Ecology and Environmental Sciences ›› 2025, Vol. 34 ›› Issue (10): 1519-1531.DOI: 10.16258/j.cnki.1674-5906.2025.10.003
• Papers on “Emerging Pollutants” • Previous Articles Next Articles
WANG Caiqin1(), YANG Qianying2, ZHOU Mingyu2, ZHANG Daoyong1, PAN Xiangliang2,*(
)
Received:
2025-01-09
Online:
2025-10-18
Published:
2025-09-26
汪彩琴1(), 杨潜英2, 周名玉2, 张道勇1, 潘响亮2,*(
)
通讯作者:
E-mail: 作者简介:
汪彩琴(1992年生),女,讲师,博士,主要从事环境地球化学过程和土壤污染修复等研究。E-mail: cqwang92@zjut.edu.cn
基金资助:
CLC Number:
WANG Caiqin, YANG Qianying, ZHOU Mingyu, ZHANG Daoyong, PAN Xiangliang. Research Progress on the Effects of Microplastics on Pollutant Behavior and Element Cycling in Coastal Wetlands[J]. Ecology and Environmental Sciences, 2025, 34(10): 1519-1531.
汪彩琴, 杨潜英, 周名玉, 张道勇, 潘响亮. 微塑料对滨海湿地中污染物行为和元素循环的影响研究进展[J]. 生态环境学报, 2025, 34(10): 1519-1531.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2025.10.003
Figure 1 Distribution of microplastic abundance in global coastal wetlands (Median value used for microplastic abundance) (Zhou, 2016; Dalvand et al., 2023)
湿地类型 | 地区 | 丰度/(n∙kg−1) | 主要形状及占比 | 主要种类 | 主要粒径/mm | 参考文献 |
---|---|---|---|---|---|---|
海滩 | 旅游海滩 | 344 | 泡沫,95.2% | - | 1-2 | Zhou et al., |
未开发的海滩 | 1301.6 | 薄片,88.4% | - | <1 | Zhou et al., | |
坎恩吉欧海滩 | 31990-92560 | 纤维 | PE | - | Khuyen et al., | |
河口 | 德文特河河口 | 2430 | 纤维薄片 | - | - | Willis et al., |
晋江河口 | 245-575 | 纤维 | PE,PET | - | Deng et al., | |
红树林 | 红树林自然保护区 | 35.95 | 纤维,泡沫 | PP,PE | - | Yu et al., |
福田红树林(内部) | 1920±509 | 纤维,78.79%±4.59% | PET,43.83%±6.12% | - | Duan et al., | |
海桑(内部) | 4754±416 | 纤维,88.90%±3.17% | PET,54.19%±2.14% | - | Duan et al., | |
深圳红树林 | 851 | 纤维,碎片 | PP−PE共聚体 | - | Zuo et al., | |
晋江红树林 | 12393.4 | 纤维状,45% | PET,52% | 0.038-0.5 | Hu et al., | |
海草 | 利马河口 | 250-2500 | 纤维 | PE | <3 | Almeida et al., |
盐沼 | 中国东南部河口盐沼 | 9.6-130.725 | 碎片,泡沫 | PE、PP | <5 | Yao et al., |
盐城 | 100-500 | 纤维,79%-80% | PE,50%-52% | - | Feng et al., | |
连云港 | 0-1500 | 纤维,79%-80% | PS,24%-26% | - | Feng et al., |
Table 1 Microplastic abundance, main shapes, microplastic types and sizes under different wetland types
湿地类型 | 地区 | 丰度/(n∙kg−1) | 主要形状及占比 | 主要种类 | 主要粒径/mm | 参考文献 |
---|---|---|---|---|---|---|
海滩 | 旅游海滩 | 344 | 泡沫,95.2% | - | 1-2 | Zhou et al., |
未开发的海滩 | 1301.6 | 薄片,88.4% | - | <1 | Zhou et al., | |
坎恩吉欧海滩 | 31990-92560 | 纤维 | PE | - | Khuyen et al., | |
河口 | 德文特河河口 | 2430 | 纤维薄片 | - | - | Willis et al., |
晋江河口 | 245-575 | 纤维 | PE,PET | - | Deng et al., | |
红树林 | 红树林自然保护区 | 35.95 | 纤维,泡沫 | PP,PE | - | Yu et al., |
福田红树林(内部) | 1920±509 | 纤维,78.79%±4.59% | PET,43.83%±6.12% | - | Duan et al., | |
海桑(内部) | 4754±416 | 纤维,88.90%±3.17% | PET,54.19%±2.14% | - | Duan et al., | |
深圳红树林 | 851 | 纤维,碎片 | PP−PE共聚体 | - | Zuo et al., | |
晋江红树林 | 12393.4 | 纤维状,45% | PET,52% | 0.038-0.5 | Hu et al., | |
海草 | 利马河口 | 250-2500 | 纤维 | PE | <3 | Almeida et al., |
盐沼 | 中国东南部河口盐沼 | 9.6-130.725 | 碎片,泡沫 | PE、PP | <5 | Yao et al., |
盐城 | 100-500 | 纤维,79%-80% | PE,50%-52% | - | Feng et al., | |
连云港 | 0-1500 | 纤维,79%-80% | PS,24%-26% | - | Feng et al., |
微塑料类型 | 粒径 | 有机污染物类型 | 影响 | 参考文献 |
---|---|---|---|---|
PS | 1、10、100 μm | 菲(PHE) | 共暴露提高了联合毒性 | Xu et al., |
MP/NPs | MP:0.5、5.0、50 μm;NPs:0.05 μm | 环丙沙星(CIP) | 拮抗毒性 | You et al., |
MPs | - | HOCs(PAHs和PCBs) | PAH通过MP生物放大; POPs通过MP生物放大和易位 | Diepens et al., |
MPs | 100-500 μm | PCBs | PCBs的生物利用度受MP的影响 | Grigorakis et al., |
PE | 0.5-1.0 μm | 磷酸三(2−氯乙基)酯(TCEP) | PE和TCEP的共暴露导致联合毒性提高 | Deng et al., |
PS | 44 nm | 多环芳烃(PAH) | PS降低PAHs的生物累积和生物利用度 | Trevisan et al., |
LDPE | <60 μm | 菲(PHE) | PE改变了PHE的生物利用度 | Karami et al., |
Table 2 Effects of microplastics on environmental behavior of organic pollutants in coastal wetlands
微塑料类型 | 粒径 | 有机污染物类型 | 影响 | 参考文献 |
---|---|---|---|---|
PS | 1、10、100 μm | 菲(PHE) | 共暴露提高了联合毒性 | Xu et al., |
MP/NPs | MP:0.5、5.0、50 μm;NPs:0.05 μm | 环丙沙星(CIP) | 拮抗毒性 | You et al., |
MPs | - | HOCs(PAHs和PCBs) | PAH通过MP生物放大; POPs通过MP生物放大和易位 | Diepens et al., |
MPs | 100-500 μm | PCBs | PCBs的生物利用度受MP的影响 | Grigorakis et al., |
PE | 0.5-1.0 μm | 磷酸三(2−氯乙基)酯(TCEP) | PE和TCEP的共暴露导致联合毒性提高 | Deng et al., |
PS | 44 nm | 多环芳烃(PAH) | PS降低PAHs的生物累积和生物利用度 | Trevisan et al., |
LDPE | <60 μm | 菲(PHE) | PE改变了PHE的生物利用度 | Karami et al., |
微塑料类型 | 粒径 | 重金属类型 | 影响 | 参考文献 |
---|---|---|---|---|
PAN | 0.05-0.8 µm | Cu | PAN可能会减轻Cu2+对生物的毒性 | Lin et al., |
PE | 100-154 µm | Cd | 和PE共存不会改变植物组织中的Cd浓度 | Wang et al., |
PE | 1.32-0.71 mm | Zn | MPs提高了Zn的生物利用度 | Hodson et al., |
PE | 10-106 μm | Ag | MP改变了鱼类生物体中金属的生物利用度和吸收途径 | Khan et al., |
PE、PE、PS | 50-500 μm | Cr、Ni、Cu、Pb | 重金属吸附在MPs的表面 | Ta et al., |
PE、PET | 63-5000 μm | As、Cr、Cd、Cu、Pb、Ni、Zn | 重金属与微塑料形成共同污染 | Sarkar et al., |
PE、PP、PET | 2-20 μm | Cr、Cu、Ni、Zn、As、Pb、Hg、Cd | 微塑料可能会成为重金属的载体 | Deng et al., |
Table 3 Effects of microplastics on environmental behavior of heavy metals in coastal wetlands
微塑料类型 | 粒径 | 重金属类型 | 影响 | 参考文献 |
---|---|---|---|---|
PAN | 0.05-0.8 µm | Cu | PAN可能会减轻Cu2+对生物的毒性 | Lin et al., |
PE | 100-154 µm | Cd | 和PE共存不会改变植物组织中的Cd浓度 | Wang et al., |
PE | 1.32-0.71 mm | Zn | MPs提高了Zn的生物利用度 | Hodson et al., |
PE | 10-106 μm | Ag | MP改变了鱼类生物体中金属的生物利用度和吸收途径 | Khan et al., |
PE、PE、PS | 50-500 μm | Cr、Ni、Cu、Pb | 重金属吸附在MPs的表面 | Ta et al., |
PE、PET | 63-5000 μm | As、Cr、Cd、Cu、Pb、Ni、Zn | 重金属与微塑料形成共同污染 | Sarkar et al., |
PE、PP、PET | 2-20 μm | Cr、Cu、Ni、Zn、As、Pb、Hg、Cd | 微塑料可能会成为重金属的载体 | Deng et al., |
MPs | w/% | w(SOC)/ % | w(DOC)/ (mg∙kg−1) | w(TC)/ (mg∙g−1) | t/d | 参考文献 |
---|---|---|---|---|---|---|
PE | 2 | 10 | - | - | 5 | 陈锟等, |
2 | 10.7 | −11.7 | - | 100 | 陈锟等, | |
0.0005 | −0.17 | - | - | 180 | 王警锋, | |
1 | - | 8.3 | −0.48 | 40 | Dai et al., | |
PLA | 2 | 14.9 | - | - | 5 | 陈锟等, |
2 | 15.5 | −7.81 | - | 100 | 陈锟等, | |
1 | - | 21.59 | 0.31 | 40 | Dai et al., | |
PS | 0.0005 | −0.04 | - | - | 180 | 王警锋, |
PVC | 1 | - | 18.83 | 0.07 | 40 | Dai et al., |
Table 4 Changes in various forms of carbon content after exposure to different microplastics in coastal wetlands
MPs | w/% | w(SOC)/ % | w(DOC)/ (mg∙kg−1) | w(TC)/ (mg∙g−1) | t/d | 参考文献 |
---|---|---|---|---|---|---|
PE | 2 | 10 | - | - | 5 | 陈锟等, |
2 | 10.7 | −11.7 | - | 100 | 陈锟等, | |
0.0005 | −0.17 | - | - | 180 | 王警锋, | |
1 | - | 8.3 | −0.48 | 40 | Dai et al., | |
PLA | 2 | 14.9 | - | - | 5 | 陈锟等, |
2 | 15.5 | −7.81 | - | 100 | 陈锟等, | |
1 | - | 21.59 | 0.31 | 40 | Dai et al., | |
PS | 0.0005 | −0.04 | - | - | 180 | 王警锋, |
PVC | 1 | - | 18.83 | 0.07 | 40 | Dai et al., |
MPs | w/% | w(NH4+-N)/(mg∙kg−1) | w(NO3−-N)/(μg∙g−1) | w(NO2−-N)/(μg∙g−1) | ρ(DON)/(mg∙L−1) | w(TN)/(mg∙g−1) | 参考文献 |
---|---|---|---|---|---|---|---|
CK | 0 | 3.78×103±0.25×103 | 2.61±1.6 | 0.75±0.38 | 11.8±0.64 | 1.48±0.03 | Dai et al., |
0 | 6.72±0.56 | 0.20±0.01 | - | - | 2.3±0.1 | 王警锋, | |
0 | 22.98 | 9.79 | - | - | 0.27 | Hu et al., | |
PE | 1 | 3.9×103±0.21×103 | 17.18±2.07 | 3.08±0.49 | 9.54±0.46 | 1.51±0.01 | Dai et al., |
0.0005 | 5.78±0.69 | 0.19±0.00 | - | - | 2.1±0.1 | 王警锋, | |
PLA | 1 | 2.85×103±0.37×103 | 13.82±6.44 | 2.77±0.68 | 8.56±1.03 | 1.46±0.02 | Dai et al., |
PVC | 1 | 1.61×103±0.14×103 | 14.97±4.82 | 2.46±0.47 | 7.57±1.58 | 1.41±0.02 | Dai et al., |
PS | 0.0005 | 2.17±0.33 | 0.23±0.02 | - | - | 1.9±0.1 | 王警锋, |
PET | 28 | 19.23 | 26.53 | - | - | 0.21 | Hu et al., |
Table 5 Changes in organic and inorganic nitrogen after exposure to various microplastics in coastal wetlands
MPs | w/% | w(NH4+-N)/(mg∙kg−1) | w(NO3−-N)/(μg∙g−1) | w(NO2−-N)/(μg∙g−1) | ρ(DON)/(mg∙L−1) | w(TN)/(mg∙g−1) | 参考文献 |
---|---|---|---|---|---|---|---|
CK | 0 | 3.78×103±0.25×103 | 2.61±1.6 | 0.75±0.38 | 11.8±0.64 | 1.48±0.03 | Dai et al., |
0 | 6.72±0.56 | 0.20±0.01 | - | - | 2.3±0.1 | 王警锋, | |
0 | 22.98 | 9.79 | - | - | 0.27 | Hu et al., | |
PE | 1 | 3.9×103±0.21×103 | 17.18±2.07 | 3.08±0.49 | 9.54±0.46 | 1.51±0.01 | Dai et al., |
0.0005 | 5.78±0.69 | 0.19±0.00 | - | - | 2.1±0.1 | 王警锋, | |
PLA | 1 | 2.85×103±0.37×103 | 13.82±6.44 | 2.77±0.68 | 8.56±1.03 | 1.46±0.02 | Dai et al., |
PVC | 1 | 1.61×103±0.14×103 | 14.97±4.82 | 2.46±0.47 | 7.57±1.58 | 1.41±0.02 | Dai et al., |
PS | 0.0005 | 2.17±0.33 | 0.23±0.02 | - | - | 1.9±0.1 | 王警锋, |
PET | 28 | 19.23 | 26.53 | - | - | 0.21 | Hu et al., |
MPs | ρ/(g∙L−1) | w(TP)/% | w(TS)/% | w(SO42−-S)/% | 参考文献 |
---|---|---|---|---|---|
PS | 0.5 | −0.03 | - | - | 王警锋, |
7 | −17 | - | - | Yu et al., | |
0.01 | - | - | 48.24 | Huang et al., | |
PE | 0.5 | −0.01 | - | - | 王警锋, |
PET | 28 | −7.38×10−6 | - | - | Hu et al., |
1.25 | - | 3.303×10−5 | −7.291×10−5 | Wang et al., | |
PVC | 7 | −14 | - | - | Yu et al., |
PMMA | 0.01 | - | - | 10.89 | Huang et al., |
PLA | 1.25 | - | 4.49×10−5 | −1.345×10−4 | Wang et al., |
Table 6 Changes in sulfur and phosphorus elements under exposure to different microplastics
MPs | ρ/(g∙L−1) | w(TP)/% | w(TS)/% | w(SO42−-S)/% | 参考文献 |
---|---|---|---|---|---|
PS | 0.5 | −0.03 | - | - | 王警锋, |
7 | −17 | - | - | Yu et al., | |
0.01 | - | - | 48.24 | Huang et al., | |
PE | 0.5 | −0.01 | - | - | 王警锋, |
PET | 28 | −7.38×10−6 | - | - | Hu et al., |
1.25 | - | 3.303×10−5 | −7.291×10−5 | Wang et al., | |
PVC | 7 | −14 | - | - | Yu et al., |
PMMA | 0.01 | - | - | 10.89 | Huang et al., |
PLA | 1.25 | - | 4.49×10−5 | −1.345×10−4 | Wang et al., |
[1] |
ALIABAD M K, NASSIRI M, KOR K, 2019. Microplastics in the surface seawaters of Chabahar Bay, Gulf of Oman (Makran Coasts)[J]. Marine Pollution Bulletin, 143: 125-133.
DOI PMID |
[2] | ALIMI O S, FARNER BUDARZ J, HERNANDEZ L M, et al., 2018. Microplastics and nanoplastics in aquatic environments: Aggregation, deposition, and enhanced contaminant transport[J]. Environmental Science & Technology, 52(4): 1704-1724. |
[3] | ALMEIDA C M R, SÁEZ-ZAMACONA I, SILVA D M, et al., 2023. The role of estuarine wetlands (saltmarshes) in sediment microplastics retention[J]. Water, 15(7): 1382. |
[4] | ALONGI D M, MURDIYARSO D, FOURQUREAN J W, et al., 2015. Indonesia’s blue carbon: a globally significant and vulnerable sink for seagrass and mangrove carbon[J]. Wetlands Ecology and Management, 24(1): 3-13. |
[5] |
ANDRADY A L, 2011. Microplastics in the marine environment[J]. Marine Pollution Bulletin, 62(8): 1596-1605.
DOI PMID |
[6] | BANDH S A, MALLA F A, QAYOOM I, et al., 2023. Importance of blue carbon in mitigating climate change and plastic/microplastic pollution and promoting circular economy[J]. Sustainability, 15(3): 2682. |
[7] | BANDOW N, WILL V, WACHTENDORF V, et al., 2017. Contaminant release from aged microplastic[J]. Environmental Chemistry, 14(6): 394-405. |
[8] | BI R, LU Q, YU W M, et al., 2013. Electron transfer capacity of soil dissolved organic matter and its potential impact on soil respiration[J]. Journal of Soils and Sediments, 13(9): 1553-1560. |
[9] | Boots B, Russell C W, Green D S, 2019. Effects of microplastics in soil ecosystems: Above and below ground[J]. Environmental Science & Technology, 53(19): 11496-11506. |
[10] | CHEN K, ZHOU S X, LONG Y Z, et al., 2023. Long-term aged fibrous polypropylene microplastics promotes nitrous oxide, carbon dioxide, and methane emissions from a coastal wetland soil[J]. Science of The Total Environment, 896: 166332. |
[11] | CHEN S M, ZHANG X Y, WANG L Y, et al., 2024. Microplastics alter the migration and transformation of vanadium in the riverine sediment environment[J]. Science of The Total Environment, 957: 177610. |
[12] | CHEN Z, LEE S Y, 2021. Contribution of microplastics to carbon storage in coastal wetland sediments[J]. Environmental Science & Technology Letters, 8(12): 1045-1050. |
[13] |
CLAESSENS M, MEESTER S D, LANDUYT L V, et al., 2011. Occurrence and distribution of microplastics in marine sediments along the Belgian coast[J]. Marine Pollution Bulletin, 62(10): 2199-2204.
DOI PMID |
[14] | DAI Z T, ZHANG N, MA X, et al., 2024. Microplastics strengthen nitrogen retention by intensifying nitrogen limitation in mangrove ecosystem sediments[J]. Environment International, 185: 108546. |
[15] | DALVAND M, HAMIDIAN A H, 2023. Occurrence and distribution of microplastics in wetlands[J]. Science Total Environ, 862: 160740. |
[16] | DE SOUZA MACHADO A A, LAU C W, TILL J, et al., 2018. Impacts of microplastics on the soil biophysical environment[J]. Environmental Science & Technology, 52(17): 9656-9665. |
[17] | DENG J, GUO P Y, ZHANG X Y, et al., 2020. Microplastics and accumulated heavy metals in restored mangrove wetland surface sediments at Jinjiang Estuary (Fujian, China)[J]. Marine Pollution Bulletin, 159: 111482. |
[18] |
DENG Y, ZHANG Y, QIAO R, et al., 2018. Evidence that microplastics aggravate the toxicity of organophosphorus flame retardants in mice (Mus musculus)[J]. Journal of Hazardous Materials, 357: 348-354.
DOI PMID |
[19] | DIEPENS N J, KOELMANS A A, 2018. Accumulation of plastic debris and associated contaminants in aquatic food webs[J]. Environmental Science & Technology, 52(15): 8510-8520. |
[20] | DUAN J H, HAN J, CHEUNG S G, et al., 2021. How mangrove plants affect microplastic distribution in sediments of coastal wetlands: Case study in Shenzhen Bay, South China[J]. Science of The Total Environment, 767: 144695. |
[21] | DUARTE C M, MIDDELBURG J J, CARACO N, 2005. Major role of marine vegetation on the oceanic carbon cycle[J]. Biogeosciences, 2(1): 1-8. |
[22] | FENG Z H, ZHANG T, SHI H H, et al., 2020. Microplastics in bloom-forming macroalgae: Distribution, characteristics and impacts[J]. Journal of Hazardous Materials, 397: 122752. |
[23] | FOK L, CHEUNG P K, 2015. Hong Kong at the Pearl River Estuary: A hotspot of microplastic pollution[J]. Marine Pollution Bulletin, 99(1): 112-118. |
[24] | GAO Y, YU G R, YANG T T, et al., 2016. New insight into global blue carbon estimation under human activity in land-sea interaction area: A case study of China[J]. Earth-Science Reviews, 159: 36-46. |
[25] | GARCÍA RELLÁN A, VÁZQUEZ ARES D, VÁZQUEZ BREA C, et al., 2023. Sources, sinks and transformations of plastics in our oceans: Review, management strategies and modelling[J]. Science of The Total Environment, 854: 158745. |
[26] | GOLDSTEIN M C, TITMUS A J, FORD M, 2013. Scales of spatial heterogeneity of plastic marine debris in the northeast Pacific Ocean[J]. PLoS One, 8(11): e80020. |
[27] | GRIGORAKIS S, DROUILLARD K G, 2018. Effect of microplastic amendment to food on diet assimilation efficiencies of PCBs by fish[J]. Environmental Science & Technology, 52(18): 10796-10802. |
[28] | GUTH P, GAO C Y, KNORR K H, 2023. Electron accepting capacities of a wide variety of peat materials from around the globe similarly explain CO2 and CH4 formation[J]. Global Biogeochemical Cycles, 37(1): e2022GB007459. |
[29] | HODSON M E, DUFFUS-HODSON C A, CLARK A, et al., 2017. Plastic bag derived-microplastics as a vector for metal exposure in terrestrial invertebrates[J]. Environmental Science & Technology, 51(8): 4714-4721. |
[30] | HU B, GUO P Y, HAN S Y, et al., 2022. Distribution characteristics of microplastics in the soil of mangrove restoration wetland and the effects of microplastics on soil characteristics[J]. Ecotoxicology, 31(7): 1120-1136. |
[31] | HUANG J W, SUN Y Y, LI Q S, et al., 2024. Increased risk of heavy metal accumulation in mangrove seedlings in coastal wetland environments due to microplastic inflow[J]. Environmental Pollution, 349: 123927. |
[32] | IQBAL S, XU J, ARIF M S, et al., 2024. Do added microplastics, native soil properties, and prevailing climatic conditions have consequences for carbon and nitrogen contents in soil? A global data synthesis of pot and greenhouse studies[J]. Environ Science Technol, 58(19): 8464-8479. |
[33] | JEONG S W, 2014. The effect of grain size on the viscosity and yield stress of fine-grained sediments[J]. Journal of Mountain Science, 11(1): 31-40. |
[34] |
JIANG C, YIN L, LI Z, et al., 2019. Microplastic pollution in the rivers of the Tibet Plateau[J]. Environmental Pollution, 249: 91-98.
DOI PMID |
[35] |
KARAMI A, ROMANO N, GALLOWAY T, 2016. Virgin microplastics cause toxicity and modulate the impacts of phenanthrene on biomarker responses in African catfish (Clarias gariepinus)[J]. Environmental Research, 151: 58-70.
DOI PMID |
[36] |
KHAN F R, SYBERG K, SHASHOUA Y, et al., 2015. Influence of polyethylene microplastic beads on the uptake and localization of silver in zebrafish (Danio rerio)[J]. Environmental Pollution, 206: 73-79.
DOI PMID |
[37] | KHUYEN V T K, LE D V, FISCHER A R, et al., 2021. Comparison of Microplastic Pollution in Beach Sediment and Seawater at UNESCO Can Gio Mangrove Biosphere Reserve[J]. Global Challenges, 5(11): 2100044. |
[38] | KLEIN S, WORCH E, KNEPPER T P, 2015. Occurrence and Spatial Distribution of Microplastics in River Shore Sediments of the Rhine-Main Area in Germany[J]. Environmental Science & Technology, 49(10): 6070-6076. |
[39] | KUMAR S, HATHA A A M, CHRISTI K S, 2007. Diversity and effectiveness of tropical mangrove soil microflora on the degradation of polythene carry bags[J]. Revista de Biología Tropical, 55(3-4): 777-786. |
[40] |
LAW K L, MORÉT-FERGUSON S, MAXIMENKO N A, et al., 2010. Plastic Accumulation in the North Atlantic Subtropical Gyre[J]. Science, 329(5996): 1185-1188.
DOI PMID |
[41] | LI C C, GILLINGS M R, ZHANG C, et al., 2024. Ecology and risks of the global plastisphere as a newly expanding microbial habitat[J]. Innovation (Camb), 5(1): 100543. |
[42] | LI J J, HUANG W, XU Y J, et al., 2020. Microplastics in sediment cores as indicators of temporal trends in microplastic pollution in Andong salt marsh, Hangzhou Bay, China[J]. Regional Studies in Marine Science, 35: 101149. |
[43] | LI N, WU M, ZHANG Y Z, et al., 2023. A review on microplastics pollution in coastal wetlands[J]. Watershed Ecology and the Environment, 5: 24-37. |
[44] | LIN W, SU F, LIN M Z, et al., 2020. Effect of microplastics PAN polymer and/or Cu2+ pollution on the growth of Chlorella pyrenoidosa[J]. Environmental Pollution, 265(Part A): 114985. |
[45] |
LIU H F, YANG X M, LIU G B, et al., 2017. Response of soil dissolved organic matter to microplastic addition in Chinese loess soil[J]. Chemosphere, 185: 907-917.
DOI PMID |
[46] | MEI W P, CHEN G E, BAO J Q, et al., 2020. Interactions between microplastics and organic compounds in aquatic environments: A mini review[J]. Science of The Total Environment, 736: 139472. |
[47] | MONDOL M, ANGON P B, ROY A, 2025. Effects of microplastics on soil physical, chemical and biological properties[J]. Natural Hazards Research, 5(1): 14-20. |
[48] | NGUYEN M K, RAKIB M R J, LIN C, et al., 2023. A comprehensive review on ecological effects of microplastic pollution: An interaction with pollutants in the ecosystems and future perspectives[J]. TrAC Trends in Analytical Chemistry, 168: 117294. |
[49] | OUYANG X, DUARTE C M, CHEUNG S G, et al., 2022. Fate and Effects of Macro-and Microplastics in Coastal Wetlands[J]. Environ Science Technol, 56(4): 2386-2397. |
[50] | QIAN J, TANG S J, WANG P F, et al., 2021. From source to sink: Review and prospects of microplastics in wetland ecosystems[J]. Science of The Total Environment, 758: 143633. |
[51] |
QIU Q X, PENG J P, YU X B, et al., 2015. Occurrence of microplastics in the coastal marine environment: First observation on sediment of China[J]. Marine Pollution Bulletin, 98(1-2): 274-280.
DOI PMID |
[52] | QIU Y F, ZHOU S L, ZHANG C C, et al., 2022. Soil microplastic characteristics and the effects on soil properties and biota: A systematic review and meta-analysis[J]. Environmental Pollution, 313: 120183. |
[53] | RILLIG M C, HOFFMANN M, LEHMANN A, et al., 2021. Microplastic fibers affect dynamics and intensity of CO2 and N2O fluxes from soil differently[J]. Microplastics and Nanoplastics, 1(1): 3. |
[54] | ROZMAN U, KLUN B, KALČÍKOVÁ G, 2023. Distribution and removal of microplastics in a horizontal sub-surface flow laboratory constructed wetland and their effects on the treatment efficiency[J]. Chemical Engineering Journal, 461: 142076. |
[55] | SARKAR D J, DAS SARKAR S, DAS B K, et al., 2021. Occurrence, fate and removal of microplastics as heavy metal vector in natural wastewater treatment wetland system[J]. Water Research, 192: 116853. |
[56] | SHI J, WANG Z, PENG Y M, et al., 2023. Effects of microplastics on soil carbon mineralization: The crucial role of oxygen dynamics and electron transfer[J]. Environmental Science & Technology, 57(36): 13588-13600. |
[57] | STEINMAN A D, SCOTT J, GREEN L, et al., 2020. Persistent organic pollutants, metals, and the bacterial community composition associated with microplastics in Muskegon Lake (MI)[J]. Journal of Great Lakes Research, 46(5): 1444-1458. |
[58] | SU P J, BU N S, LIU X Y, et al., 2024. Stimulated soil CO2 and CH4 emissions by microplastics: A hierarchical perspective[J]. Soil Biology and Biochemistry, 194: 109425. |
[59] | TA A T, BABEL S, 2020. Microplastic contamination on the lower Chao Phraya: Abundance, characteristic and interaction with heavy metals[J]. Chemosphere, 257: 127234. |
[60] | TANG S, LIN L J, WANG X S, et al., 2020. Interfacial interactions between collected nylon microplastics and three divalent metal ions (Cu(II), Ni(II), Zn(II)) in aqueous solutions[J]. Journal of Hazardous Materials, 403: 123548. |
[61] | TREVISAN R, VOY C, CHEN S X, et al., 2019. Nanoplastics Decrease the Toxicity of a Complex PAH Mixture but Impair Mitochondrial Energy Production in Developing Zebrafish[J]. Environmental Science & Technology, 53(14): 8405-8415. |
[62] |
VAN CAUWENBERGHE L, CLAESSENS M, VANDEGEHUCHTE M B, et al., 2013. Assessment of marine debris on the Belgian Continental Shelf[J]. Marine Pollution Bulletin, 73(1): 161-169.
DOI PMID |
[63] | VIET DUNG L, HUU DUC T, THI KHANH LINH L, et al., 2021. Depth Profiles of Microplastics in Sediment Cores from Two Mangrove Forests in Northern Vietnam[J]. Journal of Marine Science and Engineering, 9(12): 1381. |
[64] | WANG F M, TANG J W, YE S Y, et al., 2021. Blue carbon sink function of Chinese coastal wetlands and carbon neutrality strategy[J]. Bulletin of Chinese Academy of Sciences (Chinese Version), 36(3): 241-251. |
[65] | WANG F Y, WANG Q L, ADAMS C A, et al., 2022. Effects of microplastics on soil properties: Current knowledge and future perspectives[J]. Journal of Hazardous Materials, 424(Part C): 127531. |
[66] | WANG F Y, ZHANG X Q, ZHANG S Q, et al., 2020. Interactions of microplastics and cadmium on plant growth and arbuscular mycorrhizal fungal communities in an agricultural soil[J]. Chemosphere, 254: 126791. |
[67] | WANG H L, YANG Q, LI D, et al., 2023. Stable isotopic and metagenomic analyses reveal microbial-mediated effects of microplastics on sulfur cycling in coastal Sediments[J]. Environmental Science & Technology, 57(2): 1167-1176. |
[68] | WANG S M, ZHOU Q X, HU X G, et al., 2024. Polyethylene microplastic-induced microbial shifts affected greenhouse gas emissions during litter decomposition in coastal wetland sediments[J]. Water Research, 251: 121167. |
[69] | WILLIS K A, ERIKSEN R, WILCOX C, et al., 2017. Microplastic distribution at different sediment depths in an urban estuary[J]. Frontiers in Marine Science, 4: 00419. |
[70] | XIANG Y J, JIANG L, ZHOU Y Y, et al., 2022. Microplastics and environmental pollutants: Key interaction and toxicology in aquatic and soil environments[J]. Journal of Hazardous Materials, 422: 126843. |
[71] | XIE H F, CHEN J J, FENG L M, et al., 2021. Chemotaxis-selective colonization of mangrove rhizosphere microbes on nine different microplastics[J]. Science of The Total Environment, 752: 142223. |
[72] | XU G H, LIU Y, YU Y, 2021. Effects of polystyrene microplastics on uptake and toxicity of phenanthrene in soybean[J]. Science of The Total Environment, 783: 147016. |
[73] |
YAN M, YU L F, ZHANG L, et al., 2014. Phosphatase activity and culture conditions of the yeast Candida mycoderma sp. and analysis of organic phosphorus hydrolysis ability[J]. Journal of Environmental Sciences, 26(11): 2315-2321.
DOI PMID |
[74] | YANG X Y, HE Q, GUO F C, et al., 2020. Nanoplastics disturb nitrogen removal in constructed wetlands: Responses of microbes and macrophytes[J]. Environmental Science & Technology, 54(21): 14007-14016. |
[75] | YAO W M, DI D, WANG Z F, et al., 2019. Micro-and macroplastic accumulation in a newly formed Spartina alterniflora colonized estuarine saltmarsh in southeast China[J]. Marine Pollution Bulletin, 149: 110636. |
[76] | YI M L, ZHOU S H, ZHANG L L, et al., 2021. The effects of three different microplastics on enzyme activities and microbial communities in soil[J]. Water Environ Research, 93(1): 24-32. |
[77] | YOU X Q, CAO X Q, ZHANG X, et al., 2021. Unraveling individual and combined toxicity of nano/microplastics and ciprofloxacin to Synechocystis sp. at the cellular and molecular levels[J]. Environment International, 157: 106842. |
[78] | YU H W, QI W X, CAO X F, et al., 2021. Microplastic residues in wetland ecosystems: Do they truly threaten the plant-microbe-soil system?[J]. Environment International, 156: 106708. |
[79] | YU L Y, LI R L, ZHANG Z, et al., 2022. Distribution, characteristics, and human exposure to microplastics in mangroves within the Guangdong-Hong Kong-Macao Greater Bay Area[J]. Marine Pollution Bulletin, 175: 113395. |
[80] | ZHANG X Y, LI Y, OUYANG D, et al., 2021. Systematical review of interactions between microplastics and microorganisms in the soil environment[J]. Journal of Hazardous Materials, 418: 126288. |
[81] | ZHAO S Y, ZHU L X, LI D J, 2015a. Characterization of small plastic debris on tourism beaches around the South China Sea[J]. Regional Studies in Marine Science, 1: 55-62. |
[82] | ZHAO S Y, ZHU L X, LI D J, 2015b. Microplastic in three urban estuaries, China[J]. Environmental Pollution, 206: 597-604. |
[83] | ZHONG L, WU T, SUN H J, et al., 2023. Recent advances towards micro(nano)plastics research in wetland ecosystems: A systematic review on sources, removal, and ecological impacts[J]. Journal of Hazardous Materials, 452: 131341. |
[84] | ZHOU Q, ZHANG H B, WANIEK J J, et al., 2020. The distribution and characteristics of microplastics in coastal beaches and mangrove wetlands[J]. Microplastics in Terrestrial Environments: Emerging Contaminants and Major Challenges, 95: 77-92. |
[85] | ZHOU X, XIAO C D, LI X Y, et al., 2023. Microplastics in coastal blue carbon ecosystems: A global Meta-analysis of its distribution, driving mechanisms, and potential risks[J]. Science of The Total Environment, 878: 163048. |
[86] | ZOU J Y, LIU X P, ZHANG D M, 2020. Adsorption of three bivalent metals by four chemical distinct microplastics[J]. Chemosphere, 248: 126064. |
[87] | ZUO L Z, LI H X, LIN L, et al., 2019. Sorption and desorption of phenanthrene on biodegradable poly (butylene adipate co-terephtalate) microplastics[J]. Chemosphere, 215: 25-32. |
[88] | ZUO L Z, SUN Y X, LI H X, et al., 2020. Microplastics in mangrove sediments of the Pearl River Estuary, South China: Correlation with halogenated flame retardants' levels[J]. Science of The Total Environment, 725: 138344. |
[89] | 陈锟, 郗敏, 陈飞潼, 等, 2025. 可降解和不可降解微塑料对滨海湿地土壤有机碳矿化的影响[J]. 生态学杂志, 44(4): 1170-1180. |
CHEN K, XI M, CHEN F T, et al., 2025. Effects of degradable and non-degradable microplastics on soil organic carbon mineralization in a coastal wetland soil[J]. Chinese Journal of Ecology, 44(4): 1170-1180. | |
[90] | 何磊, 叶思源, 赵广明, 等, 2023. 海岸带滨海湿地蓝碳管理的研究进展[J]. 中国地质, 50(3): 777-794. |
HE L, YE S Y, ZHAO G M, et al., 2023. Research progress on blue carbon management in coastal wetland ecotones[J]. Geology in China, 50(3): 777-794. | |
[91] | 王警锋, 2023. 不同微塑料及植物物种组成对湿地生态系统多功能性的影响[D]. 青岛: 山东大学. |
WANG J F, 2023. The effects of different microplastics and plant speciescompositions on ecosystem multifunctionality of wetlands[D]. Qingdao: Shandong University. | |
[92] | 周倩, 2016. 典型滨海潮滩及近海环境中微塑料污染特征与生态风险[D]. 烟台: 中国科学院烟台海岸带研究所. |
ZHOU Q, 2016. Occurrences and ecological risks of microplastics in the typical coastal beaches and seas[D]. Yantai: Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences. |
[1] | LI Xue, WANG Zhen, MAO Xuefei. Effects of Polyethylene and Polypropylene Microplastics on the Growth and Antioxidant Mechanisms of Rice Seedlings under Cadmium Stress [J]. Ecology and Environmental Sciences, 2025, 34(7): 1053-1063. |
[2] | XIAO Yongyin, WANG Fan, LI Canhua, WANG Chao, WANG Wanjun. Enrichment Characteristics and Health Risks of Antibiotic Resistance Genes in Biofilms on Biodegradable Microplastics in Freshwater [J]. Ecology and Environmental Sciences, 2025, 34(7): 1029-1041. |
[3] | HE Yi, QIN Xinxin, ZHANG Xiang, SUN Nan, YANG Yalin, LIAN Junfeng. Heterogeneity of Microplastics Section Distribution: A Case Study of Ganzhou Section of the Ganjiang River [J]. Ecology and Environmental Sciences, 2024, 33(4): 626-632. |
[4] | XIE Shuya, LI Xianglan. Effects of Spartina alterniflora Invasion on Soil Carbon Budget in Coastal Wetlands of China [J]. Ecology and Environmental Sciences, 2024, 33(10): 1516-1524. |
[5] | LIN Jianhui, LI Pingping, LIU Min, DENG Xi, KANG Zixin, YANG Tao, ZHAN Shuyue, ZENG Yingxu. Biotoxicity of Different Biofilm-coated Microplastics in Gills of Clam Meretrix lyrata [J]. Ecology and Environmental Sciences, 2024, 33(1): 111-118. |
[6] | CHEN Hongzhan, OU Hui, YE Sihua, ZHANG Qianhua, ZHOU Shujie, MAI Lei. Spatial-temporal Distribution and Ecological Risk Assessment of Microplastics in the Guangzhou Section of the Pearl River [J]. Ecology and Environmental Sciences, 2023, 32(9): 1663-1672. |
[7] | LI Haiyan, YANG Xiaoqin, JAN Meipeng, ZHANG Xiaoran. [J]. Ecology and Environmental Sciences, 2023, 32(2): 407-420. |
[8] | LI Shuting, HU Guanjiu, LUO Xiaosan. Sources, Spatial-temporal Distribution, and Health Risks of Per- and Polyfluoroalkyl Substances (PFASs) in the Atmospheric Environment: A Review [J]. Ecology and Environmental Sciences, 2023, 32(12): 2103-2114. |
[9] | LIU Ning, KONG Yu, REN Chunting, PAN Chao, LI Xiaona, WANG Zhenyu. Environmental Health Risks and Resource Utilization of Emerging Contaminants in Toner Waste [J]. Ecology and Environmental Sciences, 2023, 32(12): 2128-2140. |
[10] | LI Shuangshuang, CAI Mingcan, WANG Qing, QI Liying, WEI Hehong, WANG Chun. Research Progress on the Interaction Between Microplastics and Biofilms and Their Ecological Effects on Freshwater Environment [J]. Ecology and Environmental Sciences, 2023, 32(11): 2041-2049. |
[11] | HE Wenxuan, LI Lei, SUN Siyu, LI Chang, LI Jiuyi, TIAN Xiujun. Distribution Characteristics of Microplastics in Water, Sediment and Fish in Beiyun River [J]. Ecology and Environmental Sciences, 2023, 32(11): 1901-1912. |
[12] | LI Chengtao, WU Wanqing, CHEN Chen, ZHANG Yong, ZHANG Kai. Effects of Biodegradable PBAT Microplastics on Soil Physical and Chemical Properties and Physiological Indicators of Brassica chinensis [J]. Ecology and Environmental Sciences, 2023, 32(11): 1964-1977. |
[13] | LI Wenjing, HUANG Yuequn, HUANG Liangliang, LI Xiangtong, SU Qiongyuan, SUN Yangyan. Distribution Characteristics and Risk Assessment of Microplastics in Beibu Gulf Marine Fish [J]. Ecology and Environmental Sciences, 2023, 32(11): 1913-1921. |
[14] | FAN Keyu, GAO Yuan, LAI Zini, ZENG Yanyi, LIU Qianfu, LI Haiyan, MAI Yongzhan, YANG Wanling, WEI Jingxin, SUN Jinhui, WANG Chao. Characteristics of Microplastic Pollution in Fish in the Pearl River Delta [J]. Ecology and Environmental Sciences, 2022, 31(8): 1590-1598. |
[15] | LIU Xiaohong, LIU Liuqingqing, LI Min, LIU Qiang, CAO Dongdong, ZHENG Hao, LUO Xianxiang. Effects of Polyethylene Microplastics with Different Particle Sizes on Seed Germination and Seedling Growth of Maize and Cucumber [J]. Ecology and Environmental Sciences, 2022, 31(6): 1263-1271. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn