Ecology and Environmental Sciences ›› 2025, Vol. 34 ›› Issue (9): 1410-1420.DOI: 10.16258/j.cnki.1674-5906.2025.09.008
• Research Article [Ecology] • Previous Articles Next Articles
WANG Xiuling(), JIN Cui(
), WANG Haoran, HOU Mingxuan
Received:
2025-03-27
Online:
2025-09-18
Published:
2025-09-05
通讯作者:
*E-mail: cuijin@lnnu.edu.cn
作者简介:
王秀玲(1999年生),女,硕士研究生,研究方向为资源与环境遥感。E-mail: wxl68760315@163.com
基金资助:
CLC Number:
WANG Xiuling, JIN Cui, WANG Haoran, HOU Mingxuan. Spatial-temporal Variation Characteristics of Vegetation and Its Response to Extreme Climate in Liaoning Province[J]. Ecology and Environmental Sciences, 2025, 34(9): 1410-1420.
王秀玲, 金翠, 王浩然, 候明璇. 辽宁省植被时空变化特征及其对极端气候的响应[J]. 生态环境学报, 2025, 34(9): 1410-1420.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2025.09.008
指数类型 | 指数 | 符号 | 定义 | 单位 |
---|---|---|---|---|
极端气温 | 冷昼日数 | TX10P | 日最高温<10%分位值的日数 | d |
暖昼日数 | TX90P | 日最高温>90%分位值的日数 | d | |
冷夜日数 | TN10P | 日最低温<10%分位值的日数 | d | |
暖夜日数 | TN90P | 日最低温>90%分位值的日数 | d | |
日最低气温极低值 | TNn | 每月内日最低温的最小值 | ℃ | |
日最高气温极高值 | TXx | 每月内日最高温的最大值 | ℃ | |
气温日较差 | DTR | 日最高温与日最低温的差值 | ℃ | |
极端降水 | 单日最大降水量 | RX1day | 每月内最大1日降水量 | mm |
连续5日最大降水量 | RX5day | 每月内连续5日最大降水量 | mm |
Table 1 Definition of extreme climate indices
指数类型 | 指数 | 符号 | 定义 | 单位 |
---|---|---|---|---|
极端气温 | 冷昼日数 | TX10P | 日最高温<10%分位值的日数 | d |
暖昼日数 | TX90P | 日最高温>90%分位值的日数 | d | |
冷夜日数 | TN10P | 日最低温<10%分位值的日数 | d | |
暖夜日数 | TN90P | 日最低温>90%分位值的日数 | d | |
日最低气温极低值 | TNn | 每月内日最低温的最小值 | ℃ | |
日最高气温极高值 | TXx | 每月内日最高温的最大值 | ℃ | |
气温日较差 | DTR | 日最高温与日最低温的差值 | ℃ | |
极端降水 | 单日最大降水量 | RX1day | 每月内最大1日降水量 | mm |
连续5日最大降水量 | RX5day | 每月内连续5日最大降水量 | mm |
指数 | 离散方法 | 分层数 | 指数 | 离散方法 | 分层数 |
---|---|---|---|---|---|
TX10P | 自然断点分类法 | 9 | TNn | 等间隔分类法 | 9 |
TN10P | 等间隔分类法 | 7 | DTR | 分位数分类法 | 8 |
TX90P | 几何间隔分类法 | 10 | RX1day | 分位数分类法 | 10 |
TN90P | 分位数分类法 | 9 | RX5day | 自然断点分类法 | 10 |
TXx | 标准差分类法 | 9 |
Table 2 Parameter discretization process
指数 | 离散方法 | 分层数 | 指数 | 离散方法 | 分层数 |
---|---|---|---|---|---|
TX10P | 自然断点分类法 | 9 | TNn | 等间隔分类法 | 9 |
TN10P | 等间隔分类法 | 7 | DTR | 分位数分类法 | 8 |
TX90P | 几何间隔分类法 | 10 | RX1day | 分位数分类法 | 10 |
TN90P | 分位数分类法 | 9 | RX5day | 自然断点分类法 | 10 |
TXx | 标准差分类法 | 9 |
指数 | 冷昼日数 (TX10P) | 冷夜日数 (TN10P) | 暖昼日数 (TX90P) | 暖夜日数 (TN90P) | 日最高气温极高值 (TXx) | 日最低气温极低值 (TNn) | 气温日较差 (DTR) | 单日最大降水量 (RX1day) | 连续5日最大降水量(RX5day) |
---|---|---|---|---|---|---|---|---|---|
解释力(q值) | 0.23 | 0.06 | 0.17 | 0.07 | 0.12 | 0.14 | 0.11 | 0.25 | 0.28 |
排序 | 3 | 9 | 4 | 8 | 6 | 5 | 7 | 2 | 1 |
Table 3 Explaining the variability of EVI by single extreme climate index
指数 | 冷昼日数 (TX10P) | 冷夜日数 (TN10P) | 暖昼日数 (TX90P) | 暖夜日数 (TN90P) | 日最高气温极高值 (TXx) | 日最低气温极低值 (TNn) | 气温日较差 (DTR) | 单日最大降水量 (RX1day) | 连续5日最大降水量(RX5day) |
---|---|---|---|---|---|---|---|---|---|
解释力(q值) | 0.23 | 0.06 | 0.17 | 0.07 | 0.12 | 0.14 | 0.11 | 0.25 | 0.28 |
排序 | 3 | 9 | 4 | 8 | 6 | 5 | 7 | 2 | 1 |
[1] | CHENG Q P, ZHONG F L, WANG P, 2021. Potential linkages of extreme climate events with vegetation and large-scale circulation indices in an endorheic river basin in northwest China[J]. Atmospheric Research, 247: 105256. |
[2] | FRICH P, ALEXANDER L V, DELLA-MARTA P, et al., 2002. Observed coherent changes in climatic extremes during the second half of the twentieth century[J]. Climate research, 19: 193-212. |
[3] | HE Y L, YAN W B, CAI Y, et al., 2022. How does the Net primary productivity respond to the extreme climate under elevation constraints in mountainous areas of Yunnan, China?[J]. Ecological Indicators, 138: 108817. |
[4] | JIANG H L, XU X, 2022. Impact of extreme climates on vegetation from multiple scales and perspectives in the Agro-pastural Transitional Zone of Northern China in the past three decades[J]. Journal of Cleaner Production, 372: 133459. |
[5] | LI C L, WANG J, HU R C, et al., 2018. Relationship between vegetation change and extreme climate indices on the Inner Mongolia Plateau, China, from 1982 to 2013[J]. Ecological Indicators, 89: 101-109. |
[6] | LI H, HU Y F, BATUNACUN, 2024. Responses of vegetation low-growth to extreme climate events on the Mongolian Plateau[J]. Global Ecology and Conservation, 56: e03292. |
[7] | LI J G, WANG Y, LIU L L, et al., 2022. Characteristics and trends of rainstorm activities and their impacts on seasonal vegetation variations in coastal China[J]. Ecological Indicators, 138: 108851. |
[8] | LIU G, LIU H Y, YIN Y, 2013. Global patterns of NDVI-indicated vegetation extremes and their sensitivity to climate extremes[J]. Environmental Research Letters, 8(2): 025009. |
[9] | PEARSON R G, PHILLIPS S J, LORANTY M M, et al., 2013. Shifts in Arctic vegetation and associated feedbacks under climate change[J]. Nature Climate Change, 3: 673-677. |
[10] | PIAO S L, ZHANG X P, CHEN A P, et al., 2019. The impacts of climate extremes on the terrestrial carbon cycle: A review[J]. Science China Earth Sciences, 62(10): 1551-1563. |
[11] | PIAO S L, WANG X H, PARK T, et al., 2020. Characteristics, drivers and feedbacks of global greening[J]. Nature Reviews Earth & Environment, 1: 14-27. |
[12] | SOLOMON S, QIN D, MANNING M, et al., 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press: 299-316. |
[13] | SONG Y Z, WANG J F, GE Y, et al., 2020. An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: Cases with different types of spatial data[J]. GIScience & Remote Sensing, 57: 593-610. |
[14] |
WAN S Q, XIA J Y, LIU W X, et al., 2009. Photosynthetic overcompensation under nocturnal warming enhances grassland carbon sequestration[J]. Ecology, 90(10): 2700-2710.
PMID |
[15] | WANG J F, ZHANG T L, FU B J, 2016. A measure of spatial stratified heterogeneity[J]. Ecological Indicators, 67: 250-256. |
[16] | WANG X Y, LI Y Q, WANG M M, et al., 2021. Changes in daily extreme temperature and precipitation events in mainland China from 1960 to 2016 under global warming[J]. International Journal of Climatology, 41(2): 1465-1483. |
[17] | XU X, JIANG H L, GUAN M X, et al., 2020. Vegetation responses to extreme climatic indices in coastal China from 1986 to 2015[J]. Science of The Total Environment, 744: 140784. |
[18] | YAMAMOTO Y, ICHII K, RYU Y, et al., 2023. Detection of vegetation drying signals using diurnal variation of land surface temperature: Application to the 2018 East Asia heatwave[J]. Remote Sensing of Environment, 291: 113572. |
[19] | YAN W B, HE Y L, CAI Y, et al., 2021. Relationship between extreme climate indices and spatiotemporal changes of vegetation on Yunnan Plateau from 1982 to 2019[J]. Global Ecology and Conservation, 31: e01813. |
[20] | YANG H J, TAO W J, MA Q M, et al., 2023. Compound hot extremes exacerbate forest growth decline in dry areas but not in humid areas in the Northern Hemisphere[J]. Agricultural and Forest Meteorology, 341: 109663. |
[21] | YIN J B, GENTINE P, SLATER L, et al., 2023. Future socio-ecosystem productivity threatened by compound drought-heatwave events[J]. Nature Sustainability, 6: 259-272. |
[22] | ZHAO X Y, TAN S C, LI Y P, et al., 2024. Quantitative analysis of fractional vegetation cover in southern Sichuan urban agglomeration using optimal parameter geographic detector model, China[J]. Ecological Indicators, 158: 111529. |
[23] | ZHENG L, LU J Z, LIU H, et al., 2023. Evidence of vegetation greening benefitting from the afforestation initiatives in China[J]. Geo-spatial Information Science, 27(3): 683-702. |
[24] | ZI S S, LI Y, ZHANG J W, et al., 2025. The biophysical and crop yield effects of irrigation and their changes in China’s drylands[J]. Agricultural Water Management, 313: 109471. |
[25] | 蔡博峰, 于嵘, 2009. 基于遥感的植被长时序趋势特征研究进展及评价[J]. 遥感学报, 13(6): 1170-1186. |
CAI B F, YU R, 2009. Advance and evaluation in the long time series vegetation trends research based on remote sensing[J]. Journal of Remote Sensing, 13(6): 1170-1186. | |
[26] | 曹永强, 李可欣, 任博, 等, 2022. 基于SPEI的辽宁省气象干旱特征及驱动因素分析[J]. 水利水电科技进展, 42(5): 28-36. |
CAO Y Q, LI K X, REN B, et al., 2022. Characteristics and driving factors analysis of meteorological drought in Liaoning Province based on SPEI[J]. Advances in Science and Technology of Water Resources, 42(5): 28-36. | |
[27] | 高滢, 孙虎, 徐崟尧, 等, 2022. 陕西省植被覆盖时空变化及其对极端气候的响应[J]. 生态学报, 42(3): 1022-1033. |
GAO Y, SUN H, XU Y Y, et al., 2022. Temporal and spatial variation of vegetation cover and its response to extreme climate in Shaanxi Province[J]. Acta Ecologica Sinica, 42(3): 1022-1033. | |
[28] |
龚郑洁, 雷勇, 钟露露, 等, 2024. 干旱胁迫下珠江流域植被响应的滞后效应及损失概率评估[J]. 应用生态学报, 35(4): 1083-1091.
DOI |
GONG Z J, LEI Y, ZHONG L L, et al., 2024. Assessment of the lagging effect of vegetation response and loss probability in the Pearl River basin under drought stress[J]. The Journal of Applied Ecology, 35(4): 1083-1091. | |
[29] |
胡宜昌, 董文杰, 何勇, 2007. 21世纪初极端天气气候事件研究进展[J]. 地球科学进展, 22(10): 1066-1075.
DOI |
HU Y C, DONG W J, HE Y, 2007. Progress of the study of extreme weather and climate events at the beginning of the twenty first century[J]. Advances in Earth Science, 22(10): 1066-1075.
DOI |
|
[30] |
李霞, 陈永昊, 陈喆, 等, 2024. 中国沿海地区植被NDVI时空变化及驱动力分析[J]. 生态环境学报, 33(2): 180-191.
DOI |
LI X, CHEN Y H, CHEN Z, et al., 2024. Analysis of spatio-temporal changes and driving vegetation NDVI in coastal areas of China[J]. Ecology and Environment Sciences, 33(2): 180-191.
