生态环境学报 ›› 2021, Vol. 30 ›› Issue (8): 1617-1626.DOI: 10.16258/j.cnki.1674-5906.2021.08.008
胡瑞1,2(), 房焕英2,3, 肖胜生2,3, 段剑2,3, 张杰2,3, 刘洪光2,3, 汤崇军2,3,*(
)
收稿日期:
2021-02-18
出版日期:
2021-08-18
发布日期:
2021-11-03
通讯作者:
* 汤崇军(1976年生),男,高级工程师,主要研究方向为土壤侵蚀与水土保持。E-mail: tangchongjun@126.com作者简介:
胡瑞(1996年生),男,硕士研究生,研究方向为森林培育与生态恢复。E-mail: hr19960322@163.com
基金资助:
HU Rui1,2(), FANG Huanying2,3, XIAO Shengsheng2,3, DUAN Jian2,3, ZHANG Jie2,3, LIU Hongguang2,3, TANG Chongjun2,3,*(
)
Received:
2021-02-18
Online:
2021-08-18
Published:
2021-11-03
摘要:
南方红壤花岗岩严重侵蚀区实施水土保持治理后的土壤碳汇效应尚不清晰。为揭示水土保持综合治理对退化土壤有机碳库的影响效应,该研究选取南方水土保持综合治理试点的样板——江西省兴国县塘背小流域为研究区,设置退化样地(BL)、水平竹节沟+乔灌草补植综合施策的生态恢复模式(F34)、前埂后沟+梯壁植草式反坡台地果园开发治理模式(GY)和周边未受扰动的次生林(UF)4种类型样地,分析不同层次土壤总有机碳(TOC)、土壤活性有机碳组分的变化情况,评价南方典型花岗岩侵蚀区综合治理的土壤碳汇效应。结果表明:F34和GY、UF模式下0—100 cm土壤TOC平均含量分别为5.54、6.05、10.22 g∙kg-1,比BL增加145%、168%和352%;0—40 cm土壤DOC平均含量分别为46.29、45.91和116.85 mg∙kg-1,比BL增加410%、405%和465%;土壤MBC含量分别为112.34、73.20和251.99 mg∙kg-1,比BL增加217%、106%和611%;F34和GY模式下0—100 cm土壤碳储量为39.65和53.91 t∙hm-2,高于BL(19.86 t∙hm-2),但低于未受人为干扰的UF样地(75.90 t∙hm-2),生态恢复样地和果园开发样地的碳吸存量分别为19.79、34.05 t∙hm-2,碳吸存速率分别为0.58、1.00 t∙hm-2∙a-1;以当前F34、GY吸存速率推算,分别还需要62 a和22 a才能达到与UF相当的土壤有机碳库储量水平。综上,生态恢复模式和果园开发模式可有效促进土壤有机碳积累和恢复,且果园模式土壤碳素恢复效应更加明显,但距离周边未受扰动的次生林还存在一些差距;其次,侵蚀退化地经治理后,显著增加了土壤活性有机碳含量;同时退化裸地具有较高的碳汇潜力,即使通过F34、GY治理34 a后仍具有较大碳汇潜力。
中图分类号:
胡瑞, 房焕英, 肖胜生, 段剑, 张杰, 刘洪光, 汤崇军. 南方红壤典型花岗岩侵蚀区主要治理模式的土壤碳汇效应[J]. 生态环境学报, 2021, 30(8): 1617-1626.
HU Rui, FANG Huanying, XIAO Shengsheng, DUAN Jian, ZHANG Jie, LIU Hongguang, TANG Chongjun. Soil Carbon Sink Effect of Main Management Models in Typical Granite Erosion Area of Red Soil in South China[J]. Ecology and Environment, 2021, 30(8): 1617-1626.
样地 Sample | 经纬度 Latitude-longitude | 物种 丰富度Species richness | 辛普森 指数Simpson Index | 植被覆盖度 Vegetation cover | 优势物种 Most abundant species | 乔木主要特征Main characteristics of Trees | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
乔木 Trees | 灌木 Shrubs | 草本 Herbaceous | 乔木 Trees | 灌木 Shrubs | 草本 Herbaceous | 树高 Average tree height/m | 胸径Average DBH/cm | ||||||
BL | 115.27333E, 26.25305N | 3.67± 1.53 | 0.51± 0.20 | 28.36%± 16.07% | 0 | 22.00%± 2.65% | 马尾松 Pinus massoniana | ‒ | 芒萁Dicranopteris dichotoma (Thunb.) Berhn. | 1.15± 0.14 | 2.15± 0.22 | ||
F34 | 115.26872E, 26.32231N | 8.00± 2.65 | 0.71± 0.05 | 43.33%± 6.11% | 2.04%± 1.58% | 90.78%± 3.74% | 马尾松 Pinus massoniana | 油茶Camellia oleifera Abel., 胡枝子Lespedeza bicolor | 芒萁Dicranopteris dichotoma (Thunb.) Berhn. | 5.99± 1.04 | 7.14± 0.56 | ||
GY | 115.29114E, 26.23530N | 7.33± 4.16 | 0.68± 0.06 | 57%± 16.52% | 0 | 49.61± 18.76 | 脐橙 Citrus sinensis Osb. var. brasliliensis Tanaka | 马唐 Digitaria sanguinalis (L. ) Scop. | 2.00± 0.18 | 9.81± 0.93 | |||
UF | 115.24967E, 26.22693N | 9.03± 4.00 | 0.84± 0.08 | 92.67%± 4.62% | 10.08%± 3.63% | 7.94%± 4.90% | 米楮Broussonetia kazinoki Sieb., 杉木Cunninghamia lanceolate (Lamb.) Hook., 青冈Cyclobalanopsis glauca (Thunb.) Oerst. | 檵木Loropetalumchinense (R.Br.) Oliv | 芒萁Dicranopteris dichotoma (Thunb.) Berhn. | 10.96± 2.65 | 11.43± 3.14 |
表1 样地植被结构特征
Table 1 Basic characteristics of the studied area
样地 Sample | 经纬度 Latitude-longitude | 物种 丰富度Species richness | 辛普森 指数Simpson Index | 植被覆盖度 Vegetation cover | 优势物种 Most abundant species | 乔木主要特征Main characteristics of Trees | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
