境学报, 2022, 31(12): 2320-2330. |
[7] | 张亚平, 陈慧敏, 吴志宇, 汤佳, 谢章彰, 刘芳华. 低量水铁矿促进稻田梭菌Clostridium sp. BY-1产氢效率[J]. 生态环境学报, 2022, 31(12): 2341-2349. |
[8] | 韩鑫, 袁春阳, 李济宏, 洪宗文, 刘宣, 杜婷, 李晗, 游成铭, 谭波, 朱鹏, 徐振锋. 树种和土层对土壤无机氮的影响[J]. 生态环境学报, 2022, 31(11): 2143-2151. |
[9] | 姜倪皓, 张诗函. 楚雄市西郊云南松林下草本优势种种间联结及环境解释[J]. 生态环境学报, 2021, 30(11): 2109-2120. |
[10] | 林丽, 代磊, 林泽北, 吴际通, 颜伟, 王志杰. 黔中城市森林群落植物多样性及其与土壤理化性质的关系[J]. 生态环境学报, 2021, 30(11): 2130-2141. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||