DOI |
|
[31] | 李颖, 任家璇, 冯玉, 等, 2017. 近60年辽宁省极端气候事件趋势时空变化特征分析[J]. 灾害学, 32(1): 96-105. |
LI Y, REN J X, FENG Y, et al., 2017. Spatial and temporal characteristics of trends in extreme weather events in Liaoning Province during 1957-2014[J]. Journal of Catastrophology, 32(1): 96-105. | |
[32] | 刘艳伟, 王淑莹, 焦忠帅, 2021. 2000-2016年辽宁省NDVI时空变化及其与降水量的关系[J]. 排灌机械工程学报, 39(10): 1040-1045. |
LIU Y W, WANG S Y, JIAO Z S, 2021. Spatial and temporal variations of normalized differential vegetation index and its relationship with precipitation in Liaoning Province from 2000 to 2016[J]. Journal of Drainage and Irrigation Machinery Engineering, 39(10): 1040-1045. | |
[33] | 苏日罕, 郭恩亮, 王永芳, 等, 2023. 1982-2020年内蒙古地区极端气候变化及其对植被的影响[J]. 生态学报, 43(1): 419-431. |
SU R H, GUO E L, WANG Y F, et al., 2023. Extreme climate changes in the Inner Mongolia and their impacts on vegetation dynamics during 1982-2020[J]. Acta Ecologica Sinica, 43(1): 419-431. | |
[34] |
唐吉喆, 徐梦冉, 莫宇, 等, 2023. 生态地理分区视角下的辽宁省植被归一化植被指数的时空变化[J]. 应用生态学报, 34(12): 3271-3278.
DOI |
TANG J Z, XU M R, MO Y, et al., 2023. Spatial and temporal variation in normalized difference vegetation index of vegetation in Liaoning Province from the perspective of ecogeographic zoning[J]. Chinese Journal of Applied Ecology, 34(12): 3271-3278.
DOI |
|
[35] |
王劲峰, 徐成东, 2017. 地理探测器: 原理与展望[J]. 地理学报, 72(1): 116-134.
DOI |
WANG J F, XU C D, 2017. Geodetector: Principle and prospective[J]. Acta Geographica Sinica, 72(1): 116-134.
DOI |
|
[36] |
王晓利, 侯西勇, 2019. 1982-2014年中国沿海地区归一化植被指数(NDVI) 变化及其对极端气候的响应[J]. 地理研究, 38(4): 807-821.
DOI |
WANG X L, HOU X Y, 2019. Variation of normalized difference vegetation index and its response to extreme climate in coastal China during 1982-2014[J]. Geographical Research, 38(4): 807-821. | |
[37] | 王正兴, 刘闯, HUETE A, 2003. 植被指数研究进展: 从AVHRR-NDVI到MODIS-EVI[J]. 生态学报, 23(5): 979-987. |
WANG Z X, LIU C, HUETE A, 2003. From AVHRR-NDVI to MODIS-EVI: Advances in vegetation index research[J]. Acta Ecologica Sinica, 23(5): 979-987. | |
[38] | 吴欣宇, 朱秀芳, 2023. 中国不同植被区对极端气候的响应差异[J]. 生态学报, 43(24): 10202-10215. |
WU X Y, ZHU X F, 2023. Differential analysis of vegetation response to extreme climate in different vegetation regions of China[J]. Acta Ecologica Sinica, 43(24): 10202-10215. | |
[39] |
徐佳乐, 杨兴川, 赵文吉, 等, 2024. 气候变化背景下内蒙古中西部植被覆盖度演变特征研究[J]. 生态环境学报, 33(7): 1008-1018.
DOI |
XU J L, YANG X C, ZHAO W J, et al., 2024. Evolution characteristics of vegetation coverage in central and western inner mongolia under the background of climate change[J]. Ecology and Environment Sciences, 33(7): 1008-1018.
DOI |
|
[40] |
张晶, 郝芳华, 吴兆飞, 等, 2023. 植被物候对极端气候响应及机制[J]. 地理学报, 78(9): 2241-2255.
DOI |
ZHANG J, HAO F H, WU Z F, et al., 2023. Response of vegetation phenology to extreme climate and its mechanism[J]. Acta Geographica Sinica, 78(9): 2241-2255.
DOI |
|
[41] |
郑景云, 郝志新, 方修琦, 等, 2014. 中国过去2000年极端气候事件变化的若干特征[J]. 地理科学进展, 33(1): 3-12.
DOI |
ZHENG J Y, HAO Z X, FANG X Q, et al., 2014. Changing characteristics of extreme climate events during past 2000 years in China[J]. Progress in Geography, 33(1): 3-12.
DOI |
[1] | YU Qianru, PEI Sha, LIU Chunlan, QIAO Qing, ZHENG Fangyu, ZHU Linhong. Research on Assessing the Ecosystem Regulating Service Scarcity and Spatial Aggregation Characteristics in Beijing Based on a Multi-Dimensional Perspective [J]. Ecology and Environmental Sciences, 2025, 34(7): 1133-1146. |
[2] | GUO Zhao, SHI Yun, LIU Tieming, ZHANG Yuxin, YAN Yongzhi. Analysis of Spatiotemporal Patterns and Driving Factors of NPP on the Northern Slope of the Qinling Mountains from 2001 to 2020 [J]. Ecology and Environmental Sciences, 2025, 34(3): 401-410. |
[3] | ZHANG Baodong, WANG Biao, WU Yanlan, MENG Yu, XU Sheng, QIAN Zhenbing, QIN Jun. Analysis and Identification of Characteristics of Rural Black and Odorous Water Bodies in Anhui Province [J]. Ecology and Environmental Sciences, 2024, 33(8): 1257-1268. |
[4] | XU Jiale, YANG Xingchuan, ZHAO Wenji, YANG Zhiqiang, ZHONG Yixue, SHI Leyan, MA Pengfei. Evolution Characteristics of Vegetation Coverage in Central and Western Inner Mongolia under the Background of Climate Change [J]. Ecology and Environmental Sciences, 2024, 33(7): 1008-1018. |
[5] | LI Xia, CHEN Yonghao, CHEN Zhe, ZHANG Guozhuang, TANG Mengya. Analysis of Spatio-temporal Changes and Driving Vegetation NDVI in Coastal Areas of China [J]. Ecology and Environmental Sciences, 2024, 33(2): 180-191. |
[6] | TIAN Chengshi, SUN Ruixin. Spatial Heterogeneity and Its Influential Factors of Eco-environmental Quality in the Yangtze River Economic Belt: Based on Land Use Transformation of Production, Living and Ecological Spaces [J]. Ecology and Environmental Sciences, 2023, 32(7): 1173-1184. |
[7] | WU Chenyu, XU Fanfan, WEI Shibo, FAN Jingjing, LIU Guanpeng, WANG Kun. Study on Response of Surface Vegetation Cover to Climate Change in Weihe River Basin [J]. Ecology and Environmental Sciences, 2023, 32(5): 835-844. |
[8] | LIU Ziwei, GE Jiwen, WANG Yuehuan, YANG Shiyu, YAO Dong, XIE Jinlin. Variation Pattern and Influential Factors of Methane Flux in the Dajiuhu Peatland [J]. Ecology and Environmental Sciences, 2023, 32(4): 706-714. |
[9] | WANG Jiali, FENG Jingke, YANG Yuanzheng, ZU Jiaxing, CAI Wenhua, YANG Jian. Research on Spatial Relations between Impervious Surfaces and the Urban Thermal Environment in the Central Metropolitan Area of Nanning City [J]. Ecology and Environmental Sciences, 2023, 32(3): 525-534. |
[10] | LI Wenjing, HUANG Yuequn, HUANG Liangliang, LI Xiangtong, SU Qiongyuan, SUN Yangyan. Distribution Characteristics and Risk Assessment of Microplastics in Beibu Gulf Marine Fish [J]. Ecology and Environmental Sciences, 2023, 32(11): 1913-1921. |
[11] | YE Shen, WANG Peng, HUANG Yi, SHE Yuanyang, DING Mingjun. Urban Morphology and the Influence of the Spatial Heterogeneity of PM2.5 and O3 Pollution: The Case of the Yangtze River Delta [J]. Ecology and Environmental Sciences, 2023, 32(10): 1771-1784. |
[12] | RUAN Huihua, XU Jianhui, ZHANG Feifei. Spatiotemporal Changes of Vegetation and Land Surface Temperature during 2001 and 2020 in the Guangdong-Hong Kong-Macao Greater Bay Area of China [J]. Ecology and Environmental Sciences, 2022, 31(8): 1510-1520. |
[13] | CHEN Wenyu, XIA Lihua, XU Guoliang, YU Shiqin, CHEN Hang, CHEN Jinfeng. Dynamic Variation of NDVI and Its Influencing Factors in the Pearl River Basin from 2000 to 2020 [J]. Ecology and Environmental Sciences, 2022, 31(7): 1306-1316. |
[14] | SUN Jianbo, CHANG Wenjun, LI Wenbin, ZHANG Shiqing, LI Chunqiang, PENG Ming. Dynamics of Soil Microbial Biomass and Enzyme Activities in Rhizosphere Soil at Different Growing Stages of Banana [J]. Ecology and Environmental Sciences, 2022, 31(6): 1169-1174. |
[15] | HE Rui, JIANG Ran, YANG Fang, ZHANG Xinfeng, LIN Jianluan, ZHU Xiaoping, PENG Songyao. Characteristics of Meso-zooplankton Community and Its Relationship with Environmental Factors in Sea Water near Maoming [J]. Ecology and Environmental Sciences, 2022, 31(1): 142-150. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn