Ecology and Environment ›› 2025, Vol. 34 ›› Issue (2): 256-267.DOI: 10.16258/j.cnki.1674-5906.2025.02.008
• Research Article【Environmental Science】 • Previous Articles Next Articles
ZHAO Lejun1,2(), WANG Shiyao3,4,5, ZHAO Ziyu3,4,5, HONG Xing3,4,5, LI Fuxing3,4,5,*(
), WU Jiayi3,4,5, HUA Jingyu3,4,5
Received:
2024-07-30
Online:
2025-02-18
Published:
2025-03-03
Contact:
LI Fuxing
赵乐鋆1,2(), 王诗瑶3,4,5, 赵子渝3,4,5, 洪星3,4,5, 李夫星3,4,5,*(
), 吴佳仪3,4,5, 华婧妤3,4,5
通讯作者:
李夫星
作者简介:
赵乐鋆(2002年生),男,硕士研究生,主要从事大气遥感、生态系统碳循环研究。E-mail: geozly20020611@163.com
基金资助:
CLC Number:
ZHAO Lejun, WANG Shiyao, ZHAO Ziyu, HONG Xing, LI Fuxing, WU Jiayi, HUA Jingyu. Spatial and Temporal Variation of AOD in Seven Provinces and Cities of North China Plain from 2008 to 2022 and Its Main Influencing Factors[J]. Ecology and Environment, 2025, 34(2): 256-267.
赵乐鋆, 王诗瑶, 赵子渝, 洪星, 李夫星, 吴佳仪, 华婧妤. 2008-2022年华北平原七省市AOD时空变化特征及主要影响因素分析[J]. 生态环境学报, 2025, 34(2): 256-267.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2025.02.008
β | Z | 变化趋势特征 |
---|---|---|
β>0 | 2.58<|Z| | 极显著增加 |
1.96<|Z|≤2.58 | 显著增加 | |
1.65<|Z|≤1.96 | 微显著增加 | |
|Z|<1.65 | 不显著增加 | |
β=0 | Z | 无变化 |
β<0 | |Z|<1.65 | 不显著减少 |
1.65<|Z|≤1.96 | 微显著减小 | |
1.96<|Z|≤2.58 | 显著减小 | |
2.58<|Z| | 极显著减少 |
Table1 Change trend and significance test judgment table
β | Z | 变化趋势特征 |
---|---|---|
β>0 | 2.58<|Z| | 极显著增加 |
1.96<|Z|≤2.58 | 显著增加 | |
1.65<|Z|≤1.96 | 微显著增加 | |
|Z|<1.65 | 不显著增加 | |
β=0 | Z | 无变化 |
β<0 | |Z|<1.65 | 不显著减少 |
1.65<|Z|≤1.96 | 微显著减小 | |
1.96<|Z|≤2.58 | 显著减小 | |
2.58<|Z| | 极显著减少 |
因子 | 2008-2022年平均 | 2008年 | 2015年 | 2022年 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
q值 | 大小排序 | q值 | 大小排序 | q值 | 大小排序 | q值 | 大小排序 | ||||
X1 | 0.607 | 1 | 0.488 | 1 | 0.581 | 1 | 0.475 | 2 | |||
X2 | 0.318 | 3 | 0.149 | 6 | 0.251 | 3 | 0.427 | 3 | |||
X3 | 0.221 | 5 | 0.137 | 7 | 0.242 | 4 | 0.180 | 7 | |||
X4 | 0.091 | 8 | 0.020 | 8 | 0.085 | 7 | 0.214 | 6 | |||
X5 | 0.531 | 2 | 0.461 | 2 | 0.507 | 2 | 0.507 | 1 | |||
X6 | 0.135 | 7 | 0.236 | 3 | 0.082 | 8 | 0.259 | 4 | |||
X7 | 0.194 | 6 | 0.157 | 5 | 0.185 | 5 | 0.176 | 8 | |||
X8 | 0.223 | 4 | 0.221 | 4 | 0.155 | 6 | 0.235 | 5 |
Table 2 Single factor detection results
因子 | 2008-2022年平均 | 2008年 | 2015年 | 2022年 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
q值 | 大小排序 | q值 | 大小排序 | q值 | 大小排序 | q值 | 大小排序 | ||||
X1 | 0.607 | 1 | 0.488 | 1 | 0.581 | 1 | 0.475 | 2 | |||
X2 | 0.318 | 3 | 0.149 | 6 | 0.251 | 3 | 0.427 | 3 | |||
X3 | 0.221 | 5 | 0.137 | 7 | 0.242 | 4 | 0.180 | 7 | |||
X4 | 0.091 | 8 | 0.020 | 8 | 0.085 | 7 | 0.214 | 6 | |||
X5 | 0.531 | 2 | 0.461 | 2 | 0.507 | 2 | 0.507 | 1 | |||
X6 | 0.135 | 7 | 0.236 | 3 | 0.082 | 8 | 0.259 | 4 | |||
X7 | 0.194 | 6 | 0.157 | 5 | 0.185 | 5 | 0.176 | 8 | |||
X8 | 0.223 | 4 | 0.221 | 4 | 0.155 | 6 | 0.235 | 5 |
