生态环境学报 ›› 2022, Vol. 31 ›› Issue (5): 990-998.DOI: 10.16258/j.cnki.1674-5906.2022.05.014
张弛1,2(), 郑瓛1,2, 倪国华1,*(
), 赵彦君1,2
收稿日期:
2021-12-21
出版日期:
2022-05-18
发布日期:
2022-07-12
通讯作者:
* 倪国华(1972年生),男,研究员,博士。E-mail: ghni@ipp.ac.cn作者简介:
张弛(1997年生),男,硕士研究生,主要从事等离子体大气治理研究。E-mail: 3192053619@qq.com
基金资助:
ZHANG Chi1,2(), ZHENG Huan1,2, NI Guohua1,*(
), ZHAO Yanjun1,2
Received:
2021-12-21
Online:
2022-05-18
Published:
2022-07-12
摘要:
随着中国对环境治理的深入进行,中国对挥发性有机化合物(Volatile Organic Compound,VOCs)治理的要求越来越高。在各种VOCs治理技术中,等离子体技术具有工艺流程简单,可处理污染物种类范围广,适用性强等优点,尤其适合处理大风量、低浓度的VOCs。非热电弧等离子体由于具有兼具冷、热等离子体的优势,拓宽了等离子体废气处理技术的应用范围,因而备受关注。然而,由于非热电弧固有的自磁压缩和热箍缩效应等属性,导致等离子体尺寸较小,制约了其在实际中的应用。该文通过自主研制的多弧等离子体处理VOCs废气反应器,选择代表性污染物甲苯作为被处理对象,考察了反应器中等离子体的特性,各种参数对甲苯废气处理效果的影响。结果表明,电弧电压随放电电流的增大而减小,随着工作气体流量的增大而增大。多弧等离子体放电区尺寸明显增大,约为相同输入功率单个电弧的1.4倍,并且由于多个电弧的相互作用,稳定性明显提高。甲苯去除率随着初始浓度和气体流量的增大而减小,在气体流量8 m3∙h-1,平均放电功率410 W,初始质量浓度2000 mg∙m-3的条件下时,能量效率达到最大值25.8 g∙kW-1∙h-1。通过在放电区域下方30 mm处使用堇青石负载纳米Pt催化剂,发现等离子体复合催化剂的使用可有助于促进甲苯的完全分解,显著提高甲苯向CO2的转化,CO2选择率均比不使用催化剂时高20%以上,在气体流量8 m3∙h-1,平均放电功率490 W,初始质量浓度2000 mg∙m-3的条件下,CO2选择性达到最大值62%。甲苯降解的气相中间产物主要是苯和苯甲醛。
中图分类号:
张弛, 郑瓛, 倪国华, 赵彦君. 多弧等离子体去除甲苯的研究[J]. 生态环境学报, 2022, 31(5): 990-998.
ZHANG Chi, ZHENG Huan, NI Guohua, ZHAO Yanjun. Study on the Removal of Toluene by Multi-arc Plasma[J]. Ecology and Environment, 2022, 31(5): 990-998.
图3 放电产生的亮度区域的图像分析步骤 (a)原始放电图像;(b)引入圆形观测区域;(c)将灰度图像转换为二进制图像
Figure 3 Image analysis steps of luminance area generated by discharge (a) original discharge image; (b) introduction of circular observation area; (c) conversion of grayscale image to binary image
放电类型 Discharge types | 放电功率 Discharge power/ W | 甲苯浓度 Toluene concentration/ (mg∙m-3) | 气体流量 Gasflow/ (L∙min-3) | 去除率 Removal rate/ % | CO2选择性 CO2 selectivity/ % | 能量效率 Energy efficiency/ (g∙kW-1∙h-1) | 参考文献 Reference |
---|---|---|---|---|---|---|---|
DBD协同催化 DBD cocatalysis | 24.0 | 6170 | 0.25 | 96 | 91 | 3.7 | Wang et al., |
DBD协同催化 DBD cocatalysis | 0.5 | 440 | 0.50 | 99 | 25 | 26.1 | Tang et al., |
DBD协同催化 DBD cocatalysis | 56.5 | 700 | 10.00 | 71 | 5.3 | Liang et al., | |
DBD协同催化 DBD cocatalysis | 1.8 | 206 | 0.10 | 98 | 0.7 | Guo et al., | |
电晕放电协同催化 Corona discharge cocatalysis | 2.2 | 870 | 0.50 | 95 | 70 | 11.3 | Yao et al., |
电晕放电协同催化 Corona discharge cocatalysis | 5.2 | 410 | 0.20 | 62 | 52 | 0.6 | Yao et al., |
电晕放电协同催化 Corona discharge cocatalysis | 10.0 | 290 | 0.25 | 93 | 20 | 0.4 | Mista et al., |
滑动弧放电 Sliding arc discharge | 110 | 1800 | 30.00 | 59 | 17.5 | Zheng et al., | |
多弧等离子体协同催化 Multi-arc plasma cocatalysis | 490.4 | 2000 | 116.67 | 84 | 62 | 24.1 | 本研究 |
多弧等离子体 Multi-arc plasm | 490.4 | 2000 | 116.67 | 77 | 30 | 22.0 | 本研究 |
表1 比较不同等离子体放电类型对甲苯的降解性能
Table 1 Comparison of the degradation performance of toluene by different plasma discharge types
放电类型 Discharge types | 放电功率 Discharge power/ W | 甲苯浓度 Toluene concentration/ (mg∙m-3) | 气体流量 Gasflow/ (L∙min-3) | 去除率 Removal rate/ % | CO2选择性 CO2 selectivity/ % | 能量效率 Energy efficiency/ (g∙kW-1∙h-1) | 参考文献 Reference |
---|---|---|---|---|---|---|---|
DBD协同催化 DBD cocatalysis | 24.0 | 6170 | 0.25 | 96 | 91 | 3.7 | Wang et al., |
DBD协同催化 DBD cocatalysis | 0.5 | 440 | 0.50 | 99 | 25 | 26.1 | Tang et al., |
DBD协同催化 DBD cocatalysis | 56.5 | 700 | 10.00 | 71 | 5.3 | Liang et al., | |
DBD协同催化 DBD cocatalysis | 1.8 | 206 | 0.10 | 98 | 0.7 | Guo et al., | |
电晕放电协同催化 Corona discharge cocatalysis | 2.2 | 870 | 0.50 | 95 | 70 | 11.3 | Yao et al., |
电晕放电协同催化 Corona discharge cocatalysis | 5.2 | 410 | 0.20 | 62 | 52 | 0.6 | Yao et al., |
电晕放电协同催化 Corona discharge cocatalysis | 10.0 | 290 | 0.25 | 93 | 20 | 0.4 | Mista et al., |
滑动弧放电 Sliding arc discharge | 110 | 1800 | 30.00 | 59 | 17.5 | Zheng et al., | |
多弧等离子体协同催化 Multi-arc plasma cocatalysis | 490.4 | 2000 | 116.67 | 84 | 62 | 24.1 | 本研究 |
多弧等离子体 Multi-arc plasm | 490.4 | 2000 | 116.67 | 77 | 30 | 22.0 | 本研究 |
[1] |
BO Z, YAN J H, LI X D, et al., 2009. Nitrogen dioxide formation in the gliding arc discharge-assisted decomposition of volatile organic compounds[J]. Journal of Hazardous Materials, 166: 1210-1216.
DOI URL |
[2] |
GUO Y F, YE D Q, CHEN K F, et al., 2007. Toluene removal by a DBD-type plasma combined with metal oxides catalysts supported by nickel foam[J]. Catalysis Today, 126(3-4): 328-337.
DOI URL |
[3] |
HARIZ R, DEL R, MERCIER C, et al., 2016. Absorption of toluene by vegetable oil-water emulsion in scrubbing tower: Experiments and modeling[J]. Chemical Engineering Science, 157: 264-271.
DOI URL |
[4] |
COX H H J, DESHUSSES M A, 2002. Co-treatment of H2S and toluene in a biotrickling filter[J]. Chemical Engineering Journal, 87(1): 101-110.
DOI URL |
[5] |
INDARTO A, YANG D R, CHE H A, et al., 2007. Advanced VOCs decomposition method by gliding arc plasma[J]. Chemical Engineering Journal, 131(1-3): 337-341.
DOI URL |
[6] | LEE D H, KIM H, SONG Y H, et al., 2014. Plasma Burner for Active Regeneration of Diesel Particulate Filter[J]. Plasma Chemistry & Plasma Processing, 34(1): 159-173. |
[7] |
LI S J, DANG X Q, YU X, et al., 2020. The application of dielectric barrier discharge non-thermal plasma in VOCs abatement: A review[J]. Chemical Engineering Journal, 388: 124275-124286.
DOI URL |
[8] |
LI X Q, ZHANG L, YANG Z Q, et al., 2019. Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process:A review[J]. Separation and Purification Technology, 235: 116213-116221.
DOI URL |
[9] |
LIANG W J, WANG A H, MA L, et al., 2015. Combination of spontaneous polarization plasma and photocatalyst for toluene oxidation[J]. Journal of Electrostatics, 75: 27-34.
DOI URL |
[10] | LIN Q F, ZHAO Y J, DUAN W X, et al., 2019. Characteristics of non-thermal AC arcs in multi-arc generator[J]. Chinese Physics B, 28(12): 259-271. |
[11] |
MA F J, ZHU Y N, WU B, et al., 2019. Degradation of DDTs in thermal desorption off-gas by pulsed corona discharge plasma[J]. Chemosphere, 233: 913-919.
DOI URL |
[12] |
MISTA W, KACPRZYK R, 2008. Decomposition of toluene using non-thermal plasma reactor at room temperature[J]. Catalysis Today, 137(2-4): 345-349.
DOI URL |
[13] |
QUAN Y H, MIAO C, TAO L I, et al., 2021. Effect of preparation methods on the structure and catalytic performance of CeO2 for toluene combustion[J]. Journal of Fuel Chemistry and Technology, 49(2): 211-219.
DOI URL |
[14] |
SHI R, LIU K K, LIU B G, et al., 2021. New insight into toluene adsorption mechanism of melamine urea-formaldehyde resin based porous carbon: Experiment and theory calculation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, DOI: 10.1016/j.colsurfa.2021.127600.
DOI |
[15] |
TANG X J, FENG F D, YE L L, et al., 2013. Removal of dilute VOCs in air by post-plasma catalysis over Ag-based composite oxide catalysts[J]. Catalysis Today, 211: 39-43.
DOI URL |
[16] |
TATAROVA E, BUNDALESKA N, SARRETTE J P, et al., 2014. Plasmas for environmental issues: From hydrogen production to 2D materials assembly[J]. Plasma Sources Science & Technology, DOI: 10.1088/0963-0252/23/6/063002.
DOI |
[17] |
WANG B W, CHI C M, XU M, et al., 2017. Plasma-catalytic removal of toluene over CeO2-MnOx catalysts in an atmosphere dielectric barrier discharge[J]. Chemical Engineering Journal, 322: 679-692.
DOI URL |
[18] |
HE X P, WAMG T, HUANG J H, et al., 2020. Fabrication and characterization of superhydrophobic PDMS composite membranes for efficient ethanol recovery via pervaporation[J]. Separation and Purification Technology, DOI: 10.1016/j.seppur.2020.116675.
DOI |
[19] |
XI J Y, HU H Y, QIAN Y, 2006. Effect of operating conditions on long-term performance of a biofilter treating gaseous toluene:Biomass accumulation and stable-run time estimation[J]. Biochemical Engineering Journal, 31(2): 165-172.
DOI URL |
[20] |
YANG C T, MIAO G, PI Y H, et al., 2019. Abatement of various types of VOCs by adsorption/ catalytic oxidation: A review[J]. Chemical Engineering Journal, 370: 1128-1153.
DOI URL |
[21] |
YAO S L, CHEN Z Z, XIE H, et al., 2020. Highly efficient decomposition of toluene using a high-temperature plasma-catalysis reactor[J]. Chemosphere, DOI: 10.1016/j.chemosphere.2020.125863.
DOI |
[22] |
YAO X M, JIANG N, LI J, et al., 2018. An improved corona discharge ignited by oxide cathodes with high secondary electron emission for toluene degradation[J]. Chemical Engineering Journal, 362: 339-348.
DOI URL |
[23] |
ZHAO Y J, LIN Q F, NI G H, et al., 2020. Effect of electrode configuration on plasma spatial distribution and gas temperature in multi‐arc plasma generator with three pairs of electrodes[J]. Contributions to Plasma Physics, DOI: 10.1002/ctpp.202000111.
DOI |
[24] |
ZHENG B, YAN J H, LI X D, et al., 2008. Scale-up analysis and development of gliding arc discharge facility for volatile organic compounds decomposition[J]. Journal of Hazardous Materials, 155(3): 494-501.
DOI URL |
[25] | 李尚, 2017. 生物滴滤塔处理甲苯废气实验研究[D]. 合肥: 合肥工业大学. |
LI S, 2017. Study on the treatment of toluene by biotricking filter[D] Hefei: Hefei University of Technology. | |
[26] | 任思达, 梁文俊, 王昭艺, 等, 2019. Ce掺杂对Pd/γ-Al2O3催化燃烧甲苯性能的影响[J]. 中国环境科学, 39(7): 2774-2780. |
REN S D, LIANG W J, WANG Z Y, 2019. Effect of Ce doping on the performance of Pd/γ-Al2O3 catalytic combustion of toluene[J]. China Environmental Science, 39(7): 2774-2780. | |
[27] | 盛焕焕, 2014. 电弧放电等离子体处理甲苯废气的研究[D]. 武汉: 华中科技大学: 19-22. |
SHENG H H, 2014. Research on the Removal of Toluene Using Arc Discharge Plasma[D]. Wuhan: Huazhong University of Science and Technology: 19-22. | |
[28] | 司马聪, 2015. 臭氧低温催化氧化低浓度甲苯的研究[D]. 北京: 北京化工大学: 41-42. |
SI M C, 2015. The study on Catalytic oxidation of low concentration toluene by ozone at low temperature[D]. Beijing: Beijing University of Chemical Technology: 41-42. | |
[29] | 杨旗, 胡辉, 陈卫鹏, 2016. 脉冲电源对电弧放电等离子体温度的控制研究[J]. 高电压技术, 42(2): 446-451. |
YANG Q, HU H, CHEN W P, 2016. Study on Control of Pulse Power on Arc Plasma Temperature[J]. High Voltage Engineering, 42(2): 446-451. | |
[30] | 杨仕玲, 2020. 低温等离子体-纳米后催化协同降解挥发性有机化合物基础研究.[D]. 杭州: 浙江大学: 41-42. |
YANG S L, 2020. Fundamental research on post nonthermal plasma- nanocatalysis for the synergistic decomposition of volatile organic compounds[D]. Hangzhou: Zhejiang University: 41-42. | |
[31] | 赵进渊, 2020. 铜锰复合氧化物催化剂的制备及其催化燃烧甲苯性能研究[D]. 兰州: 兰州大学:36. |
ZHAO J Y, 2020. Preparation of Copper-manganese Composite Oxide Catalysts and the Performance of Catalytic Combustion of Toluene[D]. Lanzhou: Lanzhou University:36. | |
[32] | 赵业红, 2016. 直流电晕低温等离子体协同催化降解低浓度挥发性有机废气的研究[D]. 杭州: 浙江大学: 44-45. |
ZHAO Y H, 2016. Experimental study on DC corona discharges non-thermal plasma coupled with catalysis for Low-concentration volatile organic compounds removal[D]. Hangzhou: Zhejiang University: 44-45. |
[1] | 郝丽虹, 刘桂青, 张世晨, 苗宇萍. 城市加油站场地典型有机污染物空间分布特征[J]. 生态环境学报, 2021, 30(11): 2175-2184. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||