生态环境学报 ›› 2024, Vol. 33 ›› Issue (12): 1827-1836.DOI: 10.16258/j.cnki.1674-5906.2024.12.001
• 研究论文【生态学】 •
下一篇
韦钰(), 胡颖, 李小珍, 廖家培, 付瑞玉, 胡中民, 杨岳*(
)
收稿日期:
2024-09-30
出版日期:
2024-12-18
发布日期:
2024-12-31
通讯作者:
*杨岳。E-mail: yueyang@hainanu.edu.cn作者简介:
韦钰(2000年生),女,硕士研究生,研究方向为全球变化生态学。E-mail: weiyu@hainanu.edu.cn
基金资助:
WEI Yu(), HU Ying, LI Xiaozhen, LIAO Jiapei, FU Ruiyu, HU Zhongmin, YANG Yue*(
)
Received:
2024-09-30
Online:
2024-12-18
Published:
2024-12-31
摘要:
草地生态系统对全球气候变化的反馈具有重要的生物指示作用,然而,不同水分条件下草地对气候和土壤因子的响应机制尚不明确。基于全球实测草地NPP数据,补充了气候和土壤因子,经过整合分析形成数据集。采用回归分析和随机森林算法探究了不同气候区草地NPP对环境因子的响应,以及利用非对称指数分析了对降水的响应模式。结果表明,干旱区草地的NPP主要受水分可利用性的限制,气候和土壤因子影响较微弱;而湿润区草地的NPP更容易受气候因子影响(太阳辐射、温度等),且土壤因子(土壤含水量、土壤容重等)也在其中起到了关键作用。此外,研究还发现NPP对降水非对称性的响应在不同气候区的草地系统中存在显著差异,在干旱区,NPP在太阳辐射高、VPD低和土壤砂含量高的环境下对降水呈现正响应,而在湿润区,NPP在降水适中、温度适中、土壤黏粒含量低的条件下对降水的正响应更为显著。NPP对环境条件具有一定的阈值效应,超过阈值范围则会导致非对称响应的正响应减弱,甚至为负响应。研究结果为未来草地管理和气候适应策略的制定提供了理论依据,同时也为提升全球碳循环模型的精确性,进一步探索复杂气候变化背景下草地生态系统的响应机制奠定了基础。
中图分类号:
韦钰, 胡颖, 李小珍, 廖家培, 付瑞玉, 胡中民, 杨岳. 全球草地生态系统净初级生产力的空间格局及降水非对称响应[J]. 生态环境学报, 2024, 33(12): 1827-1836.
WEI Yu, HU Ying, LI Xiaozhen, LIAO Jiapei, FU Ruiyu, HU Zhongmin, YANG Yue. Spatial Pattern of Net Primary Productivity and Asymmetric Response of Precipitation in Global Grassland Ecosystems[J]. Ecology and Environment, 2024, 33(12): 1827-1836.
缩写 | 环境因子 | 数据来源 |
---|---|---|
MAP | 年平均降水 | Worldclim ( 空间分辨率0.05° |
MAT | 年平均温度 | |
SRAD | 太阳辐射 | |
TMAX | 最高温度 | |
TMIN | 最低温度 | |
VPD | 饱和水汽压差 | |
BD | 土壤容重 | Harmonized World Soil-Database ( 空间分辨率0.05° |
Clay | 黏粒含量 | |
OC | 土壤有机碳 | |
pH | 土壤酸碱度 | |
Sand | 砂粒含量 | |
Silt | 粉粒含量 | |
SWC | 土壤含水量 |
表1 环境因子及数据来源
Table 1 Environmental factors and data sources
缩写 | 环境因子 | 数据来源 |
---|---|---|
MAP | 年平均降水 | Worldclim ( 空间分辨率0.05° |
MAT | 年平均温度 | |
SRAD | 太阳辐射 | |
TMAX | 最高温度 | |
TMIN | 最低温度 | |
VPD | 饱和水汽压差 | |
BD | 土壤容重 | Harmonized World Soil-Database ( 空间分辨率0.05° |
Clay | 黏粒含量 | |
OC | 土壤有机碳 | |
pH | 土壤酸碱度 | |
Sand | 砂粒含量 | |
Silt | 粉粒含量 | |
SWC | 土壤含水量 |
[1] | ALBERT J S, CARNAVAL A C, FLANTUA S G A, et al., 2023. Human impacts outpace natural processes in the Amazon[J]. Science, 379(6630): eabo5003. |
[2] |
BAI Y F, COTRUFO M F, 2022. Grassland soil carbon sequestration: Current understanding, challenges, and solutions[J]. Science, 377(6606): 603-608.
DOI PMID |
[3] | BELNAP J, WELTER J R, GRIMM N B, et al., 2005. Linkages between microbial and hydrologic processes in arid and semiarid watersheds[J]. Ecology, 86(2): 298-307. |
[4] | BOUMA T J, BRYLA D R, 2000. On the assessment of root and soil respiration for soils of different textures: interactions with soil moisture contents and soil CO2 concentrations[J]. Plant and Soil, 227(1): 215-221. |
[5] | BROCKETT B F T, PRESCOTT C E, GRAYSTON S J, 2012. Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada[J]. Soil Biology and Biochemistry, 44(1): 9-20. |
[6] | CUI J X, WANG Y, D ZHOU T, et al., 2022. Temperature Mediates the Dynamic of MODIS NPP in Alpine Grassland on the Tibetan Plateau, 2001-2019[J]. Remote Sensing, 14(10): 2401. |
[7] | DONG G Y, FAN L, FENSHOLT R, et al., 2023. Asymmetric response of primary productivity to precipitation anomalies in Southwest China[J]. Agricultural and Forest Meteorology, 331: 109350. |
[8] | FENG S, FU Q, 2013. Expansion of global drylands under a warming climate[J]. Atmospheric Chemistry and Physics, 13(19): 10081-10094. |
[9] | FERNÁNDEZ R J, 2007. On the frequent lack of response of plants to rainfall events in arid areas[J]. Journal of Arid Environments, 68(4): 688-691. |
[10] |
FITTER A H, GRAVES J D, SELF G K, et al., 1998. Root production, turnover and respiration under two grassland types along an altitudinal gradient: influence of temperature and solar radiation[J]. Oecologia, 114(1): 20-30.
DOI PMID |
[11] |
GU F X, ZHANG Y D, HUANG M, et al., 2017. Effects of climate warming on net primary productivity in China during 1961-2010[J]. Ecology and Evolution, 7(17): 6736-6746.
DOI PMID |
[12] |
HAVERD V, AHLSTRÖM A, SMITH B, et al., 2017. Carbon cycle responses of semi-arid ecosystems to positive asymmetry in rainfall[J]. Global Change Biology, 23(2): 793-800.
DOI PMID |
[13] | HULME M, 1996. Recent climatic change in the world’s drylands[J]. Geophysical Research Letters, 23(1): 61-64. |
[14] | JAMAN Md S, YU Q, XU C, et al., 2024. Chronic drought decreased organic carbon content in topsoil greater than intense drought across grasslands in Northern China[J]. Geoderma, 443: 116832. |
[15] | LI T, LI M Y, REN F, et al., 2022. Estimation and Spatio-Temporal Change Analysis of NPP in Subtropical Forests: A Case Study of Shaoguan, Guangdong, China[J]. Remote Sensing, 14(11): 2541. |
[16] | LIU Y Y, YANG Y, WANG Q, et al., 2019. Evaluating the responses of net primary productivity and carbon use efficiency of global grassland to climate variability along an aridity gradient[J]. Science of The Total Environment, 652: 671-682. |
[17] | MORTIMORE M, ANDERSON S, COTULA L, et al., 2009. Dryland opportunities: a new paradigm for people, ecosystems and development[M]. IUCN, Gland, Switzerland; IIED, London, UK; UNDP/DDC, Nairobi, Kenya: 10. |
[18] |
MULLER B, PANTIN F, GÉNARD M, et al., 2011. Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs[J]. Journal of Experimental Botany, 62(6): 1715-1729.
DOI PMID |
[19] | NAZIR F, PETER P, GUPTA R, et al., 2024. Plant hormone ethylene: A leading edge in conferring drought stress tolerance[J]. Physiologia Plantarum, 176(1): e14151. |
[20] | RISHMAWI K, PRINCE S D, XUE Y, 2016. Vegetation responses to climate variability in the northern arid to sub-humid zones of Sub-Saharan Africa[J]. Remote Sensing, 8(11): 910. |
[21] | ROBY M C, SCOTT R L, MOORE D J P, 2020. High vapor pressure deficit decreases the productivity and water use efficiency of rain‐induced pulses in semiarid ecosystems[J]. Journal of Geophysical Research: Biogeosciences, 125(10): e2020JG005665. |
[22] | SHENG J Y, LI B Y, GAO D X, et al., 2020. Response of ecoenzymatic stoichiometry to soil physicochemical properties after afforestation on loess hilly region[J]. Eurasian Soil Science, 53(11): 1669-1675. |
[23] | STEVENS C J, LIND E M, HAUTIER Y, et al., 2015. Anthropogenic nitrogen deposition predicts local grassland primary production worldwide[J]. Ecology, 96(6): 1459-1465. |
[24] | WANG M J, LIU G, SUN R, et al., 2019. Assessment of NPP dynamics and the responses to climate changes in China from 1982 to 2012 [C/OL]// IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium: 6602-6605. |
[25] |
WILCOX K R, SHI Z, GHERARDI L A, et al., 2017. Asymmetric responses of primary productivity to precipitation extremes: A synthesis of grassland precipitation manipulation experiments[J]. Global Change Biology, 23(10): 4376-4385.
DOI PMID |
[26] | XU H J, WANG X P, 2016. Effects of altered precipitation regimes on plant productivity in the arid region of northern China[J]. Ecological Informatics, 31: 137-146. |
[27] |
XU X, SHERRY R A, NIU S L, et al., 2013. Net primary productivity and rain-use efficiency as affected by warming, altered precipitation, and clipping in a mixed-grass prairie[J]. Global Change Biology, 19(9): 2753-2764.
DOI PMID |
[28] | YAN Y C, LIU X P, WEN Y Y, et al., 2019. Quantitative analysis of the contributions of climatic and human factors to grassland productivity in northern China[J]. Ecological Indicators, 103: 542-553. |
[29] | YUE D X, ZHOU Y Y, GUO J J, 2022. Relationship between net primary productivity and soil water content in the Shule River Basin[J]. CATENA, 208: 105770. |
[30] | ZHANG L, XIAO J F, ZHENG Y, et al., 2020. Increased carbon uptake and water use efficiency in global semi-arid ecosystems[J]. Environmental Research Letters, 15(3): 034022. |
[31] | ZHANG X N, NIAN L L, LIU X Y, et al., 2022. Spatial-temporal correlations between soil pH and NPP of grassland ecosystems in the Yellow River Source Area, China[J]. International Journal of Environmental Research and Public Health, 19(14): 8852. |
[32] | ZHANG Y, CAI M Y, XIAO X M, et al., 2024. Immediate and lagged vegetation responses to dry spells revealed by continuous solar-induced chlorophyll fluorescence observations in a tall-grass prairie[J]. Remote Sensing of Environment, 305: 114080. |
[33] | ZHANG Z Y, JU W M, ZHOU Y L, 2021. The effect of water stress on net primary productivity in northwest China[J]. Environmental Science and Pollution Research, 28(46): 65885-65898. |
[34] | ZHAO J X, LUO T X, WEI H X, et al., 2019. Increased precipitation offsets the negative effect of warming on plant biomass and ecosystem respiration in a Tibetan alpine steppe[J]. Agricultural and Forest Meteorology, 279: 107761. |
[35] |
ZHAO M S, RUNNING S W, 2010. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009[J]. Science, 329(5994): 940-943.
DOI PMID |
[36] | 朴世龙, 方精云, 郭庆华, 2001. 1982-1999年我国植被净第一性生产力及其时空变化[J]. 北京大学学报(自然科学版), 37(4): 563-569. |
PIAO S L, FANG J Y, GUO Q H, et al., 2001. Terrestrial net primary production and its spatio-temporal patterns in China during 1982-1999[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 37(4): 563-569. | |
[37] | 徐勇, 卢云贵, 戴强玉, 等, 2023. 气候变化和土地利用变化对长江中下游地区植被NPP变化相对贡献分析[J]. 中国环境科学, 43(9): 4988-5000. |
XU Y, LU Y G, DAI Q Y, et al., 2023. Assessment of the relative contribution of climate change and land use change on net primary productivity variation in the middle and lower reaches of the Yangtze River Basin[J]. China Environmental Science, 43(9): 4988-5000. | |
[38] | 杨涵, 吴凯, 陈甲豪, 等, 2024. 2000-2018年海南岛NPP时空变化及气候驱动力[J]. 遥感信息, 39(2): 164-172. |
YANG H, WU K, CHEN J H, et al., 2024. Spatiotemporal variability and climatic drivers of net primary productivity on Hainan Island during 2000-2018[J]. Remote Sensing Information, 39(2): 164-172. | |
[39] |
朱士华, 艳燕, 邵华, 等, 2017. 1980-2014年中亚地区植被净初级生产力对气候和CO2变化的响应[J]. 自然资源学报, 32(11): 1844-1856.
DOI |
ZHU S H, YAN Y, SHAO H, et al., 2017. The responses of the net primary productivity of the dryland ecosystems in Central Asia to the CO2 and climate change during the past 35years[J]. Journal of Natural Resources, 32(11): 1844-1856. |
[1] | 王薇, 夏宇轩. 基于遥感技术和机器学习的城市街区PM2.5空间分布特征研究——以合肥市滨湖新区为例[J]. 生态环境学报, 2024, 33(9): 1426-1437. |
[2] | 欧阳美凤, 尹宇莹, 张金谌, 刘清霖, 谢意南, 方平. 洞庭湖典型水域重金属含量的空间分布与来源解析[J]. 生态环境学报, 2024, 33(8): 1269-1278. |
[3] | 王捷纯, 邓玉娇, 朱怀卫, 孔蕴淇. 广东省不同生态系统植被NPP时空变化及对气候因子的响应[J]. 生态环境学报, 2024, 33(6): 831-840. |
[4] | 梁贝竹, 陈建耀, 杨再智, 张鹏程, 任坤, 梁作兵, 杨晨晨, 吴洁珊. 华南滨海小流域地下水中PPCPs的分布、来源及影响因素——以珠海市唐家湾镇为例[J]. 生态环境学报, 2024, 33(2): 249-260. |
[5] | 高星星, 包海, 丁艳旭. 夏季呼和浩特市生物源挥发性有机物排放速率空间分布[J]. 生态环境学报, 2024, 33(12): 1902-1913. |
[6] | 董智今, 张呈春, 展秀丽, 张维福. 宁夏河东沙地生物土壤结皮及其下伏土壤养分的空间分布特征[J]. 生态环境学报, 2023, 32(5): 910-919. |
[7] | 杨春亮, 刘旻霞, 王千月, 苗乐乐, 肖音迪, 王敏. 单户与联户放牧经营下草玉梅与嵩草种群空间格局及其关联性[J]. 生态环境学报, 2023, 32(4): 651-659. |
[8] | 陈敏毅, 宋清梅, 叶权运, 游学睿, 吴颖欣. 华南典型金属制品遗留生产场地重金属空间分布特征[J]. 生态环境学报, 2023, 32(12): 2228-2235. |
[9] | 吴胜义, 王飞, 徐干君, 马浩, 党禹杰, 吴菲. 川西北高山峡谷区森林碳储量及空间分布研究--以四川洛须自然保护区为例[J]. 生态环境学报, 2022, 31(9): 1735-1744. |
[10] | 李秀华, 赵玲, 滕应, 骆永明, 黄标, 刘冲, 刘本乐, 赵其国. 贵州汞矿区周边农田土壤汞镉复合污染特征空间分布及风险评估[J]. 生态环境学报, 2022, 31(8): 1629-1636. |
[11] | 李登科, 王钊. 气候变化和人类活动对陕西省植被NPP影响的定量分析[J]. 生态环境学报, 2022, 31(6): 1071-1079. |
[12] | 温智峰, 魏识广, 李林, 叶万辉, 练琚愉. 南亚热带常绿阔叶林植物不同分类水平上的空间分布格局及空间关联[J]. 生态环境学报, 2022, 31(3): 440-450. |
[13] | 刘娣, 苏超, 张红, 秦冠宇. 典型煤炭产业聚集区土壤重金属污染特征与风险评价[J]. 生态环境学报, 2022, 31(2): 391-399. |
[14] | 石智宇, 王雅婷, 赵清, 张连蓬, 朱长明. 2001-2020年中国植被净初级生产力时空变化及其驱动机制分析[J]. 生态环境学报, 2022, 31(11): 2111-2123. |
[15] | 张楷悦, 刘增辉, 王颜昊, 王敬宽, 崔德杰, 柳新伟. 黄河三角洲自然保护区土壤PAHs的风险评估和空间特征[J]. 生态环境学报, 2022, 31(11): 2198-2205. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||