因子 | 2008-2022年 | 2008-2015年 | 2015-2022年 | |||||
---|---|---|---|---|---|---|---|---|
相关 系数 | 相关性强弱排序 | 相关 系数 | 相关性强弱排序 | 相关 系数 | 相关性强弱排序 | |||
X1 | −0.69 | 1 | −0.38 | 1 | −0.42 | 3 | ||
X2 | −0.23 | 5 | −0.11 | 5 | 0.08 | 6 | ||
X3 | 0.13 | 6 | −0.07 | 7 | −0.26 | 5 | ||
X4 | −0.02 | 8 | 0.03 | 8 | 0.05 | 8 | ||
X5 | −0.04 | 7 | 0.11 | 5 | −0.06 | 7 | ||
X6 | −0.62 | 2 | −0.23 | 3 | −0.62 | 1 | ||
X7 | 0.46 | 4 | 0.14 | 4 | 0.41 | 4 | ||
X8 | 0.58 | 3 | 0.27 | 2 | 0.54 | 2 |
Table 3 Correlation analysis results
因子 | 2008-2022年 | 2008-2015年 | 2015-2022年 | |||||
---|---|---|---|---|---|---|---|---|
相关 系数 | 相关性强弱排序 | 相关 系数 | 相关性强弱排序 | 相关 系数 | 相关性强弱排序 | |||
X1 | −0.69 | 1 | −0.38 | 1 | −0.42 | 3 | ||
X2 | −0.23 | 5 | −0.11 | 5 | 0.08 | 6 | ||
X3 | 0.13 | 6 | −0.07 | 7 | −0.26 | 5 | ||
X4 | −0.02 | 8 | 0.03 | 8 | 0.05 | 8 | ||
X5 | −0.04 | 7 | 0.11 | 5 | −0.06 | 7 | ||
X6 | −0.62 | 2 | −0.23 | 3 | −0.62 | 1 | ||
X7 | 0.46 | 4 | 0.14 | 4 | 0.41 | 4 | ||
X8 | 0.58 | 3 | 0.27 | 2 | 0.54 | 2 |
[1] | ANSARI K, RAMACHANDRAM S, 2023. Aerosol characteristics over Indo-Gangetic Plain from ground-based AERONET and MERRA-2/ CAMS model simulations[J]. Atmospheric Environment, 293(1): 119434. |
[2] | CHE H Z, ZHANG X Y, CHEN H B, et al., 2009. Instrument calibration and aerosol optical depth validation of the China Aerosol remote sensing network[J]. Journal of Geophysical Research: Atmospheres, 114(D3): 03206. |
[3] | CHE H Z, WANG Y Q, SUN J Y, et al., 2013. Variation of aerosol optical properties over Taklimakan Desert of China[J]. Aerosol and Air Quality Research, 13(2): 777-785. |
[4] | CHEN X, LI K, YANG T, et al., 2024. Trends and drivers of aerosol vertical distribution over China from 2013 to 2020: Insights from integrated observations and modeling[J]. The Science of the Total Environment, 917: 170485. |
[5] | DENG C X, QIN C Y, LI Z W, et al., 2022. Spatiotemporal variations of PM2.5 pollution and its dynamic relationships with meteorological conditions in Beijing-Tianjin-Hebei region[J]. Chemosphere, 301: 134640. |
[6] | DANIELS J, LIANG L, BENEDICT B K, et al., 2024. Satellite-based aerosol optical depth estimates over the continental U.S. during the 2020 wildfire season: Roles of smoke and land cover[J]. The Science of the Total Environment, 921: 171122. |
[7] | GROSSMAN G M, KRUEGER A B, 1995. Economic growth and the environment[J]. The Quarterly Journal of Economics, 110(2): 353-377. |
[8] | HE Q Q, ZHANG M, BO H, 2016. Spatio-temporal variation and impact factors analysis of satellite-based aerosol optical depth over China from 2002 to 2015[J]. Atmospheric Environment, 129: 79-90. |
[9] | HE Q Q, GU Y F, ZHANG M, 2018. Spatiotemporal patterns of aerosol optical depth throughout China from 2003 to 2016[J]. Science of the Total Environment, 653: 23-35. |
[10] | JING Z Y, LIU P F, WANG T H, et al., 2020. Effects of meteorological factors and anthropogenic precursors on PM2.5 concentrations in cities in China[J]. Sustainability, 12(9): 3550. |
[11] | JIANG J, LIU J X, JIAO D L, et al., 2023. Evaluation of MODIS DT, DB, and MAIAC aerosol products over different land cover types in the Yangtze River Delta of China[J]. Remote Sensing, 15(1): 275. |
[12] | LEI Y, ZHANG Q, HE B K, et al., 2011. Primary anthropogenic aerosol emission trends for China, 1990-2005[J]. Atmospheric Chemistry and Physics, 11(220): 931-954. |
[13] | LYAPUSTIN A, WANG Y J, KORKIN S, et al., 2018. MODIS Collection 6 MAIAC algorithm[J]. Atmospheric Measurement Techniques, 11(10): 5741-5765. |
[14] | LIU Y Y, HU Z Z, WU R G, 2020. Was the extremely wet winter of 2018/2019 in the lower reach of the Yangtze River driven by El Niño-Southern Oscillation?[J]. International Journal of Climatology, 40(15): 6441-6457. |
[15] |
MAHOWLD N, 2011. Aerosol indirect effect on biogeochemical cycles and climate[J]. Science, 334(6057): 794-796.
DOI PMID |
[16] | QIN W M, LIU Y, WANG L C, et al., 2018. Characteristic and driving factors of aerosol optical depth over China’s mainland during 1980-2017[J]. Remote Sensing, 10(7): 1064. |
[17] | SONG Y Z, WANG J F, GE Y, et al., 2020. An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: Cases with different types of spatial data[J]. GIScience & Remote Sensing, 57(5): 593-610. |
[18] | SHAO M, XU X Y, LU Y T, et al., 2022. Spatio-temporally differentiated impacts of temperature inversion on surface PM2.5 in eastern China[J]. The Science of the Total Environment, 855: 158785. |
[19] | TANG J S, FU D J, SU F Z, et al., 2024. Drivers, Trends, and Patterns of Changing Vegetation-greenness in Nansha Islands, China from 2016 to 2022[J]. Chinese Geographical Science, 34(4): 662-673. |
[20] | WANG J F, ZHANG T L, FU B J, 2016. A measure of spatial stratified heterogeneity[J]. Ecological Indicators, 67: 250-256. |
[21] | WANG H Y, QIN F, XU C D, et al., 2021. Evaluating the suitability of urban development land with a Geodetector[J]. Ecological Indicators, 123: 107339. |
[22] | WANG P, TANG Q X, ZHU Y X, et al., 2022. Validation and analysis of MAIAC AOD aerosol products in East Asia from 2011 to 2020[J]. Remote Sensing, 14(22): 5735. |
[23] | WANG J, LIU Y S, CHEN L, et al., 2023. Validation and calibration of aerosol optical depth and classification of aerosol types based on multi-source data over China[J]. The Science of the Total Environment, 903: 166603. |
[24] | WANG Z D, LI H Y, GUO P, et al., 2024. VDCALC framework: A comprehensive approach for assessing vegetation dynamics[J]. Ecological Indicators, 165: 112167. |