乔木 Trees | 灌木 Shrubs | 草本 Herbaceous | 乔木 Trees | 灌木 Shrubs | 草本 Herbaceous | 树高 Average tree height/m | 胸径Average DBH/cm | ||||||
BL | 115.27333E, 26.25305N | 3.67± 1.53 | 0.51± 0.20 | 28.36%± 16.07% | 0 | 22.00%± 2.65% | 马尾松 Pinus massoniana | ‒ | 芒萁Dicranopteris dichotoma (Thunb.) Berhn. | 1.15± 0.14 | 2.15± 0.22 | ||
F34 | 115.26872E, 26.32231N | 8.00± 2.65 | 0.71± 0.05 | 43.33%± 6.11% | 2.04%± 1.58% | 90.78%± 3.74% | 马尾松 Pinus massoniana | 油茶Camellia oleifera Abel., 胡枝子Lespedeza bicolor | 芒萁Dicranopteris dichotoma (Thunb.) Berhn. | 5.99± 1.04 | 7.14± 0.56 | ||
GY | 115.29114E, 26.23530N | 7.33± 4.16 | 0.68± 0.06 | 57%± 16.52% | 0 | 49.61± 18.76 | 脐橙 Citrus sinensis Osb. var. brasliliensis Tanaka | 马唐 Digitaria sanguinalis (L. ) Scop. | 2.00± 0.18 | 9.81± 0.93 | |||
UF | 115.24967E, 26.22693N | 9.03± 4.00 | 0.84± 0.08 | 92.67%± 4.62% | 10.08%± 3.63% | 7.94%± 4.90% | 米楮Broussonetia kazinoki Sieb., 杉木Cunninghamia lanceolate (Lamb.) Hook., 青冈Cyclobalanopsis glauca (Thunb.) Oerst. | 檵木Loropetalumchinense (R.Br.) Oliv | 芒萁Dicranopteris dichotoma (Thunb.) Berhn. | 10.96± 2.65 | 11.43± 3.14 |
样地 Sample | 容重 Bulk density/(g∙cm-3) | pH (1꞉2.5) | w(全氮Total nitrogen)/ (g∙kg-1) | w(碱解氮Available nitrogen)/ (mg∙kg-1) | w(全磷Total phosphorus)/ (g∙kg-1) | w(有效磷Available phosphorus)/ (mg∙kg-1) |
---|---|---|---|---|---|---|
BL | 1.47±0.03a | 4.81±0.11a | 0.20±0.03c | 5.79±1.91c | 0.08±0.01d | 1.11±0.91b |
F34 | 1.11±0.04b | 4.71±0.05ab | 0.26±0.04c | 6.22±1.60c | 0.26±0.04c | 1.85±0.21b |
GY | 1.05±0.17b | 4.75±0.09ab | 0.79±0.22b | 46.36±11.21b | 1.00±0.09b | 55.54±15.95a |
UF | 1.23±0.08ab | 4.61±0.09b | 1.68±0.16a | 76.96±12.62a | 0.39±0.07a | 4.98±3.70b |
表2 样地表层土壤(0—20 cm)基本性质
Table 2 Soil physical and chemical characteristics of the surface soils (0-20 cm)
样地 Sample | 容重 Bulk density/(g∙cm-3) | pH (1꞉2.5) | w(全氮Total nitrogen)/ (g∙kg-1) | w(碱解氮Available nitrogen)/ (mg∙kg-1) | w(全磷Total phosphorus)/ (g∙kg-1) | w(有效磷Available phosphorus)/ (mg∙kg-1) |
---|---|---|---|---|---|---|
BL | 1.47±0.03a | 4.81±0.11a | 0.20±0.03c | 5.79±1.91c | 0.08±0.01d | 1.11±0.91b |
F34 | 1.11±0.04b | 4.71±0.05ab | 0.26±0.04c | 6.22±1.60c | 0.26±0.04c | 1.85±0.21b |
GY | 1.05±0.17b | 4.75±0.09ab | 0.79±0.22b | 46.36±11.21b | 1.00±0.09b | 55.54±15.95a |
UF | 1.23±0.08ab | 4.61±0.09b | 1.68±0.16a | 76.96±12.62a | 0.39±0.07a | 4.98±3.70b |
土层 Soil layer/ cm | BL | F34 | GY | UF | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
有机碳库储量 Soil C stocks/(t∙hm-2) | 百分比Proportion/% | 有机碳库储量 Soil C stocks/(t∙hm-2) | 百分比Proportion/% | 有机碳库储量 Soil C stocks/(t∙hm-2) | 百分比 Proportion/% | 有机碳库储量 Soil C stocks/(t∙hm-2) | 百分比Proportion/% | ||||
0-10 | 3.15 | 15.85 | 7.81 | 19.69 | 7.81 | 14.49 | 21.31 | 28.08 | |||
10-20 | 2.29 | 11.53 | 8.22 | 20.72 | 6.95 | 12.88 | 10.23 | 13.48 | |||
20-40 | 3.54 | 17.83 | 5.88 | 14.82 | 16.98 | 31.49 | 16.45 | 21.68 | |||
40-70 | 6.16 | 31.02 | 8.97 | 22.63 | 12.28 | 22.77 | 16.23 | 21.39 | |||
70-100 | 4.72 | 23.77 | 8.78 | 22.14 | 9.90 | 18.36 | 11.67 | 15.37 | |||
总计 | 19.86 | 100 | 39.65 | 100 | 53.91 | 100 | 75.90 | 100 |
表3 不同土层有机碳库储量及其垂直分布
Table 3 Organic carbon storage and vertical distribution of different soil layers
土层 Soil layer/ cm | BL | F34 | GY | UF | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
有机碳库储量 Soil C stocks/(t∙hm-2) | 百分比Proportion/% | 有机碳库储量 Soil C stocks/(t∙hm-2) | 百分比Proportion/% | 有机碳库储量 Soil C stocks/(t∙hm-2) | 百分比 Proportion/% | 有机碳库储量 Soil C stocks/(t∙hm-2) | 百分比Proportion/% | ||||
0-10 | 3.15 | 15.85 | 7.81 | 19.69 | 7.81 | 14.49 | 21.31 | 28.08 | |||
10-20 | 2.29 | 11.53 | 8.22 | 20.72 | 6.95 | 12.88 | 10.23 | 13.48 | |||
20-40 | 3.54 | 17.83 | 5.88 | 14.82 | 16.98 | 31.49 | 16.45 | 21.68 | |||
40-70 | 6.16 | 31.02 | 8.97 | 22.63 | 12.28 | 22.77 | 16.23 | 21.39 | |||
70-100 | 4.72 | 23.77 | 8.78 | 22.14 | 9.90 | 18.36 | 11.67 | 15.37 | |||
总计 | 19.86 | 100 | 39.65 | 100 | 53.91 | 100 | 75.90 | 100 |
样地 Sample | 活性有机碳 Active organic carbon | 土壤深度 Soil depth/cm | ||
---|---|---|---|---|
0‒10 | 10‒20 | 20‒40 | ||
BL | DOC | 10.59±1.04aB | 7.41±1.51bB | 9.25±1.55bB |
MBC | 32.47±19.02aB | 49.23±21.45aB | 24.58±6.35aC | |
F34 | DOC | 52.21±9.44abA | 56.59±15.13aA | 30.07±8.32bAB |
MBC | 142.57±93.22aB | 80.50±6.57aB | 113.96±35.55aB | |
GY | DOC | 50.94±6.60aA | 43.03±4.94aA | 43.75±7.61aA |
MBC | 104.62±50.22aB | 58.04±13.24aA | 349.70±140.98aA | |
UF | DOC | 60.87±29.14aB | 52.72±15.45aA | 236.96±83.78aA |
MBC | 54.12±17.29aC | 43.01±13.09aA | 169.31±19.99aA |
表4 不同样地土壤活性有机碳的分布特征
Table 4 Distribution characteristics of soil activated carbon under different treatment measures
样地 Sample | 活性有机碳 Active organic carbon | 土壤深度 Soil depth/cm | ||
---|---|---|---|---|
0‒10 | 10‒20 | 20‒40 | ||
BL | DOC | 10.59±1.04aB | 7.41±1.51bB | 9.25±1.55bB |
MBC | 32.47±19.02aB | 49.23±21.45aB | 24.58±6.35aC | |
F34 | DOC | 52.21±9.44abA | 56.59±15.13aA | 30.07±8.32bAB |
MBC | 142.57±93.22aB | 80.50±6.57aB | 113.96±35.55aB | |
GY | DOC | 50.94±6.60aA | 43.03±4.94aA | 43.75±7.61aA |
MBC | 104.62±50.22aB | 58.04±13.24aA | 349.70±140.98aA | |
UF | DOC | 60.87±29.14aB | 52.72±15.45aA | 236.96±83.78aA |
MBC | 54.12±17.29aC | 43.01±13.09aA | 169.31±19.99aA |
[1] |
ALBRECHT A, KANDJI S T, 2003. Carbon sequestration in tropical agroforestry systems[J]. Agriculture Ecosystems & Environment, 99(1-3): 15-27.
DOI URL |
[2] |
BRAHMA B, PATHAK K, LAL R, et al., 2018. Ecosystem carbon sequestration through restoration of degraded lands in Northeast India[J]. Land Degradation & Development, 29(1):15-25.
DOI URL |
[3] |
BROCKETT B, PRESCOTT C E, GRAYSTON S J, 2012. Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada[J]. Soil Biology & Biochemistry, 44(1): 9-20.
DOI URL |
[4] |
CASTELLANO M J, MUELLER K E, OLK D C, et al., 2015. Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept[J]. Global Change Biology, 21(9): 3200-3209.
DOI URL |
[5] |
CHEN X L, CHEN H Y H, 2018. Global effects of plant litter alterations on soil CO2 to the atmosphere[J]. Global Change Biology, 24(8): 3462-3471.
DOI URL |
[6] |
CUSACK D F, SILVER W L, TORN M S, et al., 2011. Changes in microbial community characteristics and soil organic matter with nitrogen additions in two tropical forests[J]. Ecology, 92(3): 621-632.
DOI URL |
[7] |
DON A, SCHUMACHER J, FREIBAUER A, 2015. Impact of tropical land-use change on soil organic carbon stocks - a meta-analysis[J]. Global Change Biology, 17(4): 1658-1670.
DOI URL |
[8] |
DUNGAIT J A J, HOPKINS D W, GREGORY A S, et al., 2012. Soil organic matter turnover is governed by accessibility not recalcitrance[J]. Global Change Biology, 18(6): 1781-1796.
DOI URL |
[9] |
FONTAINE S, BAROT S, BARRE P, et al., 2007. Stability of organic carbon in deep soil layers controlled by fresh carbon supply[J]. Nature, 450(7167): 277-280.
DOI URL |
[10] |
FREIBAUER A, ROUNSEVELL M D A, SMITH P, et al., 2004. Carbon sequestration in the agricultural soils of Europe[J]. Geoderma, 122(1): 1-23.
DOI URL |
[11] |
VAN GROENIGEN K J, OSENBERG C W, TERRER C, et al., 2017. Faster turnover of new soil carbon inputs under increased atmospheric CO2[J]. Global Change Biology, 23(10): 4420-4429.
DOI URL |
[12] |
HE S J, XIE J S, ZENG H D, et al., 2013. Dynamic of soil organic carbon pool after restoration of Pinus massoniana in eroded red soil area[J]. Acta Ecologica Sinica, 33(10): 2964-2973.
DOI URL |
[13] | HU J M, HU C, XIE S H, 2013. Effects of several typical measures on regulating runoff in slope land of red soil in Southern China[J]. Bulletin of Soil and Water Conservation, 33(6): 32-36, 41. |
[14] |
HUANG Y H, LI Y L, XIAO Y, et al., 2011. Controls of litter quality on the carbon sink in soils through partitioning the products of decomposing litter in a forest succession series in South China[J]. Forest Ecology and Management, 261(7): 1170-1177.
DOI URL |
[15] |
JACKSON R B, BANNER J L, JOBBAGY E G, et al., 2002. Ecosystem carbon loss with woody plant invasion of grasslands[J]. Nature, 418(6898): 623-626.
DOI URL |
[16] |
LAGANIÈRE J M, ANGERS D A, PARÉ D, 2010. Carbon accumulation in agricultural soils after afforestation: A meta-analysis[J]. Global Change Biology, 16(1): 439-453.
DOI URL |
[17] | LAL R, 1999. Soil management and restoration for C sequestration to mitigate the accelerated greenhouse effect[J]. Progress in Environ-mental Science, 12(1): 307-326. |
[18] |
LAL R, 2002. Soil carbon dynamics in cropland and rangeland[J]. Environmental Pollution, 116(3): 353-362.
DOI URL |
[19] |
LAL R, 2004. Soil carbon sequestration to mitigate climate change[J]. Geoderma, 123(1-2):1-22.
DOI URL |
[20] | LARIONOVA A A, ROZANOVA L N, YEVDOKIMOV I V, et al., 2003. Land-use change and management effects on carbon sequestration in soils of Russia’s South Taiga zone[J]. Tellus B: Chemical and Physical Meteorology, 55(2): 331-337. |
[21] |
LI D J, NIU S L, LUO Y Q, 2012. Global patterns of the dynamics of soil carbon and nitrogen stocks following afforestation: a meta-analysis[J]. New Phytologist, 195(1): 172-181.
DOI URL |
[22] |
LI Q R, TIAN Y Q, ZHANG X Y, et al., 2017. Labile carbon and nitrogen additions affect soil organic matter decomposition more strongly than temperature[J]. Applied Soil Ecology, DOI: 10.1016/j.apsoil.2017.01.009.
DOI |
[23] |
LIU X, YANG T, WANG Q, et al., 2018. Dynamics of soil carbon and nitrogen stocks after afforestation in arid and semi-arid regions: A meta-analysis[J]. Science of the Total Environment, DOI: 10.1016/j.scitotenv.2017.10.009.
DOI |
[24] |
MARTIN P A, NEWTON A C, BULLOCK J M, 2013. Carbon pools recover more quickly than plant biodiversity in tropical secondary forests[J]. Proceedings of the Royal Society B: Biological Sciences, 280(1773): 20132236-20132236.
DOI URL |
[25] |
NIE X D, LI Z W, HUANG J Q, et al., 2017. Soil Organic Carbon Fractions and Stocks Respond to Restoration Measures in Degraded Lands by Water Erosion[J]. Environmental management, 59(5): 816-825.
DOI URL |
[26] | PAUL K I, POLGLASE P J, NYAKUENGAMA J G, et al., 2002. Change in soil carbon following afforestation[J]. Forest Ecology & Management, 168(1-3):241-257. |
[27] |
POST W M, KWON K C, 2010. Soil carbon sequestration and land-use change: processes and potential[J]. Global Change Biology, 6(3): 317-327.
DOI URL |
[28] |
SHENG H, YANG Y, YANG Z, et al., 2010. The dynamic response of soil respiration to land-use changes in subtropical China[J]. Global change biology, 16(3): 1107-1121.
DOI URL |
[29] |
SIX J, CONANT R T, PAUL E A, et al., 2002. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils[J]. Plant and Soil, 241(2): 155-176.
DOI URL |
[30] |
SOUCÉMARIANADIN L N, CÉCILLON L, GUENET B, et al., 2018. Environmental factors controlling soil organic carbon stability in French forest soils[J]. Plant and Soil, 426(1-2): 267-286.
DOI URL |
[31] |
STARR G C, LAL R, MALONE R, et al., 2000. Modeling soil carbon transported by water erosion processes[J]. Land Degradation and Development, 11(1): 83-91.
DOI URL |
[32] |
TONNEIJCK F H, JANSEN B, NIEROP K G J, et al., 2010. Towards understanding of carbon stocks and stabilization in volcanic ash soils in natural Andean ecosystems of northern Ecuador[J]. European Journal of Soil Science, 61(3): 392-405.
DOI URL |
[33] |
TU C L, LIU C Q, LU X H, et al., 2011. Sources of dissolved organic carbon in forest soils: evidences from the differences of organic carbon concentration and isotope composition studies[J]. Environmental Earth Sciences, 63(4): 723-730.
DOI URL |
[34] |
VELOSO M G, DIECKOW J, ZANATTA J A, et al., 2018. Reforestation with loblolly pine can restore the initial soil carbon stock relative to a subtropical natural forest after 30 years[J]. European Journal of Forest Research, 137(5): 593-604.
DOI URL |
[35] |
WANG F M, DING Y Z D, SAYER E J, et al., 2017. Tropical forest restoration: Fast resilience of plant biomass contrasts with slow recovery of stable soil C stocks[J]. Functional Ecology, 31(12): 2344-2355.
DOI URL |
[36] |
XIE J, GUO J, YANG Z, et al., 2013. Rapid accumulation of carbon on severely eroded red soils through afforestation in subtropical China[J]. Forest Ecology and Management, 300: 53-59.
DOI URL |
[37] |
YANG Y S, CHEN G S, GUO J F, et al., 2007. Soil respiration and carbon balance in a subtropical native forest and two managed plantations[J]. Plant Ecology, 193(1): 71-84.
DOI URL |
[38] |
ZHANG H L, DENG Q, HUI D F, et al., 2019. Recovery in soil carbon stock but reduction in carbon stabilization after 56-year forest restoration in degraded tropical lands[J]. Forest Ecology and Management, 441: 1-8.
DOI URL |
[39] |
ZHANG H, LIU Y H, ZHOU Z Y, et al., 2019. Inorganic nitrogen addition affects soil respiration and belowground organic carbon fraction for a Pinus tabuliformis Forest[J]. Forests, 10(5): 2-15.
DOI URL |
[40] | 陈怀璞, 张天雨, 葛振鸣, 等, 2017. 崇明东滩盐沼湿地土壤碳氮储量分布特征[J]. 生态与农村环境学报, 33(3): 242-251. |
CHEN H P, ZHANG T Y, GE Z M, et al., 2017. Distribution of soil carbon and nitrogen stocks in salt marsh wetland in Dongtan of Chongming[J]. Journal of Ecology and Rural Environment, 33(3): 242-251. | |
[41] | 陈俊佳, 陈志彪, 陈志强, 等, 2019. 不同水土保持措施对闽西紫色土速效养分及可蚀性的影响[J]. 水土保持学报, 33(1): 45-50. |
CHEN J J, CHEN Z B, CHEN Z Q, et al., 2019. Effects of different soil and water conservation measures on available nutrients and erodibility characteristics of purple soil in western Fujian[J]. Journal of Soil and Water Conservation, 33(1): 45-50. | |
[42] | 陈泮勤, 2004. 地球系统碳循环[M]. 北京: 科学出版社. |
CHEN P Q, 2004. Earth system carbon cycle[M]. Beijing: Science Press. | |
[43] | 程彩芳, 陆爱云, 李正才, 等, 2015. 不同林龄木荷-青冈栎混交林幼林碳储量[J]. 生态学杂志, 34(10): 2705-2710. |
CHENG C F, LU A Y, LI Z C, et al., 2015. Carbon storage in mixed Schima superba Gardn. et Champ.-Cyclobalanpsis glauca (Thunb.) Oerst. young plantations at different stand ages[J]. Chinese Journal of Ecology, 34(10): 2705-2710. | |
[44] | 戴向前, 廖四辉, 周晓花, 等, 2020. 水利工程管理体制改革展望[J]. 水利发展研究, 20(10): 59-63. |
DAI X Q, LIAO S H, ZHOU X H, et al., 2020. Prospects for the reform of the management system of water conservancy projects[J]. Water Resources Development Research, 20(10): 59-63. | |
[45] | 邓翠, 吕茂奎, 曾敏, 等, 2017. 红壤侵蚀区植被恢复过程中土壤有机碳组分变化[J]. 水土保持学报, 31(4): 178-183. |
DENG C, LU M K, ZENG M, et al., 2017. Journal of soil and water Conservation[J]. Journal of Soil and Water Conservation, 31(4): 178-183. | |
[46] | 段剑, 王凌云, 肖胜生, 2018. 红砂岩侵蚀区典型水土流失治理模式减流减沙效应[J]. 水资源与水工程学报, 29(6): 227-233. |
DUAN J, WANG L Y, XIAO S S, 2018. Journal of water resources and water Engineering[J]. Journal of Water Resources and Water Engineering, 29(6): 227-233. | |
[47] | 郭利平, 宋月君, 叶忠铭, 等, 2017. 水土保持措施对塘背小流域典型林地植被恢复状况的影响[J]. 西南林业大学学报(自然科学), 37(4): 67-74. |
GUO L P, SONG Y J, YE Z M, et al., 2017. Effects of soil and water conservation measures on vegetation restoration of typical forests in the small watershed of Tangbei River[J]. Journal of Southwest Forestry University (Natural Sciences), 37(4): 67-74. | |
[48] | 黄从德, 张健, 杨万勤, 等, 2009. 四川森林土壤有机碳储量的空间分布特征[J]. 生态学报, 29(3): 1217-1225. |
HUANG C D, ZHANG J, YANG W Q, et al., 2009. Spatial distribution characteristics of forest soil organic carbon stock in Sichuan Province[J]. Acta Ecologica Sinica, 29(3): 1217-1225. | |
[49] | 黄少燕, 2009. 红壤侵蚀退化地不同生态恢复措施对土壤养分影响研究[J]. 水土保持研究, 16(3): 38-42. |
HUANG S Y, 2009. Effects of different ecological restoration measures on soil fertility in red soil eroded degradation land[J]. Research of Soil and Water Conservation, 16(3): 38-42. | |
[50] | 黄威, 陈安磊, 王卫, 等, 2012. 长期施肥对稻田土壤活性有机碳和氮的影响[J]. 农业环境科学学报, 31(9): 1854-1861. |
HUANG W, CHEN A L, WANG W, et al., 2012. Effect of long-termfertilization on active organic carbon and nitrogen in paddy soils[J]. Journal of Agro-Environment Science, 31(9): 1854-1861. | |
[51] | 黄颖, 罗旭辉, 钟珍梅, 等, 2015. 南方丘陵山地水土保持与循环农业发展策略研究[J]. 福建农业学报, 30(8): 817-824. |
HUANG Y, LUO X H, ZHONG Z M, et al., 2015. Strategies for water-soil conservation and sustainable agriculture of Southern Hilly and mountainous regions[J]. Fujian Journal of Agricultural Sciences, 30(8): 817-824. | |
[52] | 简兴, 王松, 翟晓钰, 等, 2019. 安徽三汊河国家湿地公园不同土地利用方式下表层土壤活性有机碳含量[J]. 湿地科学, 17(5): 511-518. |
JIAN X, WANG S, ZHAI X Y, et al., 2019. Labile organic carbon contents in surface soil under different land-use ways in Anhui Sancha river National Wetland Park[J]. Wetland Science, 17(5): 511-518. | |
[53] | 李太魁, 朱波, 王小国, 等, 2013. 土地利用方式对土壤活性有机碳含量影响的初步研究[J]. 土壤通报, 44(1): 46-51. |
LI T K, ZHU B, WANG X G, et al., 2013. Effects of land use on the contents of soil active organic carbon[J]. Chinese Journal of Soil Science, 44(1): 46-51. | |
[54] | 梁音, 杨轩, 潘贤章, 等, 2008. 南方红壤丘陵区水土流失特点及防治对策[J]. 中国水土保持 (12): 50-53. |
LIANG Y, YANG X, PAN X Z, et al., 2008. Characteristics of soil erosion and control measures in the red soil hilly region in southern China[J]. Soil and Water Conservation in China (12): 50-53. | |
[55] | 林金石, 黄炎和, 范胜龙, 等, 2011. 经不同措施治理的侵蚀红壤肥力质量综合评价[J]. 福建农林大学学报(自然科学版), 40(2): 192-197. |
LIN J S, HUANG Y H, FAN S L, et al., 2011. Integrated evaluation of fertility quality of eroded red soil by ecological restoration measures[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 40(2): 192-197. | |
[56] | 刘艳改, 姚娜, 程艳辉, 2019. 不同水土保持工程措施对侵蚀红壤坡地植被恢复的影响研究[J]. 绿色科技 (24): 20-22. |
LIU Y G, YAO N, CHENG Y H, 2019. Study on the impact of different soil and water conservation engineering measures on vegetation restoration on eroded red soil slopes[J]. Journal of Green Science and Technology (24): 20-22. | |
[57] | 刘政, 许文斌, 田地, 等, 2019. 南方红壤严重侵蚀地不同恢复年限马尾松人工林生态系统碳储量特征[J]. 水土保持通报, 39(1): 37-42. |
LIU Z, XU W B, TIAN D, et al., 2019. Characteristics of ecosystem carbon stocks in Pinus massoniana plantations with different restoration age on severely eroded red soils in Southern China[J]. Bulletin of Soil and Water Conservation, 39(1): 37-42. | |
[58] | 柳敏, 宇万太, 姜子绍, 等, 2006. 土壤活性有机碳[J]. 生态学杂志, 25(11): 1412-1417. |
LIU M, YU W T, JIANG Z S, et al., 2006. A research review on soil active organic carbon[J]. Chinese Journal of Ecology, 25(11): 1412-1414. | |
[59] | 罗碧珍, 胡海清, 罗斯生, 等, 2020. 林火干扰对广东马尾松林土壤有机碳密度及其活性有机碳的影响[J]. 南京林业大学学报(自然科学版), 44(5): 132-140. |
LUO B Z, HU H Q, ROSE S S, et al., 2020. Effects of forest fire disturbance on soil organic carbon density and labile organic carbon of Pinus massoniana forests in Guangdong Province, China[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 44(5): 132-140. | |
[60] | 吕茂奎, 谢锦升, 周艳翔, 等, 2014. 红壤侵蚀地马尾松人工林恢复过程中土壤非保护性有机碳的变化[J]. 应用生态学报, 25(1): 37-44. |
LV M K, XIE J S, ZHOU Y X, et al., 2014. Dynamics of unprotected soil organic carbon with the restoration process of Pinus massoniana plantation in red soil erosion area[J]. Chinese Journal of Applied Ecology, 25(1): 37-44. | |
[61] | 潘艳斌, 朱巧红, 彭新华, 2017. 有机物料对红壤团聚体稳定性的影响[J]. 水土保持学报, 31(2): 209-214. |
PAN Y B, ZHU Q H, PENG X H, 2017. Effects of organic materials on soil aggregate stability in red soil[J]. Journal of Soil and Water Conservation, 31(2): 209-214. | |
[62] | 祁心, 江长胜, 郝庆菊, 等, 2015. 缙云山不同土地利用方式对土壤活性有机碳、氮组分的影响[J]. 环境科学, 36(10): 3816-3824. |
QI X, JIANG C S, HAO Q J, et al., 2015. Effects of different land uses on soil active organic carbon and nitrogen fractions in Jinyun Mountain[J]. Environmental Science, 36(10): 3816-3824. | |
[63] | 区晓琳, 陈志彪, 陈志强, 等, 2018. 亚热带侵蚀红壤区植被恢复过程中土壤团聚体化学计量特征[J]. 土壤学报, 55(5): 1156-1167. |
QU X L, CHEN Z B, CHEN Z Q, et al., 2018. Stoichiometrc characteristics of soil aggregates in subtropical eroded red soil under vegetation restoration[J]. Acta Pedologica Sinica, 55(5): 1156-1167. | |
[64] | 盛浩, 李洁, 周萍, 等, 2015. 土地利用变化对花岗岩红壤表土活性有机碳组分的影响[J]. 生态环境学报, 24(7): 1098-1102. |
SHENG H, LI J, ZHOU P, et al., 2015. Effect of land use change on labile organic carbon fractions of soil derived from granite[J]. Ecology and Environmental Sciences, 24(7): 1098-1102. | |
[65] | 宋月君, 廖凯涛, 杨洁, 等, 2017. 塘背河小流域植被覆盖时空动态变化及水保驱动分析[J]. 水资源与水工程学报, 28(5): 27-34. |
SONG YJ, LIAO K T, YANG J, et al., 2017. Temporal and spatial variation of vegetation cover and its water and soil conservation driving in Tangbei River watershed[J]. Journal of Water Resources and Water Engineering, 28(5): 27-34. | |
[66] | 宋月君, 杨洁, 汪邦稳, 等, 2012. 塘背河小流域水土保持生态建设成效分析[J]. 中国水土保持 (4): 63-64. |
SONG Y J, YANG J, WANG B W, et al., 2012. Analysis on the effectiveness of soil and water conservation and ecological construction in the small watershed of Tangbei River[J]. Soil and Water Conservation in China (4): 63-64. | |
[67] | 苏春丽, 梁音, 李德成, 等, 2011. 红壤区小流域治理度的概念与评价方法[J]. 土壤, 43(3): 466-475. |
SU C L, LIANG Y, LI D C, et al., 2011. Concept and evaluation methodology of watershed management and recovery degree in red soil region[J]. Soils, 43(3): 466-475. | |
[68] | 孙辉, 谢嘉穗, 唐亚, 2005. 坡耕地等高固氮植物篱复合经营系统根系分布格局研究[J]. 林业科学, 41(2): 8-15. |
SUN H, XIE J S, TANG Y, 2005. Distribution patterns of root system under contour hedgerow intercropping on slopeland in dry valley of the Jinsha river[J]. Scientia Silvae Sinicae, 41(2): 8-15. | |
[69] | 孙昕, 李德成, 梁音, 2009. 南方红壤区小流域水土保持综合效益定量评价方法探讨--以江西兴国县为例[J]. 土壤学报, 46(3): 373-380. |
SUN X, LI D C, LIANG Y, 2009. Quantitative evaluation of comprehensive benefit of soil and water conservation at small watershed in Southern red soil region-: A case study of Xingguo County, Jiangxi Province[J]. Acta Pedologica Sinica, 46(3): 373-380. | |
[70] | 孙颖, 徐嘉晖, 高菲, 等, 2018. 长白山森林土壤有机碳及其在团聚体密度组分中的分布[J]. 森林工程, 34(2): 1-5. |
SUN Y, XU J H, GAO F, et al., 2018. Organic carbon content and Its distribution in aggregate-density fractions of forest soils in Changbai mountain[J]. Forest Engineering, 34(2): 1-5. | |
[71] | 王峰, 王义祥, 陈玉真, 等, 2012. 不同温度及化肥绿肥施用比例对果园土壤有机碳矿化的影响[J]. 南方农业学报, 43(12): 1991-1996. |
WANG F, WANG Y X, CHEN Y Z, et al., Effects of temperature and green manure treatments on organic carbon mineralization in orchard soil[J]. Journal of Southern Agriculture, 43(12): 1991-1996. | |
[72] | 王清奎, 汪思龙, 于小军, 等, 2007. 杉木与阔叶树叶凋落物混合分解对土壤活性有机质的影响[J]. 应用生态学报, 18(6): 1203-1207. |
WANG Q K, WANG S L, YU X J, et al., 2007. Effects of Cunninghamia lanceolata-broadleaved tree species mixed leaf litters on active soil organic matter[J]. Chinese Journal of Applied Ecology, 18(6): 1203-1207. | |
[73] | 王义祥, 王峰, 叶菁, 等, 2013. 不同菌渣肥施用量对柑橘果园土壤有机碳矿化的影响[J]. 福建农业学报, 28(11): 1078-1082. |
WANG Y X, WANG F, YE J, et al., 2013. Effect on the turnover of soil organic carbon in citrus orchard soils by adding different edible fungus residues[J]. Fujian Journal of Agricultural Sciences, 28(11): 1078-1082. | |
[74] | 翁伯琦, 王义祥, 黄毅斌, 等, 2013. 生草栽培下果园土壤固碳潜力研究[J]. 生态环境学报, 22(6): 931-934. |
WENG B Q, WANG Y X, HUANG Y B, et al., 2013. Carbon sequestration capacity of soil in sod cultivation orchard[J]. Ecology and Environmental Sciences, 22(6): 931-934. | |
[75] | 翁伯琦, 郑祥洲, 丁洪, 等, 2013. 植被恢复对土壤碳氮循环的影响研究进展[J]. 应用生态学报, 24(12): 3610-3616. |
WENG B Q, ZHENG X Z, DING H, et al., 2013. Effects of vegetation restoration on soil carbon and nitrogen cycles: A review[J]. Chinese Journal of Applied Ecology, 24(12): 3610-3616. | |
[76] | 吴然, 康峰峰, 韩海荣, 等, 2016. 山西太岳山不同林龄华北落叶松林土壤微生物特性[J]. 生态学杂志, 35(12): 3183-3190. |
WU R, KANG F F, HAN H R, et al., 2016. Soil microbial properties in Larix principis-rupprechtii plantations of different ages in Mt. Taiyue, Shanxi, China[J]. Chinese Journal of Ecology, 35(12): 3183-3190. | |
[77] | 肖胜生, 房焕英, 段剑, 等, 2015. 植被恢复对侵蚀型红壤碳吸存及活性有机碳的影响[J]. 环境科学研究, 28(5): 728-735. |
XIAO S S, FANG H Y, DUAN J, et al., 2015. Effects of vegetation restoration on soil carbon sequestration and active organic carbon in eroded red soil[J]. Research of Environmental Sciences, 28(5): 728-735. | |
[78] | 谢锦升, 杨玉盛, 解明曙, 等, 2006. 植被恢复对侵蚀退化红壤碳吸存的影响[J]. 水土保持学报, 20(6): 95-98, 123. |
XIE J S, YANG Y S, XIE M S, et al., 2006. Effects of vegetation restoration on carbon sequestration in degraded red soil[J]. Journal of Soil and Water Conservation, 20(6): 95-98, 123. | |
[79] | 杨合龙, 孙宗玖, 杨静, 等, 2015. 封育年限对伊犁绢蒿荒漠土壤活性有机碳及碳库管理指数的影响[J]. 草业科学, 32(12): 1945-1952. |
YANG H L, SUN Z J, YANG J, et al., 2015. Effects of enclosure periods on soil active organic carbon and carbon pool management index in Seriphidium transiliense desert grassland[J]. Pratacultural Science, 32(12): 1945-1952. | |
[80] | 张平仓, 程冬兵, 2014. 《南方红壤丘陵区水土流失综合治理技术标准》解读[J]. 长江科学院院报, 31(12): 28-34. |
ZHANG P C, CHENG D B, 2014. Interpretation on technical standards for comprehensive control of water and soil erosion in the red soil hilly region in Southern China[J]. Journal of Yangtze River Scientific Research Institute, 31(12): 28-34. | |
[81] | 张文雯, 韩海荣, 程小琴, 等, 2019. 间伐对华北落叶松人工林土壤活性有机碳含量及酶活性的影响[J]. 应用生态学报, 30(10): 3347-3355. |
ZHANG W W, HAN H R, CHENG X Q, et al., 2019. Effects of thinning on soil active organic carbon contents and enzyme activities in Larix principis-rupprechtii plantation[J]. Chinese Journal of Applied Ecology, 30(10): 3347-3355. | |
[82] | 赵明东, 罗晓红, 刘淑霞, 2006. 土壤活性有机碳∙养分有效性与作物产量的关系[J]. 安徽农业科学, 34(4): 732-733, 748. |
ZHAO M D, LUO X H, LIU S X, 2006. Relationship between Active Soil Organic Carbon, Nutrient Bioavailability and Crop Yield[J]. Journal of Anhui Agricultural Sciences, 34(4): 732-733, 748. | |
[83] | 左双苗, 杨金玲, 张甘霖, 等, 2016. 不同土地利用方式下亚热带花岗岩小流域碳汇潜力及其影响因素[J]. 生态环境学报, 25(1): 1-8. |
ZUO S M, YANG J L, ZHANG G L, et al., 2016. Carbon sequestration potential in Granitic Watersheds under different land uses in Subtropical China[J]. Ecology and Environmental Sciences, 25(1): 1-8. |
[1] | 张林, 齐实, 周飘, 伍冰晨, 张岱, 张岩. 北京山区针阔混交林地土壤有机碳含量的影响因素研究[J]. 生态环境学报, 2023, 32(3): 450-458. |
[2] | 李威闻, 黄金权, 齐瑜洁, 刘小岚, 刘纪根, 毛治超, 高绣纺. 土壤侵蚀条件下土壤微生物生物量碳含量变化及其影响因素的Meta分析[J]. 生态环境学报, 2023, 32(1): 47-55. |
[3] | 肖国举, 李秀静, 郭占强, 胡延斌, 王静. 贺兰山东麓土壤有机碳对玉米生长发育及水分利用的影响[J]. 生态环境学报, 2022, 31(9): 1754-1764. |
[4] | 王钊, 张曼胤, 胡宇坤, 刘魏魏, 张苗苗. 盐度对典型滨海湿地沉积物汞甲基化的影响[J]. 生态环境学报, 2022, 31(9): 1876-1884. |
[5] | 马辉英, 李昕竹, 马鑫钰, 贡璐. 新疆天山北麓中段不同植被类型下土壤有机碳组分特征及其影响因素[J]. 生态环境学报, 2022, 31(6): 1124-1131. |
[6] | 龚玲玄, 王丽丽, 赵建宁, 刘红梅, 杨殿林, 张贵龙. 不同覆盖作物模式对茶园土壤理化性质及有机碳矿化的影响[J]. 生态环境学报, 2022, 31(6): 1141-1150. |
[7] | 杜雪, 王海燕, 邹佳何, 孟海, 赵晗, 崔雪, 董齐琪. 长白山北坡云冷杉阔叶混交林土壤有机碳分布特征及其影响因素[J]. 生态环境学报, 2022, 31(4): 663-669. |
[8] | 胡靓达, 周海菊, 黄永珍, 姚贤宇, 叶绍明, 喻素芳. 不同杉木林分类型植物多样性及其土壤碳氮关系的研究[J]. 生态环境学报, 2022, 31(3): 451-459. |
[9] | 王浩, 陈永金, 刘加珍, 万波, 张丽. 黄河三角洲新生湿地3种柽柳灌丛对土壤有机碳空间分布的影响研究[J]. 生态环境学报, 2022, 31(1): 9-16. |
[10] | 史利江, 高杉, 姚晓军, 张晓龙, 李文刚, 高峰. 晋西北黄土丘陵区不同植被恢复下的土壤碳氮累积特征[J]. 生态环境学报, 2021, 30(9): 1787-1796. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||