[25] | 安晓丹, 张佳华, 刘学锋, 等, 2016. 华北平原夏收期间气溶胶卫星遥感探测分析[J]. 环境科学学报, 36(9): 3386-3392. |
AN X D, ZHANG J H, LIU X F, et al., 2016. Aerosol detection analysis from satellite during the harvest season over north China Plain[J]. Acta Scientiae Circumstantiae, 36(9): 3386-3392. | |
[26] | 陈香月, 丁建丽, 王敬哲, 等, 2019. 艾比湖流域气溶胶光学厚度时空演变及影响因素[J]. 环境科学, 40(11): 4824-4832. |
CHEN X Y, DING J L, WANG J Z, et al., 2019. Spatiotemporal evolution and driving mechanism of aerosol optical depth in the Ebinur Lake Basin[J]. Environmental Science, 40(11): 4824-4832. | |
[27] | 陈翔, 汪洋, 周佩, 等, 2023. 中国地区MODIS Terra/Aqua MAIAC气溶胶光学厚度(AOD)产品反演误差对比分析[J]. 环境科学学报, 43(7): 220-232. |
CHEN X, WANG Y, ZHOU P, et al., 2023. Comparative analysis of retrieval errors of MODIS Terra/Aqua MAIAC aerosol optical depth (AOD) products in China[J]. Acta Scientiae Circumstantiae, 43(7): 220-232. | |
[28] | 陈香月, 丁建丽, 王敬哲, 等, 2023. MODIS MAIAC高分辨率气溶胶光学厚度产品在干旱区的适用性研究[J]. 遥感学报, 27(2): 406-419. |
CHEN X Y, DING J L, WANG J Z, et al., 2023. Validation of the fine resolution of the MODIS MAIAC aerosol optical depth product over arid areas[J]. National Remote Sensing Bulletin, 27(2): 406-419. | |
[29] |
董洁芳, 邓椿, 张仲伍, 2023. 渭河流域PM2.5时空演化及人口暴露风险[J]. 生态环境学报, 32(6): 1078-1088.
DOI |
DONG J F, DENG C, ZHANG Z W, 2023. Spatio-temporal evolution and population exposure risk to PM2.5 in the Weihe River Basin[J]. Ecology and Environmental Sciences, 32(6): 1078-1088. | |
[30] | 高琦, 郭新成, 孟妮娜, 等, 2021. 京津冀气溶胶时空变化特征及潜在来源分析[J]. 科学技术与工程, 21(30): 13185-13195. |
GAO Q, GUO X C, MENG N N, et al., 2021. Analysis on characteristics and potential sources of aerosols in Beijing-Tianjin- Hebei region[J]. Science Technology and Engineering, 21(30): 13185-13195. | |
[31] | 高文晶, 程诺, 张露月, 等, 2024. 基于参数最优地理探测器的福建省植被NPP时空分异及驱动力探究[J]. 西北林学院学报, 39(4): 120-130. |
GAO W J, CHENG N, ZHANG L Y, et al., 2024. Spatio-Temporal differentiation and driving factors of vegetation NPP in Fujian province based on optimal parameter geographical detector[J]. Journal of Northwest Forestry University, 39(4): 120-130. | |
[32] | 郭霖, 孟飞, 马明亮, 2022. 华北平原AOD时空演化与影响因素[J]. 环境科学, 43(7): 3483-3493. |
GUO L, MENG F, MA M L, 2022. Spatiotemporal variation and influencing factors of AOD in the north China Plain[J]. Environmental Science, 43(7): 3483-3493. | |
[33] | 景悦, 孙艳玲, 付宏臣, 等, 2018. 2010-2016年京津冀AOD时空变化及其影响因子分析[J]. 环境科学与技术, 41(8): 104-113. |
JING Y, SUN Y L, FU H C, et al., 2018. Temporal and spatial variation of aerosol optical depth and analysis of influencing factors in Beijing-Tianjin-Hebei region from 2010 to 2016[J]. Environmental Science & Technology, 41(8): 104-113. | |
[34] | 景悦, 孙艳玲, 高爽, 等, 2020. 京津冀地区AOD时空变化及影响因子的地理探测[J]. 干旱区地理, 43(1): 87-98. |
JING Y, SUN Y L, GAO S, et al., 2020. Spatiotemporal variations of AOD and geographical detection of its influence factors in Beijing- Tianjin-Hebei region[J]. Arid Land Geography, 43(1): 87-98. | |
[35] | 刘莹, 林爱文, 覃文敏, 等, 2019. 1990-2017年中国地区气溶胶光学厚度的时空分布及其主要影响类型[J]. 环境科学, 40(6): 2572-2581. |
LIU Y, LIN A W, QIN W M, et al., 2019. Spatial-temporal distribution of aerosol optical depth and its main influence types in China during 1990-2017[J]. Environmental Science, 40(6): 2572-2581. | |
[36] | 刘海知, 郭海燕, 马振峰, 等, 2019. 2001-2017年全国气溶胶光学厚度时空分布及变化趋势[J]. 环境科学, 40(9): 3886-3897. |
LIU H Z, GUO H Y, MA Z F, et al., 2019. Temporal-Spatial characteristics and variability in aerosol optical depth over China during 2001-2017[J]. Environmental Science, 40(9): 3886-3897. | |
[37] | 刘朋, 崔耀平, 崔洋, 等, 2022. 2000-2020年华北平原耕地综合价值及其时空变化[J]. 水土保持通报, 42(5): 275-282. |
LIU P, CUI Y P, CUI Y, et al., 2022. Comprehensive value of cultivated land and its spatio-temporal changes in North China Plain during 2000-2020[J]. Bulletin of Soil and Water Conservation, 42(5): 275-282. | |
[38] | 陆忠奇, 李京龙, 何清, 等, 2022. 南疆地区AOD时空分布特征及气象影响因素分析[J]. 环境科学学报, 42(3): 309-321. |
LU Z Q, LI J L, HE Q, et al., 2022. Spatiotemporal distribution of AOD in southern Xinjiang and meteorological influencing factors[J]. Acta Scientiae Circumstantiae, 42(3): 309-321. | |
[39] |
李霞, 陈永昊, 陈喆, 等, 2024. 中国沿海地区植被NDVI时空变化及驱动力分析[J]. 生态环境学报, 33(2): 180-191.
DOI |
LI X, CHEN Y H, CHEN Z, et al., 2024. Analysis of spatio-temporal changes and driving vegetation NDVI in coastal areas of China[J]. Ecology and Environment Sciences, 33(2): 180-191.
DOI |
|
[40] | 施智勇, 谢慧黎, 王圳峰, 等, 2023. 基于参数最优地理探测器的福州市生境质量时空格局与驱动力分析[J]. 环境工程技术学报, 13(5): 1921-1930. |
SHI Z Y, XIE H L, WANG Z F, et al., 2023. Analysis of spatiotemporal heterogeneity of habitat quality and their driving factors based on optimal parameters-based geographic detector for Fuzhou City, China[J]. Journal of Environmental Engineering Technology, 13(5): 1921-1930. | |
[41] | 宋春杰, 魏强, 范丽行, 等, 2022. 基于PM2.5站点监测数据的京津冀AOD补值研究[J]. 中国环境科学, 42(7): 3000-3012. |
SONG C J, WEI Q, FAN L H, et al., 2022. Filling the missing data of AOD using the situ PM2.5 monitoring measurements in the Beijing- Tianjin-Hebei region[J]. China Environmental Science, 42(7): 3000-3012. | |
[42] | 孙忠保, 程先富, 夏晓圣, 2021. 中国气溶胶光学厚度的时空分布及影响因素分析[J]. 中国环境科学, 41(10): 4466-4475. |
SUN Z B, CHENG X F, XIA X S, 2021. Spatial-temporal distribution and impact factors of aerosol optical depth over China[J]. China Environmental Science, 41(10): 4466-4475. | |
[43] | 王奇, 李明全, 2012. 基于DEA方法的我国大气污染治理效率评价[J]. 中国环境科学, 32(5): 942-946. |
WANG Q, LI M Q, 2012. Study on air pollution abatement efficiency of China by using DEA[J]. China Environmental Science, 32(5): 942-946. | |
[44] |
王劲峰, 徐成东, 2017. 地理探测器: 原理与展望[J]. 地理学报, 72(1): 116-134.
DOI |
WANG J F, XU C D, 2017. Geodetector: Principle and prospective[J]. Acta Geographica Sinica, 72(1): 116-134.
DOI |
|
[45] | 王韵杰, 张少君, 郝吉明, 2019. 中国大气污染治理: 进展·挑战·路径[J]. 环境科学研究, 32(10): 1755-1762. |
WANG Y J, ZHANG S J, HAO J M, 2019. Air pollution control in China: Progress, challenges and future pathways[J]. Research of Environmental Sciences, 32(10): 1755-1762. | |
[46] | 王利, 徐翠玲, 徐甫, 等, 2021. 2011-2020年华北平原气溶胶光学厚度时空分布特征及潜在源分析[J]. 地球科学与环境学报, 43(6): 1018-1032. |
WANG L, XU C L, XU F, et al., 2021. Temporal and spatial distribution characteristics, and potential source analysis of aerosol optical depth in north China Plain from 2011 to 2020[J]. Journal of Earth Sciences and Environment, 43(6): 1018-1032. | |
[47] | 王薇, 邬光剑, 范丽行, 等, 2024. 2000-2020年雅鲁藏布江中部流域大气气溶胶时空变化及影响因素[J]. 环境科学, 45(12): 7003-7011. |
WANG W, WU G J, FAN L H, et al., 2024. Spatiotemporal variation and influencing factors of atmospheric aerosol in the middle region of the Yarlung Zangbo River Basin from 2000 to 2020[J]. Environmental Science, 45(12): 7003-7011. | |
[48] | 王相男, 张喆, 刘方青, 2024. 天山北坡城市群PM2.5浓度时空分布特征及影响因素分析[J]. 环境科学, 45(3): 1315-1327. |
WANG X N, ZHANG Z, LIU F Q, 2024. Analysis of Spatio-temporal distribution characteristics and influencing factors of PM2.5 concentration in urban agglomerations on the northern slope of Tianshan Mountains[J]. Environmental Science, 45(3): 1315-1327. | |
[49] | 魏强, 宋春杰, 李梦诗, 等, 2024. 结合地基PM2.5观测资料构建京津冀MODIS AOD完整数据集[J]. 环境科学学报, 44(5): 368-383. |
WEI Q, SONG C J, LI M S, et al., 2024. Building of the complete MODIS AOD dataset for Beijing-Tianjin-Hebei region based on ground-based PM2.5 observation data[J]. Acta Scientiae Circumstantiae, 44(5): 368-383. | |
[50] | 徐勇, 郭振东, 郑志威, 等, 2023. 运用地理探测器研究京津冀城市群PM2.5浓度变化及影响因素[J]. 环境科学研究, 36(4): 649-659. |
XU Y, GUO Z D, ZHENG Z W, et al., 2023. Study of the PM2.5 concentration variation and its influencing factors in the Beijing-Tianjin-Hebei Urban Agglomeration using Geo-detector[J]. Research of Environmental Sciences, 36(4): 649-659. | |
[51] | 张亮林, 潘竟虎, 张大弘, 2018. 基于MODIS数据的中国气溶胶光学厚度时空分布特征[J]. 环境科学学报, 38(11): 4431-4439. |
ZHANG L L, PAN J H, ZHANG D H, 2018. Spatio-Temporal distribution characteristics of aerosol optical depths in China based on MODIS data[J]. Acta Scientiae Circumstantiae, 38(11): 4431-4439. | |
[52] |
张素梅, 杜惠琳, 刘良, 等, 2020. 基于Landsat时间序列遥感数据的华北平原农田火烧迹地检测与制图[J]. 地理科学, 40(1): 149-157.
DOI |
ZHANG S M, DU H L, LIU L, et al., 2020. Detecting and mapping burned areas for croplands based on landsat time series remote sensing data in North China Plain[J]. Scientia Geographica Sinica, 40(1): 149-157.
DOI |
|
[53] | 张若婧, 陈跃红, 张晓祥, 等, 2021. 基于参数最优地理探测器的江西省山洪灾害时空格局与驱动力研究[J]. 地理与地理信息科学, 37(4): 72-80. |
ZHANG R J, CHEN Y H, ZHANG X X, et al., 2021. Spatial-Temporal pattern and driving factors of flash flood disasters in Jiangxi province analyzed by optimal parameters-based geographical detector[J]. Geography and Geo-Information Science, 37(4): 72-80. | |
[54] | 郑玉蓉, 王旭红, 张秀, 等, 2021. 基于Landsat数据的关中盆地腹地AOD时空格局及城市化对其影响[J]. 环境科学, 42(6): 2699-2712. |
ZHENG Y R, WANG X H, ZHANG X, et al., 2021. Spatiotemporal distribution of aerosol optical depth based on landsat data in the hinterland of the Guanzhong Basin and its relationship with urbanization[J]. Environmental Science, 42(6): 2699-2712. |
[1] | WANG Jiechun, DENG Yujiao, ZHU Huaiwei, KONG Yunqi. Spatiotemporal Variations of Vegetation NPP of Different Ecosystems in Guangdong Province and Its Response to Climate Factors [J]. Ecology and Environment, 2024, 33(6): 831-840. |
[2] | ZHANG Miao, WANG Guixia, WANG Changwei, HE Yanyun, XU Yanfang, LI Qi, XU Yang, ZHANG Junxiao, ZHANG Guiqin. Characteristics and Source Analysis of Black Carbon Pollution Changes in Ji’nan City [J]. Ecology and Environment, 2024, 33(4): 560-572. |
[3] | LI Xia, CHEN Yonghao, CHEN Zhe, ZHANG Guozhuang, TANG Mengya. Analysis of Spatio-temporal Changes and Driving Vegetation NDVI in Coastal Areas of China [J]. Ecology and Environment, 2024, 33(2): 180-191. |
[4] | LI Qing, ZHANG Mengyue, YU Mingqiao, LI Xiaoxuan, CHANG Ming, CHEN Libin, DING Sen. Community Structure and Influencing Factors of Macroinvertebrate in Urban Rivers of Dongguan [J]. Ecology and Environment, 2024, 33(1): 101-110. |
[5] | HAO Yongpei, SONG Xiaowei, ZHAO Wenjun, XIANG Famin. Spatiotemporal Distribution of Air Pollution and Correlation Factors in Fenwei Plain [J]. Ecology and Environment, 2022, 31(3): 512-523. |
[6] | DENG Yujiao, WANG Jiechun, XU Jie, WU Yongqi, CHEN Jingyang. Spatiotemporal Variation of Vegetation Carbon Sequestration and Its Meteorological Contribution in Guangdong Province [J]. Ecology and Environment, 2022, 31(1): 1-8. |
[7] | LI Shengzeng, HAO Saimei, TAN Luyao, ZHANG Huaicheng, XU Biao, GU Shumao, PAN Guang, WANG Shuyan, YAN Huaizhong, ZHANG Guiqin. Characteristics of Spatiotemporal Variation, and Factors Influencing Secondary Components in PM2.5 in Ji'nan [J]. Ecology and Environment, 2022, 31(1): 100-109. |
[8] | LIU Qiang, YANG Zhongyang, CHEN Yiqing, LEI Jinrui, CHEN Zongzhu, CHEN Xiaohua. Multi-scenario Simulation of Land Use Change and Its Eco-environmental Effect in Hainan Island Based on CA-Markov Model [J]. Ecology and Environment, 2021, 30(7): 1522-1531. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn