Ecology and Environment ›› 2023, Vol. 32 ›› Issue (12): 2128-2140.DOI: 10.16258/j.cnki.1674-5906.2023.12.005
• Papers on “New Pollutants” • Previous Articles Next Articles
LIU Ning1(), KONG Yu1, REN Chunting1, PAN Chao1, LI Xiaona1,2,*(
), WANG Zhenyu1,2
Received:
2023-06-11
Online:
2023-12-18
Published:
2024-02-05
Contact:
LI Xiaona
刘宁1(), 孔宇1, 任春廷1, 潘超1, 李晓娜1,2,*(
), 王震宇1,2
通讯作者:
李晓娜
作者简介:
刘宁(1995年生),女,博士研究生,主要从事新污染物的环境健康研究。E-mail: liuningchn@126.com
基金资助:
CLC Number:
LIU Ning, KONG Yu, REN Chunting, PAN Chao, LI Xiaona, WANG Zhenyu. Environmental Health Risks and Resource Utilization of Emerging Contaminants in Toner Waste[J]. Ecology and Environment, 2023, 32(12): 2128-2140.
刘宁, 孔宇, 任春廷, 潘超, 李晓娜, 王震宇. 废碳粉中新污染物的环境健康风险与资源化利用[J]. 生态环境学报, 2023, 32(12): 2128-2140.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2023.12.005
新污染物 | 生物 | 处理 (尺寸; 浓度; 时间) | 研究结果 | 文献 | ||
---|---|---|---|---|---|---|
PS MNPs | 小麦 Triticum aestivum L. | 0.1, 5 μm; 水培: 0‒200 mg∙L−1; 6 d 土培: 0‒100 mg∙kg−1; 10 d | (1) 水培条件下, 200 mg∙L−1的PSMPs抑制了小麦的生长 (2) 土培条件下, 10 mg∙kg−1的PSMPs对小麦的生长抑制最强 | 廖苑辰, | ||
洋葱 Allium cepa L. | 50 nm; 0, 10, 100, 1000 mg∙L−1; 72 h | (1) PSNPs (10-1000 mg∙L−1) 诱导洋葱根部产生细胞毒性、遗传毒性和氧化损伤 (2) 毒性随暴露浓度增大而增大 | Giorgetti et al., | |||
水稻 Oryza sativa L. | 50 nm; 0, 100, 1000 mg∙L−1; 96 h | PSNPs被根部吸收并转移到芽上, 影响根细胞超微结构、萌发过程、幼苗生长和根系有丝分裂活性, 诱导细胞遗传学畸变 | Spanò et al., | |||
蚕豆 Vicia faba L. | 0.1, 5 μm; 0, 10, 50, 100 mg∙L−1; 48 h | (1) 100 nm PS MPs暴露所产生的氧化损伤和遗产毒性比5 μm多 (2) 100 nm PSMPs可以进入蚕豆根,可能会通过阻塞细胞连接或细胞壁孔、破坏营养物质运输等来产生毒性 | Jiang et al., | |||
胡萝卜 Daucus carota L. | 0.1‒5 μm; 0, 10, 20 mg∙L−1; 7 d | (1) 粒径≤0.1 μm的PSMPs可以进入胡萝卜根部 (2) 20 mg∙L−1的PSMPs可导致胡萝卜生长下降并影响其品质 | Dong et al., | |||
土壤线虫 Caenorhabditis elegans | (1) 100 nm; 0‒1000 mg∙kg−1; 96 h (2) 50, 200 nm; 0, 17.3, 86.8 mg∙L−1; 24 h (3) 0.1, 0.5, 1, 2, 5 μm; 0, 1 mg∙L−1; 48 h | (1) PSNPs (≥1 mg∙kg−1) 暴露降低了线虫的卵形成和孵化率 (2) PS MNPs会影响线虫的能量代谢、运动、寿命和生殖功能 | Lei et al., | |||
水蚤 Daphnia magna | (1) 71 nm; 0, 1 mg∙L−1; 96 h (2) 0.7, 3 μm; 0, 2, 6 mg∙L−1; 6 d | (1) PSNPs诱导了水蚤新生儿的氧化应激, 免疫防御和糖代谢紊乱 (2) PSMPs削弱了捕食者诱导的水蚤防御 | Liu et al., | |||
海参 Apostichopus japonicus | 0.1, 20 μm; 0, 100 mg∙kg−1; 60 d | 100 nm和20 μm的PSMNPs对海参的生长性能、消化、免疫系统、细菌病原抗性均有不利影响 | Liu et al., | |||
斑马鱼 Danio rerio | 44 nm; 0, 1, 10, 100 μg∙L−1; 30 d | 环境相关质量浓度 (1‒100 μg∙L−1) 的PS-NPs会导致斑马鱼免疫反应功能障碍以及其肠道中微生物组组成和功能的改变 | Teng et al., | |||
青鳉鱼 Oryzias melastigma | 2, 200 μm; 0, 0.3, 3 mg∙kg−1; 28 d | PSMPs (3 mg∙kg−1) 显著影响了青鳉鱼的肠道微生态特征 (结构和功能)和宿主代谢特征 | Feng et al., | |||
海洋微藻 Heterosigma akashiwo | 1 μm; 0, 1, 2, 5, 10, 30, 75 mg∙L−1; 96 h | 高质量浓度 (≥5 mg∙L−1) 的PSMPs可以抑制藻类细胞的生长, 造成细胞膜损伤、细胞质和细胞器外排和破坏 | Wang et al., | |||
原生动物 Ochromonas gloeopar | 0.07, 3 μm; 0, 0.4, 0.8, 1.6, 2 mg∙L−1; 11 d | PSMPs (≥0.4 mg∙L−1, 3 μm) 对原生动物具有显著的生长抑制和藻类清除率降低作用 | Kong et al., | |||
原生动物 Uronema marinum | 0.5, 1.07, 2.14, 5 μm; (0, 2, 4, 6, 8, 10)×105 items∙mL−1; 96 h | PSMPs (1×106 items∙mL−1, 0.5‒5 μm) 抑制了原生动物U. marinuma 的丰度、体积和生物量, 影响了海洋食物网 | Zhang et al., | |||
嗜碱盐单胞菌 Halomonas alkaliphile | NH2-PS: 50, 1000 nm; PS: 55 nm; 0, 20, 40, 80, 160, 320 mg∙L−1; 2 h | (1) PS MNPs在高质量浓度 (80 mg∙L−1) 下均抑制嗜碱盐单胞菌的生长, 影响了海洋的氮循环 (2) 带正电荷的纳米塑料对细菌的氧化应激高于带负电荷的纳米塑料 | Sun et al., | |||
大肠杆菌 Escherichia coli | 0.1, 0.55, 5 μm; 0, 20, 40, 80, 160, 320 mg∙L−1; 24 h | PSMPs (≥160 mg∙L−1) 可以抑制大肠杆菌的细胞生长 | Yi et al., | |||
人工湿地微生物群落 | PS NPs: 50‒100 nm PS MPs: 10‒100 μm PS Macro Ps: 500‒1000 μm 10, 100, 1000 μg∙L−1; 1-300 d | (1) MPs/NPs的长期积累诱导微生物丰富度和多样性降低 (2) MPs的积累可能对微生物反硝化过程产生积极影响, 并对湿地系统的固氮产生不利影响 (3) 塑料尺寸对微生物群和氮生物转化的影响大于浓度 | Yang et al., | |||
PE MPs | 蚯蚓 Earthworm | 250‒1000 μm; 0, 0.01, 0.1, 0.5 g∙100g−1; 56, 180, 208 d | 环境相关浓度 (0.01%-0.5%) 的PEMPs会抑制蚯蚓的繁殖, 造成DNA损伤,具有遗传毒性 | Sobhani et al., | ||
纳米Fe3O4 | 斑马鱼 Danio rerio | (1) 0‒1000 mg∙L−1; 0, 2, 12, 24, 36 h (2) 15, 22 nm; 0‒1114.70 mg∙L−1; 0, 24, 48, 72, 96 h | (1) 纳米Fe3O4 (≥100 mg∙L−1, 36 h) 会致使斑马鱼胚胎畸形, 存活率下降 (2) 纳米Fe3O4 (≥20 mg∙L−1, 96 h) 使其体内红细胞损伤、酶活性降低,造成遗传毒性 | Suganya et al., | ||
小球藻 Chlorella vulgaris | 约10 nm; 0‒1000 mg∙L−1; 0, 24, 48, 72, 96 h | 低浓度 (10‒250 mg∙L−1) 的纳米Fe3O4会促进细胞生长, 而较高浓度 (≥500 mg∙L−1) 的纳米Fe3O4会抑制细胞生长, 产生细胞毒性 | Yazdanabdad et al., | |||
纳米SiO2 | 斑马鱼 Danio rerio | (1) 62 nm; 0, 25, 50, 100, 200 mg∙L−1; 4‒96 h (2) 68 nm; 0, 2.5, 5 mg∙L−1; 7 d | (1) 纳米SiO2 (≥100 mg∙L−1, 24 h) 会诱导斑马鱼产生胚胎毒性, 并对其心血管造成影响 (2) 纳米SiO2 (≥2.5 mg∙L−1, 7 d) 会诱导鱼组织产生氧化应激, 造成DNA片段化损伤 | Ramesh et al., | ||
活性污泥微生物群落 | 30 nm; 0, 2, 5, 10, 30 mg∙L−1; 0‒300 d | 纳米SiO2 (5‒30 mg∙L−1) 影响活性污泥的微生物丰富度和多样性, 影响了微生物的硝化过程和除磷功能 | Li et al., | |||
新污染物 | 生物 | 处理 (尺寸; 浓度; 时间) | 研究结果 | 文献 | ||
纳米炭 | 两栖动物 Amphibalanus amphitrite | 纳米炭黑: 13 nm; 0‒5000 mg∙L−1 氧化石墨烯: 0.5‒5 μm; 0‒1000 mg∙L−1 24, 48, 72 h | 两栖动物仅在非常高质量浓度 (≥500 mg∙L−1, 48 h) 的纳米炭黑和氧化石墨烯下受到抑制 | Mesarič et al., | ||
蚯蚓 Earthworm | 纳米炭黑: 20‒70 nm 氧化石墨烯: 厚度0.55‒3.74 nm, 长0.5‒3 μm 碳纳米管: 直径1‒2 nm, 长5‒30 μm 0, 1, 10, 100 mg∙L−1; 12 h | 纳米炭黑、氧化石墨烯、碳纳米管仅在高质量浓度 (100 mg∙L−1) 的条件下才会抑制蚯蚓的生长 | Xu et al., | |||
土壤微生物 (古细菌、细菌、真菌) | C60和多壁碳纳米管: 直径50 nm 0, 30, 300 mg∙kg−1; 30 d | 纳米炭 (≥30 mg∙kg−1) 改变了土壤微生物的群落组成和功能 | Wu et al., |
Table 1 Single ecological effects of particulate emerging contaminants in waste toner
新污染物 | 生物 | 处理 (尺寸; 浓度; 时间) | 研究结果 | 文献 | ||
---|---|---|---|---|---|---|
PS MNPs | 小麦 Triticum aestivum L. | 0.1, 5 μm; 水培: 0‒200 mg∙L−1; 6 d 土培: 0‒100 mg∙kg−1; 10 d | (1) 水培条件下, 200 mg∙L−1的PSMPs抑制了小麦的生长 (2) 土培条件下, 10 mg∙kg−1的PSMPs对小麦的生长抑制最强 | 廖苑辰, | ||
洋葱 Allium cepa L. | 50 nm; 0, 10, 100, 1000 mg∙L−1; 72 h | (1) PSNPs (10-1000 mg∙L−1) 诱导洋葱根部产生细胞毒性、遗传毒性和氧化损伤 (2) 毒性随暴露浓度增大而增大 | Giorgetti et al., | |||
水稻 Oryza sativa L. | 50 nm; 0, 100, 1000 mg∙L−1; 96 h | PSNPs被根部吸收并转移到芽上, 影响根细胞超微结构、萌发过程、幼苗生长和根系有丝分裂活性, 诱导细胞遗传学畸变 | Spanò et al., | |||
蚕豆 Vicia faba L. | 0.1, 5 μm; 0, 10, 50, 100 mg∙L−1; 48 h | (1) 100 nm PS MPs暴露所产生的氧化损伤和遗产毒性比5 μm多 (2) 100 nm PSMPs可以进入蚕豆根,可能会通过阻塞细胞连接或细胞壁孔、破坏营养物质运输等来产生毒性 | Jiang et al., | |||
胡萝卜 Daucus carota L. | 0.1‒5 μm; 0, 10, 20 mg∙L−1; 7 d | (1) 粒径≤0.1 μm的PSMPs可以进入胡萝卜根部 (2) 20 mg∙L−1的PSMPs可导致胡萝卜生长下降并影响其品质 | Dong et al., | |||
土壤线虫 Caenorhabditis elegans | (1) 100 nm; 0‒1000 mg∙kg−1; 96 h (2) 50, 200 nm; 0, 17.3, 86.8 mg∙L−1; 24 h (3) 0.1, 0.5, 1, 2, 5 μm; 0, 1 mg∙L−1; 48 h | (1) PSNPs (≥1 mg∙kg−1) 暴露降低了线虫的卵形成和孵化率 (2) PS MNPs会影响线虫的能量代谢、运动、寿命和生殖功能 | Lei et al., | |||
水蚤 Daphnia magna | (1) 71 nm; 0, 1 mg∙L−1; 96 h (2) 0.7, 3 μm; 0, 2, 6 mg∙L−1; 6 d | (1) PSNPs诱导了水蚤新生儿的氧化应激, 免疫防御和糖代谢紊乱 (2) PSMPs削弱了捕食者诱导的水蚤防御 | Liu et al., | |||
海参 Apostichopus japonicus | 0.1, 20 μm; 0, 100 mg∙kg−1; 60 d | 100 nm和20 μm的PSMNPs对海参的生长性能、消化、免疫系统、细菌病原抗性均有不利影响 | Liu et al., | |||
斑马鱼 Danio rerio | 44 nm; 0, 1, 10, 100 μg∙L−1; 30 d | 环境相关质量浓度 (1‒100 μg∙L−1) 的PS-NPs会导致斑马鱼免疫反应功能障碍以及其肠道中微生物组组成和功能的改变 | Teng et al., | |||
青鳉鱼 Oryzias melastigma | 2, 200 μm; 0, 0.3, 3 mg∙kg−1; 28 d | PSMPs (3 mg∙kg−1) 显著影响了青鳉鱼的肠道微生态特征 (结构和功能)和宿主代谢特征 | Feng et al., | |||
海洋微藻 Heterosigma akashiwo | 1 μm; 0, 1, 2, 5, 10, 30, 75 mg∙L−1; 96 h | 高质量浓度 (≥5 mg∙L−1) 的PSMPs可以抑制藻类细胞的生长, 造成细胞膜损伤、细胞质和细胞器外排和破坏 | Wang et al., | |||
原生动物 Ochromonas gloeopar | 0.07, 3 μm; 0, 0.4, 0.8, 1.6, 2 mg∙L−1; 11 d | PSMPs (≥0.4 mg∙L−1, 3 μm) 对原生动物具有显著的生长抑制和藻类清除率降低作用 | Kong et al., | |||
原生动物 Uronema marinum | 0.5, 1.07, 2.14, 5 μm; (0, 2, 4, 6, 8, 10)×105 items∙mL−1; 96 h | PSMPs (1×106 items∙mL−1, 0.5‒5 μm) 抑制了原生动物U. marinuma 的丰度、体积和生物量, 影响了海洋食物网 | Zhang et al., | |||
嗜碱盐单胞菌 Halomonas alkaliphile | NH2-PS: 50, 1000 nm; PS: 55 nm; 0, 20, 40, 80, 160, 320 mg∙L−1; 2 h | (1) PS MNPs在高质量浓度 (80 mg∙L−1) 下均抑制嗜碱盐单胞菌的生长, 影响了海洋的氮循环 (2) 带正电荷的纳米塑料对细菌的氧化应激高于带负电荷的纳米塑料 | Sun et al., | |||
大肠杆菌 Escherichia coli | 0.1, 0.55, 5 μm; 0, 20, 40, 80, 160, 320 mg∙L−1; 24 h | PSMPs (≥160 mg∙L−1) 可以抑制大肠杆菌的细胞生长 | Yi et al., | |||
人工湿地微生物群落 | PS NPs: 50‒100 nm PS MPs: 10‒100 μm PS Macro Ps: 500‒1000 μm 10, 100, 1000 μg∙L−1; 1-300 d | (1) MPs/NPs的长期积累诱导微生物丰富度和多样性降低 (2) MPs的积累可能对微生物反硝化过程产生积极影响, 并对湿地系统的固氮产生不利影响 (3) 塑料尺寸对微生物群和氮生物转化的影响大于浓度 | Yang et al., | |||
PE MPs | 蚯蚓 Earthworm | 250‒1000 μm; 0, 0.01, 0.1, 0.5 g∙100g−1; 56, 180, 208 d | 环境相关浓度 (0.01%-0.5%) 的PEMPs会抑制蚯蚓的繁殖, 造成DNA损伤,具有遗传毒性 | Sobhani et al., | ||
纳米Fe3O4 | 斑马鱼 Danio rerio | (1) 0‒1000 mg∙L−1; 0, 2, 12, 24, 36 h (2) 15, 22 nm; 0‒1114.70 mg∙L−1; 0, 24, 48, 72, 96 h | (1) 纳米Fe3O4 (≥100 mg∙L−1, 36 h) 会致使斑马鱼胚胎畸形, 存活率下降 (2) 纳米Fe3O4 (≥20 mg∙L−1, 96 h) 使其体内红细胞损伤、酶活性降低,造成遗传毒性 | Suganya et al., | ||
小球藻 Chlorella vulgaris | 约10 nm; 0‒1000 mg∙L−1; 0, 24, 48, 72, 96 h | 低浓度 (10‒250 mg∙L−1) 的纳米Fe3O4会促进细胞生长, 而较高浓度 (≥500 mg∙L−1) 的纳米Fe3O4会抑制细胞生长, 产生细胞毒性 | Yazdanabdad et al., | |||
纳米SiO2 | 斑马鱼 Danio rerio | (1) 62 nm; 0, 25, 50, 100, 200 mg∙L−1; 4‒96 h (2) 68 nm; 0, 2.5, 5 mg∙L−1; 7 d | (1) 纳米SiO2 (≥100 mg∙L−1, 24 h) 会诱导斑马鱼产生胚胎毒性, 并对其心血管造成影响 (2) 纳米SiO2 (≥2.5 mg∙L−1, 7 d) 会诱导鱼组织产生氧化应激, 造成DNA片段化损伤 | Ramesh et al., | ||
活性污泥微生物群落 | 30 nm; 0, 2, 5, 10, 30 mg∙L−1; 0‒300 d | 纳米SiO2 (5‒30 mg∙L−1) 影响活性污泥的微生物丰富度和多样性, 影响了微生物的硝化过程和除磷功能 | Li et al., | |||
新污染物 | 生物 | 处理 (尺寸; 浓度; 时间) | 研究结果 | 文献 | ||
纳米炭 | 两栖动物 Amphibalanus amphitrite | 纳米炭黑: 13 nm; 0‒5000 mg∙L−1 氧化石墨烯: 0.5‒5 μm; 0‒1000 mg∙L−1 24, 48, 72 h | 两栖动物仅在非常高质量浓度 (≥500 mg∙L−1, 48 h) 的纳米炭黑和氧化石墨烯下受到抑制 | Mesarič et al., | ||
蚯蚓 Earthworm | 纳米炭黑: 20‒70 nm 氧化石墨烯: 厚度0.55‒3.74 nm, 长0.5‒3 μm 碳纳米管: 直径1‒2 nm, 长5‒30 μm 0, 1, 10, 100 mg∙L−1; 12 h | 纳米炭黑、氧化石墨烯、碳纳米管仅在高质量浓度 (100 mg∙L−1) 的条件下才会抑制蚯蚓的生长 | Xu et al., | |||
土壤微生物 (古细菌、细菌、真菌) | C60和多壁碳纳米管: 直径50 nm 0, 30, 300 mg∙kg−1; 30 d | 纳米炭 (≥30 mg∙kg−1) 改变了土壤微生物的群落组成和功能 | Wu et al., |
新污染物 | 生物 | 处理 (尺寸; 浓度; 时间) | 研究结果 | 文献 |
---|---|---|---|---|
纳米Fe3O4+PS MPs [MPS(Fe)] | 小球藻 Chlorella vulgaris 大型蚤Daphnia magna | MPS(Fe)-NH2: 1050 nm; 0.1‒1 mg∙L−1; 72 h MPS(Fe)-COOH: 1831 nm; 1‒20 mg∙L−1; 72 h | 与MPs相比,MPS(Fe) 对小球藻和大型蚤的急性毒性更高 | Zhang et al., |
PSNPs+纳米Fe3O4 | 生菜 Lactuca sativa L. | PSNPs: 100 nm; 50 mg∙L−1; 21 d 纳米Fe3O4: 10 nm; 50 mg∙L−1; 21 d | PSNPs和纳米Fe3O4的联合暴露会引起更严重的氧化应激,增强对生菜根的损伤 | Gong et al., |
Graphene-Fe3O4纳米复合材料 | 大肠杆菌 Escherichia coli 金黄色葡萄球菌 Staphylococcus aureus 神经母细胞瘤细胞 (N2A) | 20 nm; 50‒400 mg∙L−1; 48 h | 与纳米Fe3O4相比,Graphene-Fe3O4纳米复合材料对大肠杆菌、金黄色葡萄球菌和细胞的毒性作用更强 | Mahmoodabadi et al., |
Graphene-Fe3O4纳米复合材料 | 斜生栅藻 Scenedesmus obliquus 莱氏衣藻 Chlamydomonas reinhardtii | 1057‒1344 nm; 0.2, 1 mg∙L−1; 96 h | 与rGO (Graphene) 相比, rGO纳米复合材料表面异质界面有助于其比表面积的变化, 导致生物体氧化应激损伤, 复合暴露下释放更多游离金属离子, 导致细胞致病甚至死亡 | Yin et al., |
Fe3O4-SiO2纳米复合材料 | 欧洲鳗鱼 Anguilla anguilla | 100 nm; 2.5 mg∙L−1; 0, 2, 4, 8, 16, 24, 48, 72 h | Fe3O4-SiO2纳米复合材料会诱导欧洲鳗鱼大脑、肝细胞产生氧化应激 | Anjum et al., |
Fe3O4-SiO2纳米复合材料 | pBR322 DNA | (1) (Fe3O4/CA)@SiO2: 20 nm; 0‒1650 mg∙L−1; 10 h (2) (Fe3O4/AA)@SiO2: 30 nm; 0‒520 mg∙L−1; 10 h | ≥330 mg∙L−1的 (1) 和≥260 mg∙L−1的 (2) 均增强了DNA损伤 | Zhang et al., |
Table 2 Compound ecological effects of particulate emerging contaminants in waste toner
新污染物 | 生物 | 处理 (尺寸; 浓度; 时间) | 研究结果 | 文献 |
---|---|---|---|---|
纳米Fe3O4+PS MPs [MPS(Fe)] | 小球藻 Chlorella vulgaris 大型蚤Daphnia magna | MPS(Fe)-NH2: 1050 nm; 0.1‒1 mg∙L−1; 72 h MPS(Fe)-COOH: 1831 nm; 1‒20 mg∙L−1; 72 h | 与MPs相比,MPS(Fe) 对小球藻和大型蚤的急性毒性更高 | Zhang et al., |
PSNPs+纳米Fe3O4 | 生菜 Lactuca sativa L. | PSNPs: 100 nm; 50 mg∙L−1; 21 d 纳米Fe3O4: 10 nm; 50 mg∙L−1; 21 d | PSNPs和纳米Fe3O4的联合暴露会引起更严重的氧化应激,增强对生菜根的损伤 | Gong et al., |
Graphene-Fe3O4纳米复合材料 | 大肠杆菌 Escherichia coli 金黄色葡萄球菌 Staphylococcus aureus 神经母细胞瘤细胞 (N2A) | 20 nm; 50‒400 mg∙L−1; 48 h | 与纳米Fe3O4相比,Graphene-Fe3O4纳米复合材料对大肠杆菌、金黄色葡萄球菌和细胞的毒性作用更强 | Mahmoodabadi et al., |
Graphene-Fe3O4纳米复合材料 | 斜生栅藻 Scenedesmus obliquus 莱氏衣藻 Chlamydomonas reinhardtii | 1057‒1344 nm; 0.2, 1 mg∙L−1; 96 h | 与rGO (Graphene) 相比, rGO纳米复合材料表面异质界面有助于其比表面积的变化, 导致生物体氧化应激损伤, 复合暴露下释放更多游离金属离子, 导致细胞致病甚至死亡 | Yin et al., |
Fe3O4-SiO2纳米复合材料 | 欧洲鳗鱼 Anguilla anguilla | 100 nm; 2.5 mg∙L−1; 0, 2, 4, 8, 16, 24, 48, 72 h | Fe3O4-SiO2纳米复合材料会诱导欧洲鳗鱼大脑、肝细胞产生氧化应激 | Anjum et al., |
Fe3O4-SiO2纳米复合材料 | pBR322 DNA | (1) (Fe3O4/CA)@SiO2: 20 nm; 0‒1650 mg∙L−1; 10 h (2) (Fe3O4/AA)@SiO2: 30 nm; 0‒520 mg∙L−1; 10 h | ≥330 mg∙L−1的 (1) 和≥260 mg∙L−1的 (2) 均增强了DNA损伤 | Zhang et al., |
新污染物 | 研究对象 | 处理 (尺寸; 浓度; 时间) | 研究结果 | 文献 | ||
---|---|---|---|---|---|---|
纳米聚丙烯酸酯 | 制造工厂的工人 | 暴露于纳米聚丙烯酸酯的工人可能有呼吸系统疾病的风险 | Tiwari et al., | |||
PS MNPs | 人肺泡上皮细胞A549、BEAS-2B | (1) 25, 70 nm; 0?300 mg∙L−1; 24 h (2) 1.67?2.17 μm; 1?1000 μg∙cm−2; 24, 48 h | PSNPs (≥25 mg∙L−1, 25 nm; ≥160 mg∙L−1, 70 nm) 和PSMPs (≥10 μg∙cm−2, 48 h; 1000?μg∙cm−2, 24 h) 会引起肺上皮细胞产生细胞毒性和炎症反应, 导致肺屏障功能障碍 | Xu et al., | ||
人鼻上皮细胞HNEpCs Sprague-Dawley雄性大鼠 | (1) 细胞: 20, 50,100, 200, 500, 1000, 2000 nm; 0, 10, 125, 500, 1250 mg∙L−1; 48 h (2) 大鼠: 20, 50, 200 nm; 125 mg∙L−1; 10, 20 d | (1) ≥125 mg∙L−1的PSNPs (20、500 nm) 会显著抑制细胞活力, 诱导细胞凋亡 (2) 大鼠鼻腔吸入PSNPs可能会干扰能量代谢并损害上呼吸道、肝脏和肾脏 | Huang et al., | |||
神经干细胞NSC | 50, 500 nm; 0?100 mg∙L−1; 25 d | 母体在妊娠期和哺乳期服用PSNPs (≥50 mg∙L−1) 改变了后代NSC、神经细胞组成和脑组织学的功能 | Jeong et al., | |||
人脐静脉内皮细胞HUVECs | 50 nm; 0, 5, 10, 15, 20, 25 mg∙L−1; 12, 24 h | NH2-PSNPs (20 mg∙L−1) 对HUVECs表现出较高的细胞毒性,使得细胞活力降低、ROS产生和线粒体膜电位降低 | Fu et al., | |||
人和小鼠 体外细胞 | 50, 500 nm; 0?100 mg∙L−1; 24 h | PSNPs和PSMPs (0-100 mg∙L−1) 均没有急性细胞毒性和遗传毒性, 仅具有弱胚胎毒性 | Hesler et al., | |||
Wistar雄性大鼠 | 25, 50 nm; 0, 1, 3, 6, 10 mg∙kg−1∙d−1; 5 weeks | PSNPs (≥3 mg∙kg−1∙d−1 bw) 会诱导大鼠肾毒性和肾损伤, 引起大鼠甲状腺内分泌紊乱以及代谢缺陷 | Amereh et al., | |||
C57BL/6、 ICR小鼠 | (1) 5 μm; 0, 100, 1000 μg∙L−1; 6 weeks (2) 0.5, 5 μm; 0, 100, 1000 μg∙L−1; 12 weeks (3) 50, 500 nm; 0?1000 μg∙d−1; 11 weeks (4) 100, 1000 nm; 1 mg∙d−1; 17d | (1) PSMPs (1 mg∙L−1) 改变肠道微生物组, 引起肠屏障功能障碍和代谢紊乱, 引发心脏代谢疾病 (2) PS MNPs (≥500 μg∙d−1) 大脑功能障碍和认知障碍 (3) PS MNPs (1 mg∙d−1) 可穿过血胎盘屏障渗入胎儿丘脑, 对胎儿产生负面影响 | Jin et al., | |||
纳米Fe3O4 | RAW巨噬细胞 | 0, 10, 25, 50, 100, 125, 250 mg∙L−1; 37 h | 纳米Fe3O4 (10?250 mg∙L−1) 表现出明显的细胞毒性 | Raguraman et al., | ||
人上皮A549肺细胞 | (1) 60?100 nm; 0, 1, 10, 100 mg∙L−1; 24 h (2) ≤100 nm; 0, 10, 50, 100, 250 mg∙L−1; 24,72 h | 纳米Fe3O4 (≥100 mg∙L−1)会产生细胞毒性, 导致肺细胞活性降低、ROS升高、细胞膜电位降低、凋亡率降低、抗氧化能力降低、DNA氧化损伤增加 | Watanabe et al., | |||
人中枢神经系统细胞(D384和SH-SY5Y) | 短期: 0?100 mg∙L−1; 4, 24, 48 h 长期: 0?10 mg∙L−1; 2?10 d | 纳米Fe3O4会诱导人中枢神经系统细胞 (D384: 25 mg∙L−1, 4 h、1 mg∙L−1, 48 h、0.05 mg∙L−1, 10 d; SH-SY5Y: 10 mg∙L−1, 48 h) 产生细胞毒性, 影响细胞增殖能力, 损害中枢神经系统的正常功能 | Coccini et al., | |||
人脐静脉内皮细胞HUVECs | 10 nm; 0?400 mg∙L−1; 3?24 h | 纳米Fe3O4 (≥100 mg∙L−1, 24 h) 干扰了HUVECs的自噬过程, 最终导致内皮功能障碍和炎症 | Zhang et al., | |||
LA-9纤维细胞 | 30 nm; 0, 50, 100, 250 mg∙L−1; 24, 48, 72 h | 高质量浓度 (250 mg∙L−1) 的纳米Fe3O4会表现出细胞毒性 | Alves Feitosa et al., | |||
Fischer 344大鼠 | 0, 0.2, 1, 5 mg∙kg−1; 52 weeks | 纳米Fe3O4会引起大鼠肺部的慢性炎症反应, 高剂量的暴露 (5 mg∙kg−1) 还会引起肺泡增生 | Tada et al., | |||
Wistar大鼠 | 60 nm; 0, 25, 50, 100 mg∙kg−1; 20 d | 纳米Fe3O4 (25?100 mg∙kg−1) 会使得大鼠染色体畸变、微核形成和DNA损伤, 从而诱导遗传毒性 | Ansari et al., | |||
纳米 SiO2 | 人脐静脉内皮细胞HUVECs | 62 nm; 0, 25, 50, 75, 100 mg∙L−1; 24 h | 纳米SiO2 (≥50 mg∙L−1) 诱导细胞毒性、氧化应激和细胞凋亡,造成内皮细胞功能障碍 | Duan et al., | ||
人肺A549细胞 | 2?10 nm; 0, 2, 10, 50, 100 mg∙L−1; 24, 72 h | 纳米SiO2 (≥10 mg∙L−1) 对A549细胞有细胞毒性, 导致细胞存活率降低, 线粒体膜电位降低, ROS生成增加, 具有浓度时间依赖性 | Rafieepour et al., | |||
人支气管 上皮细胞 | 16 nm; 0, 12.5, 25 mg∙L−1; 6 h | 高剂量纳米SiO2 (25 mg∙L−1) 暴露表现出低细胞毒性和代谢物变化 | Cui et al., | |||
肝细胞L-02 | 58 nm; 0, 6.25, 12.5, 25, 50, 100 mg∙L−1; 24 h | 纳米SiO2 (≥25 mg∙L−1) 引起代谢功能障碍, 加剧氧化应激并导致肝损伤, 产生肝毒性 | Zhu et al., | |||
Caco-2和HT29-MTX共培养物的体外模型 | 20?30 nm; 0, 2×10−4, 0.02, 2 mg∙L−1; 4 h, 5 d | 纳米SiO2 (≥0.02 mg∙L−1) 减少了肠道对营养物质的吸收, 改变了营养转运蛋白的表达水平, 并启动了促炎信号传导 | Guo et al., | |||
巨噬细胞系RAW264.7 | 30 nm; 0?20 mg∙L−1; 1, 4 d | 纳米SiO2 (20 mg∙L−1, 24 h;5 mg∙L−1, 4 d) 暴露会引起巨噬细胞反应的改变 | Torres et al., | |||
Wistar 雄性大鼠 | (1) 10?20 nm; 0, 40, 80 mg∙L−1; 30 d (2) 7, 670 nm; 0?1000 mg∙L−1; 24 h (3) 57 nm; 0, 2, 5, 10 mg∙kg−1; 16 d | (1) 纳米SiO2 (80 mg∙L−1) 会导致大鼠气道高反应性 (AHR) 和气道重塑,使其肺功能受损 (2) 纳米SiO2 (99.5 mg∙L−1) 导致线粒体功能障碍和低能量状态, 诱导心脏毒性 (3) 纳米SiO2 (≥2 mg∙kg−1) 促进高脂肪饮食处理的大鼠的生殖毒性 | Han et al., | |||
新污染物 | 研究对象 | 处理 (尺寸; 浓度; 时间) | 研究结果 | 文献 | ||
纳米 SiO2 | BALB/c 小鼠 | (1) 70, 300, 1000 nm; 0.8 mg∙pcs−1; 18 d (2) 10?30 nm; 225, 1000, 5000 mg∙kg−1; 28, 84 d | (1) 纳米SiO2 (0.8 mg∙pcs−1)会引起雌性小鼠妊娠并发症 (2) 纳米SiO2 (225 mg∙kg−1) 诱发了小鼠肝脂肪变性、DNA甲基化, 可能会导致脂质代谢紊乱和癌症发展 | Yamashita et al., | ||
ICR 雄性小鼠 | ≤100 nm; 0?300 mg∙kg−1; 12 d | 纳米SiO2 (300 mg∙kg−1) 会对肠道造成炎症损伤, 导致肠道微生物群的变化 | Yan et al., | |||
L5178Y/Tk+/−-3.7.2C小鼠淋巴瘤细胞 | 7.172, 7.652 nm; 0?150 mg∙L−1; 12 d | 高质量浓度的纳米SiO2 (≥100 mg∙L−1) 会诱导染色体突变 | Demir et al., | |||
C57BL/6 J雄性小鼠、Wistar雄性大鼠 | (1) 14?40 nm; 3 g∙kg−1; 28 d (2) 80 nm; 0.15 mg∙ pcs −1; 15, 90 d | 纳米SiO2诱导鼠神经行为障碍和脑损伤 | Parveen et al., | |||
纳米炭 | Sprague-Dawley 大鼠 | (1) 14 nm; 9 mg∙m−3; 13 weeks (2) 83.3?87.9 nm; 0?4.2×106 pc∙cm−3; 4 weeks | 纳米炭黑对大鼠具有轻度呼吸毒性和肺部炎症, 但未损害肺组织, 对血液功能也无影响 | Kim et al., | ||
BALB/c 小鼠嗅球 | 14 nm; 250 μg∙L−1; 11 h | 纳米炭黑可以调节细胞外氨基酸神经递质水平和促炎细胞因子来影响小鼠嗅球细胞 | Win-Shwe et al., |
Table 3 Human health effects of particulate emerging contaminants in waste toner
新污染物 | 研究对象 | 处理 (尺寸; 浓度; 时间) | 研究结果 | 文献 | ||
---|---|---|---|---|---|---|
纳米聚丙烯酸酯 | 制造工厂的工人 | 暴露于纳米聚丙烯酸酯的工人可能有呼吸系统疾病的风险 | Tiwari et al., | |||
PS MNPs | 人肺泡上皮细胞A549、BEAS-2B | (1) 25, 70 nm; 0?300 mg∙L−1; 24 h (2) 1.67?2.17 μm; 1?1000 μg∙cm−2; 24, 48 h | PSNPs (≥25 mg∙L−1, 25 nm; ≥160 mg∙L−1, 70 nm) 和PSMPs (≥10 μg∙cm−2, 48 h; 1000?μg∙cm−2, 24 h) 会引起肺上皮细胞产生细胞毒性和炎症反应, 导致肺屏障功能障碍 | Xu et al., | ||
人鼻上皮细胞HNEpCs Sprague-Dawley雄性大鼠 | (1) 细胞: 20, 50,100, 200, 500, 1000, 2000 nm; 0, 10, 125, 500, 1250 mg∙L−1; 48 h (2) 大鼠: 20, 50, 200 nm; 125 mg∙L−1; 10, 20 d | (1) ≥125 mg∙L−1的PSNPs (20、500 nm) 会显著抑制细胞活力, 诱导细胞凋亡 (2) 大鼠鼻腔吸入PSNPs可能会干扰能量代谢并损害上呼吸道、肝脏和肾脏 | Huang et al., | |||
神经干细胞NSC | 50, 500 nm; 0?100 mg∙L−1; 25 d | 母体在妊娠期和哺乳期服用PSNPs (≥50 mg∙L−1) 改变了后代NSC、神经细胞组成和脑组织学的功能 | Jeong et al., | |||
人脐静脉内皮细胞HUVECs | 50 nm; 0, 5, 10, 15, 20, 25 mg∙L−1; 12, 24 h | NH2-PSNPs (20 mg∙L−1) 对HUVECs表现出较高的细胞毒性,使得细胞活力降低、ROS产生和线粒体膜电位降低 | Fu et al., | |||
人和小鼠 体外细胞 | 50, 500 nm; 0?100 mg∙L−1; 24 h | PSNPs和PSMPs (0-100 mg∙L−1) 均没有急性细胞毒性和遗传毒性, 仅具有弱胚胎毒性 | Hesler et al., | |||
Wistar雄性大鼠 | 25, 50 nm; 0, 1, 3, 6, 10 mg∙kg−1∙d−1; 5 weeks | PSNPs (≥3 mg∙kg−1∙d−1 bw) 会诱导大鼠肾毒性和肾损伤, 引起大鼠甲状腺内分泌紊乱以及代谢缺陷 | Amereh et al., | |||
C57BL/6、 ICR小鼠 | (1) 5 μm; 0, 100, 1000 μg∙L−1; 6 weeks (2) 0.5, 5 μm; 0, 100, 1000 μg∙L−1; 12 weeks (3) 50, 500 nm; 0?1000 μg∙d−1; 11 weeks (4) 100, 1000 nm; 1 mg∙d−1; 17d | (1) PSMPs (1 mg∙L−1) 改变肠道微生物组, 引起肠屏障功能障碍和代谢紊乱, 引发心脏代谢疾病 (2) PS MNPs (≥500 μg∙d−1) 大脑功能障碍和认知障碍 (3) PS MNPs (1 mg∙d−1) 可穿过血胎盘屏障渗入胎儿丘脑, 对胎儿产生负面影响 | Jin et al., | |||
纳米Fe3O4 | RAW巨噬细胞 | 0, 10, 25, 50, 100, 125, 250 mg∙L−1; 37 h | 纳米Fe3O4 (10?250 mg∙L−1) 表现出明显的细胞毒性 | Raguraman et al., | ||
人上皮A549肺细胞 | (1) 60?100 nm; 0, 1, 10, 100 mg∙L−1; 24 h (2) ≤100 nm; 0, 10, 50, 100, 250 mg∙L−1; 24,72 h | 纳米Fe3O4 (≥100 mg∙L−1)会产生细胞毒性, 导致肺细胞活性降低、ROS升高、细胞膜电位降低、凋亡率降低、抗氧化能力降低、DNA氧化损伤增加 | Watanabe et al., | |||
人中枢神经系统细胞(D384和SH-SY5Y) | 短期: 0?100 mg∙L−1; 4, 24, 48 h 长期: 0?10 mg∙L−1; 2?10 d | 纳米Fe3O4会诱导人中枢神经系统细胞 (D384: 25 mg∙L−1, 4 h、1 mg∙L−1, 48 h、0.05 mg∙L−1, 10 d; SH-SY5Y: 10 mg∙L−1, 48 h) 产生细胞毒性, 影响细胞增殖能力, 损害中枢神经系统的正常功能 | Coccini et al., | |||
人脐静脉内皮细胞HUVECs | 10 nm; 0?400 mg∙L−1; 3?24 h | 纳米Fe3O4 (≥100 mg∙L−1, 24 h) 干扰了HUVECs的自噬过程, 最终导致内皮功能障碍和炎症 | Zhang et al., | |||
LA-9纤维细胞 | 30 nm; 0, 50, 100, 250 mg∙L−1; 24, 48, 72 h | 高质量浓度 (250 mg∙L−1) 的纳米Fe3O4会表现出细胞毒性 | Alves Feitosa et al., | |||
Fischer 344大鼠 | 0, 0.2, 1, 5 mg∙kg−1; 52 weeks | 纳米Fe3O4会引起大鼠肺部的慢性炎症反应, 高剂量的暴露 (5 mg∙kg−1) 还会引起肺泡增生 | Tada et al., | |||
Wistar大鼠 | 60 nm; 0, 25, 50, 100 mg∙kg−1; 20 d | 纳米Fe3O4 (25?100 mg∙kg−1) 会使得大鼠染色体畸变、微核形成和DNA损伤, 从而诱导遗传毒性 | Ansari et al., | |||
纳米 SiO2 | 人脐静脉内皮细胞HUVECs | 62 nm; 0, 25, 50, 75, 100 mg∙L−1; 24 h | 纳米SiO2 (≥50 mg∙L−1) 诱导细胞毒性、氧化应激和细胞凋亡,造成内皮细胞功能障碍 | Duan et al., | ||
人肺A549细胞 | 2?10 nm; 0, 2, 10, 50, 100 mg∙L−1; 24, 72 h | 纳米SiO2 (≥10 mg∙L−1) 对A549细胞有细胞毒性, 导致细胞存活率降低, 线粒体膜电位降低, ROS生成增加, 具有浓度时间依赖性 | Rafieepour et al., | |||
人支气管 上皮细胞 | 16 nm; 0, 12.5, 25 mg∙L−1; 6 h | 高剂量纳米SiO2 (25 mg∙L−1) 暴露表现出低细胞毒性和代谢物变化 | Cui et al., | |||
肝细胞L-02 | 58 nm; 0, 6.25, 12.5, 25, 50, 100 mg∙L−1; 24 h | 纳米SiO2 (≥25 mg∙L−1) 引起代谢功能障碍, 加剧氧化应激并导致肝损伤, 产生肝毒性 | Zhu et al., | |||
Caco-2和HT29-MTX共培养物的体外模型 | 20?30 nm; 0, 2×10−4, 0.02, 2 mg∙L−1; 4 h, 5 d | 纳米SiO2 (≥0.02 mg∙L−1) 减少了肠道对营养物质的吸收, 改变了营养转运蛋白的表达水平, 并启动了促炎信号传导 | Guo et al., | |||
巨噬细胞系RAW264.7 | 30 nm; 0?20 mg∙L−1; 1, 4 d | 纳米SiO2 (20 mg∙L−1, 24 h;5 mg∙L−1, 4 d) 暴露会引起巨噬细胞反应的改变 | Torres et al., | |||
Wistar 雄性大鼠 | (1) 10?20 nm; 0, 40, 80 mg∙L−1; 30 d (2) 7, 670 nm; 0?1000 mg∙L−1; 24 h (3) 57 nm; 0, 2, 5, 10 mg∙kg−1; 16 d | (1) 纳米SiO2 (80 mg∙L−1) 会导致大鼠气道高反应性 (AHR) 和气道重塑,使其肺功能受损 (2) 纳米SiO2 (99.5 mg∙L−1) 导致线粒体功能障碍和低能量状态, 诱导心脏毒性 (3) 纳米SiO2 (≥2 mg∙kg−1) 促进高脂肪饮食处理的大鼠的生殖毒性 | Han et al., | |||
新污染物 | 研究对象 | 处理 (尺寸; 浓度; 时间) | 研究结果 | 文献 | ||
纳米 SiO2 | BALB/c 小鼠 | (1) 70, 300, 1000 nm; 0.8 mg∙pcs−1; 18 d (2) 10?30 nm; 225, 1000, 5000 mg∙kg−1; 28, 84 d | (1) 纳米SiO2 (0.8 mg∙pcs−1)会引起雌性小鼠妊娠并发症 (2) 纳米SiO2 (225 mg∙kg−1) 诱发了小鼠肝脂肪变性、DNA甲基化, 可能会导致脂质代谢紊乱和癌症发展 | Yamashita et al., | ||
ICR 雄性小鼠 | ≤100 nm; 0?300 mg∙kg−1; 12 d | 纳米SiO2 (300 mg∙kg−1) 会对肠道造成炎症损伤, 导致肠道微生物群的变化 | Yan et al., | |||
L5178Y/Tk+/−-3.7.2C小鼠淋巴瘤细胞 | 7.172, 7.652 nm; 0?150 mg∙L−1; 12 d | 高质量浓度的纳米SiO2 (≥100 mg∙L−1) 会诱导染色体突变 | Demir et al., | |||
C57BL/6 J雄性小鼠、Wistar雄性大鼠 | (1) 14?40 nm; 3 g∙kg−1; 28 d (2) 80 nm; 0.15 mg∙ pcs −1; 15, 90 d | 纳米SiO2诱导鼠神经行为障碍和脑损伤 | Parveen et al., | |||
纳米炭 | Sprague-Dawley 大鼠 | (1) 14 nm; 9 mg∙m−3; 13 weeks (2) 83.3?87.9 nm; 0?4.2×106 pc∙cm−3; 4 weeks | 纳米炭黑对大鼠具有轻度呼吸毒性和肺部炎症, 但未损害肺组织, 对血液功能也无影响 | Kim et al., | ||
BALB/c 小鼠嗅球 | 14 nm; 250 μg∙L−1; 11 h | 纳米炭黑可以调节细胞外氨基酸神经递质水平和促炎细胞因子来影响小鼠嗅球细胞 | Win-Shwe et al., |
[1] |
ALVES FEITOSA K, DE OLIVEIRA v, MARAGNO F A C, et al. 2022. Toxicological effects of the mixed iron oxide nanoparticle (Fe3O4 NP) on murine fibroblasts LA-9[J]. Journal of Toxicology and Environmental Health. Part A, 85(16): 649-670.
DOI URL |
[2] |
AMEREH F, ESLAMI A, FAZELIPOUR S, et al., 2019. Thyroid endocrine status and biochemical stress responses in adult male Wistar rats chronically exposed to pristine polystyrene nanoplastics[J]. Toxicology Research, 8(6): 953-963.
DOI URL |
[3] |
ANJUM N A, SRIKANTH K, MOHMOOD I, et al., 2014. Brain glutathione redox system significance for the control of silica-coated magnetite nanoparticles with or without mercury co-exposures mediated oxidative stress in European eel (Anguilla anguilla L.)[J]. Environmental Science and Pollution Research, 21(12): 7746-7756.
DOI URL |
[4] |
ANSARI M O, PARVEEN N, AHMAD M F, et al., 2019. Evaluation of DNA interaction, genotoxicity and oxidative stress induced by iron oxide nanoparticles both in vitro and in vivo: Attenuation by thymoquinone[J]. Scientific Reports, 9(1): 6912.
DOI PMID |
[5] |
ARJUNAN P, KOUTHAMAN M, KANNAN K, et al., 2021. Study on efficient electrode from electronic waste renewed carbon material for sodium battery applications[J]. Journal of Environmental Chemical Engineering, 9(2): 105024.
DOI URL |
[6] |
BABAR S, GAVADE N, SHINDE H, et al., 2019. An innovative transformation of waste toner powder into magnetic g-C3N4-Fe2O3 photocatalyst: Sustainable e-waste management[J]. Journal of Environmental Chemical Engineering, 7(2): 103041.
DOI URL |
[7] |
BAKSHI S, HE Z L L, HARRIS W G, 2015. Natural nanoparticles: Implications for environment and human health[J]. Critical Reviews in Environmental Science and Technology, 45(8): 861-904.
DOI URL |
[8] |
BALASUBRAMANIAN S, KANAGARATHINAM S, CINGARAM R, et al., 2023. Waste toner-derived porous iron oxide pigments with enhanced catalytic degradation property[J]. Environmental Research, 216(Part 3): 114695.
DOI URL |
[9] |
BHONGADE T, GOGARAM, GAUTAM D M, et al., 2019. Synthesis of MWCNTs using waste toner powder as carbon source by chemical vapor deposition method[J]. Fullerenes, Nanotubes and Carbon Nanostructures, 27(11): 864-872.
DOI URL |
[10] |
BITOUNIS D, HUANG Q, TOPRANI S M, et al., 2022. Printer center nanoparticles alter the DNA repair capacity of human bronchial airway epithelial cells[J]. NanoImpact, 25: 100379.
DOI URL |
[11] |
CHEN M, ZHOU S, ZENG G M, et al., 2018. Putting carbon nanomaterials on the carbon cycle map[J]. Nano Today, 20: 7-9.
DOI URL |
[12] |
COCCINI T, CALONI F, RAMíREZ-CANDO L, et al., 2016. Cytotoxicity and proliferative capacity impairment induced on human brain cell cultures after short-and long-term exposure to magnetite nanoparticles[J]. Journal of Applied Toxicology, 37: 361-373.
DOI URL |
[13] |
COLMAN B P, ESPINASSE B, RICHARDSON C J, et al., 2014. Emerging contaminant or an old toxin in disguise? Silver nanoparticle impacts on ecosystems[J]. Environmental Science & Technology, 48(9): 5229-5236.
DOI URL |
[14] |
CUI L, WANG X, SUN B B, et al., 2019. Predictive metabolomic signatures for safety assessment of metal oxide nanoparticles[J]. ACS Nano, 13(11): 13065-13082.
DOI PMID |
[15] |
DEMIR E and CASTRANOVA V, 2016. Genotoxic effects of synthetic amorphous silica nanoparticles in the mouse lymphoma assay[J]. Toxicology Reports, 3: 807-815.
DOI PMID |
[16] |
DIAO J, XIA Y Y, JIANG X J, et al., 2021. Silicon dioxide nanoparticles induced neurobehavioral impairments by disrupting microbiota-gut-brain axis[J]. Journal of Nanobiotechnology, 19(1): 174.
DOI PMID |
[17] |
DING T D, WEI L Y, HOU Z M, et al., 2022. Microplastics altered contaminant behavior and toxicity in natural waters[J]. Journal of Hazardous Materials, 425: 127908.
DOI URL |
[18] |
DONG C D, CHEN C W, CHEN Y C, et al., 2020. Polystyrene microplastic particles: In vitro pulmonary toxicity assessment[J]. Journal of Hazardous Materials, 385: 121575.
DOI URL |
[19] |
DONG Y M, GAO M L, QIU W W, et al., 2021. Uptake of microplastics by carrots in presence of As(III): Combined toxic effects[J]. Journal of Hazardous Materials, 411: 125055.
DOI URL |
[20] |
DUAN J C, YU Y B, LI Y, et al., 2013. Cardiovascular toxicity evaluation of silica nanoparticles in endothelial cells and zebrafish model[J]. Biomaterials, 34(23): 5853-5862.
DOI PMID |
[21] |
FADARE O O, WAN B, LIU K, et al., 2020. Eco-corona vs protein corona: Effects of humic substances on corona formation and nanoplastic particle toxicity in Daphnia magna[J]. Environmental Science & Technology, 54(13): 8001-8009.
DOI URL |
[22] |
FENG S B, ZENG Y H, CAI Z H, et al., 2021. Polystyrene microplastics alter the intestinal microbiota function and the hepatic metabolism status in marine medaka (Oryzias melastigma)[J]. Science of The Total Environment, 759: 143558.
DOI URL |
[23] |
FERNÁNDEZ B, AYALA J, DEL VALLE E, et al., 2022. Recycling of waste toner powder as adsorbent to remove aqueous heavy metals[J]. Materials, 15(12): 4150.
DOI URL |
[24] |
FU Y Q, FAN M Q, XU L W, et al., 2022. Amino-functionalized polystyrene nano-plastics induce mitochondria damage in human umbilical vein endothelial cells[J]. Toxics, 10(5): 215.
DOI URL |
[25] | GAIKWAD V, KUMAR U, PAHLEVANI F, et al., 2017. Thermal transformation of waste toner powder into a value-added ferrous resource[J]. ACS Sustainable Chemistry & Engineering, 5(12): 11543-11550. |
[26] |
GIORGETTI L, SPANò C, MUCCIFORA S, et al., 2020. Exploring the interaction between polystyrene nanoplastics and Allium cepa during germination: Internalization in root cells, induction of toxicity and oxidative stress[J]. Plant Physiology and Biochemistry, 149: 170-177.
DOI URL |
[27] | GONG D, BAI X, WENG Y, et al., 2022. Phytotoxicity of binary nanoparticles and humic acid on Lactuca sativa L[J]. Environmental Science: Processes & Impacts, 24(4): 586-597. |
[28] | GUERRERO-BELTRÁN E, BERNAL-RAMíREZ J, LOZANO O, et al., 2017. Silica nanoparticles induce cardiotoxicity interfering with energetic status and Ca2+ handling in adult rat cardiomyocytes[J]. American Journal of Physiology - Heart and Circulatory Physiology, 312(4): 645-661. |
[29] |
GUO Z Y, MARTUCCI N J, LIU Y Z, et al., 2018. Silicon dioxide nanoparticle exposure affects small intestine function in an in vitro model[J]. Nanotoxicology, 12(5): 485-508.
DOI PMID |
[30] |
HABIB H, ATASSI Y, SALLOUM A, et al., 2021. An ecofriendly, cost-effective, lightweight microwave absorber based on waste toner[J]. Journal of Electronic Materials, 50(4): 2049-2056.
DOI |
[31] |
HAJDÚ A, ILLÉS E, TOMBÁCZ E, et al., 2009. Surface charging, polyanionic coating and colloid stability of magnetite nanoparticles[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 347(1): 104-108.
DOI URL |
[32] |
HAMMANI S, BARHOUM A, NAGARAJAN S, et al., 2019. Toner waste powder (TWP) as a filler for polymer blends (LDPE/HIPS) for enhanced electrical conductivity[J]. Materials, 12(19): 3062.
DOI URL |
[33] |
HAN B, GUO J, ABRAHALEY T, et al., 2011. Adverse effect of nano-silicon dioxide on lung function of rats with or without ovalbumin immunization[J]. PLoS One, 6(2): e17236.
DOI URL |
[34] |
HESLER M, AENGENHEISTER L, ELLINGER B, et al., 2019. Multi-endpoint toxicological assessment of polystyrene nano- and microparticles in different biological models in vitro[J]. Toxicology in Vitro, 61: 104610.
DOI URL |
[35] |
HONG W T, MOON B K, YANG H K, 2022. Microwave irradiation and color converting film application of carbon dots originated from wasted toner powder[J]. Materials Research Bulletin, 156: 111999.
DOI URL |
[36] |
HUANG C W, YEN P L, KUO Y H, et al., 2022a. Nanoplastic exposure in soil compromises the energy budget of the soil nematode C. elegans and decreases reproductive fitness[J]. Environmental Pollution, 312: 120071.
DOI URL |
[37] |
HUANG J Y, DONG G Y, LIANG M T, et al., 2022b. Toxicity of micro(nano)plastics with different size and surface charge on human nasal epithelial cells and rats via intranasal exposure[J]. Chemosphere, 307: 136093.
DOI URL |
[38] |
HUANG J D, KUMAR G S, SUN Y J, 2021. Evaluation of workability and mechanical properties of asphalt binder and mixture modified with waste toner[J]. Construction and Building Materials, 276: 122230.
DOI URL |
[39] |
HUANG R, YANG J P, CAO Y J, et al., 2022c. Peroxymonosulfate catalytic degradation of persistent organic pollutants by engineered catalyst of self-doped iron/carbon nanocomposite derived from waste toner powder[J]. Separation and Purification Technology, 291: 120963.
DOI URL |
[40] |
JEONG B, BAEK J Y, KOO J, et al., 2022. Maternal exposure to polystyrene nanoplastics causes brain abnormalities in progeny[J]. Journal of Hazardous Materials, 426: 127815.
DOI URL |
[41] |
JIANG X F, CHEN H, LIAO Y C, et al., 2019. Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba[J]. Environmental Pollution, 250: 831-838.
DOI URL |
[42] |
JIN Y X, LU L, TU W Q, et al., 2019. Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice[J]. Science of The Total Environment, 649: 308-317.
DOI URL |
[43] |
KAIPANNAN S, GOVINDARAJAN K, SUNDARAMOORTHY S, et al., 2019. Waste toner-derived carbon/Fe3O4 nanocomposite for high-performance supercapacitor[J]. ACS omega, 4(14): 15798-15805.
DOI URL |
[44] | KASI V, ELANGO N, ANANTH S, et al., 2017. Occupational exposure to photocopiers and their toners cause genotoxicity[J]. Human & Experimental Toxicology, 37(2): 205-217. |
[45] |
KHALIQ A, RHAMDHANI M A, BROOKS G, et al., 2014. Metal extraction processes for electronic waste and existing industrial routes: A review and australian perspective[J]. Resources, 3(1): 152-179.
DOI URL |
[46] |
KIM H M, LEE D K, LONG N P, et al., 2019. Uptake of nanopolystyrene particles induces distinct metabolic profiles and toxic effects in Caenorhabditis elegans[J]. Environmental Pollution, 246: 578-586.
DOI URL |
[47] |
KIM J K, KANG M G, CHO H W, et al., 2011. Effect of nano-sized carbon black particles on lung and circulatory system by inhalation exposure in rats[J]. Safety and Health at Work, 2(3): 282-289.
DOI URL |
[48] |
KONATE A, HE X, ZHANG Z Y, et al., 2017. Magnetic (Fe3O4) nanoparticles reduce heavy metals uptake and mitigate their toxicity in Wheat seedling[J]. Sustainability, 9(5): 1-16.
DOI URL |
[49] |
KONG Q D, LI Y N, XU X Q, et al., 2021. Microplastics interfere with mixotrophic Ochromonas eliminating toxic microcystis[J]. Chemosphere, 265: 129030.
DOI URL |
[50] | LAFFON B, FERNÁNDEZ-BERTÓLEZ N, COSTA C, et al., 2018. Cellular and molecular toxicity of iron oxide nanoparticles[M]. Cham: Springer International Publishing: 199-213. |
[51] |
LEI L L, LIU M T, SONG Y, et al., 2018. Polystyrene (nano)microplastics cause size-dependent neurotoxicity, oxidative damage and other adverse effects in Caenorhabditis elegans[J]. Environmental Science: Nano, 5(8): 2009-2020.
DOI URL |
[52] |
LI S S, GAO S J, WANG S, et al., 2017. Performance evaluation and microbial community shift of a sequencing batch reactor under silica nanoparticles stress[J]. Bioresource Technology, 245: 673-680.
DOI PMID |
[53] | LI X N, HE F, WANG Z Y, et al., 2022. Roadmap of environmental health research on emerging contaminants: Inspiration from the studies on engineered nanomaterials[J]. Eco-Environment & Health, 1(3): 181-197. |
[54] |
LI Y, MAO J Q, XIE H Q, et al., 2018. Heat-treatment recycling of waste toner and its applications in lithium ion batteries[J]. Journal of Material Cycles and Waste Management, 20(1): 361-368.
DOI URL |
[55] |
LIM C H, KANG M G, HAN J H, et al., 2012. Effect of agglomeration on the toxicity of nano-sized carbon black in Sprague-Dawley rats[J]. Environmental Health and Toxicology, 27: e2012015.
DOI URL |
[56] | LIU J, XU D X, CHEN Y R, et al., 2022. Adverse effects of dietary virgin (nano)microplastics on growth performance, immune response, and resistance to ammonia stress and pathogen challenge in juvenile sea cucumber Apostichopus japonicus (Selenka)[J]. Journal of Hazardous Materials, 423(Part A): 127038. |
[57] |
LIU Z Q, LI Y M, PÉREZ E, et al., 2021. Polystyrene nanoplastic induces oxidative stress, immune defense, and glycometabolism change in Daphnia pulex: Application of transcriptome profiling in risk assessment of nanoplastics[J]. Journal of Hazardous Materials, 402: 123778.
DOI URL |
[58] |
LU X Y, LI J Y, LOU H, et al., 2021. Genome-wide DNA methylation alterations and potential risk induced by subacute and subchronic exposure to food-grade nanosilica in mice[J]. ACS Nano, 15(5): 8225-8243.
DOI PMID |
[59] |
LU X Y, MIOUSSE I R, Prata S V, et al., 2016. In vivo epigenetic effects induced by engineered nanomaterials: A case study of copper oxide and laser printer-emitted engineered nanoparticles[J]. Nanotoxicology, 10(5): 629-639.
DOI PMID |
[60] |
MA D, SHENG J, HAO Y Z, et al., 2021. Photovoltaic green application of waste toner carbon on fully printable mesoscopic perovskite solar cells[J]. Solar Energy, 228: 439-446.
DOI URL |
[61] |
MAO Y F, LI H, HUANGFU X L, et al., 2020. Nanoplastics display strong stability in aqueous environments: Insights from aggregation behaviour and theoretical calculations[J]. Environmental Pollution, 258: 113760.
DOI URL |
[62] |
MELNJAK I, VUČINIĆ A A, RADETIĆ L, et al., 2019. Waste toner powder in concrete industry: An approach towards circular economy[J]. Environmental Engineering and Management Journal, 18(9): 1897-1906.
DOI URL |
[63] |
MENG Z J, RECOURA-MASSAQUANT R, CHAUMOT A, et al., 2023. Acute toxicity of nanoplastics on Daphnia and Gammarus neonates: Effects of surface charge, heteroaggregation, and water properties[J]. Science of The Total Environment, 854: 158763.
DOI URL |
[64] |
MESARIČ T, SEPČIČ K, PIAZZA V, et al., 2013. Effects of nano carbon black and single-layer graphene oxide on settlement, survival and swimming behaviour of Amphibalanus amphitrite larvae[J]. Chemistry and Ecology, 29(7): 643-652.
DOI URL |
[65] |
NATARAJAN L, OMER S, JETLY N, et al., 2020. Eco-corona formation lessens the toxic effects of polystyrene nanoplastics towards marine microalgae Chlorella sp[J]. Environmental Research, 188: 109842.
DOI URL |
[66] |
MAHMOODABADI N A, KOMPANY A, MASHREGHI M, 2018. Characterization, antibacterial and cytotoxicity studies of graphene-Fe3O4 nanocomposites and Fe3O4 nanoparticles synthesized by a facile solvothermal method[J]. Materials Chemistry and Physics, 213: 285-294.
DOI URL |
[67] |
NIKOLIC S, GAZDIC-JANKOVIC M, ROSIC G, et al., 2022. Orally administered fluorescent nanosized polystyrene particles affect cell viability, hormonal and inflammatory profile, and behavior in treated mice[J]. Environmental Pollution, 305: 119206.
DOI URL |
[68] |
NING Q, WANG D L, AN J H, et al., 2022. Combined effects of nanosized polystyrene and erythromycin on bacterial growth and resistance mutations in Escherichia coli[J]. Journal of Hazardous Materials, 422: 126858.
DOI URL |
[69] | NOTANI M A, MOGHADAS NEJAD F, FINI E, et al., 2019. Low-temperature performance of toner-modified asphalt binder[J]. Journal of Transportation Engineering, 145(3): 04019022. |
[70] |
NUGNES R, LAVORGNA M, ORLO E, et al., 2022. Toxic impact of polystyrene microplastic particles in freshwater organisms[J]. Chemosphere, 299: 134373.
DOI URL |
[71] |
OGAMI A, HIGASHI T, 2022. Results of a series of epidemiological investigations on health effects in toner-manufacturing workers[J]. Atmosphere, 13(11): 1801.
DOI URL |
[72] |
PARTHASARATHY M, 2021. Challenges and emerging trends in toner waste recycling: A review[J]. Recycling, 6(3): 57.
DOI URL |
[73] |
PARVEEN A, RIZVI S H M, MAHDI F, et al., 2014. Silica nanoparticles mediated neuronal cell death in corpus striatum of rat brain: Implication of mitochondrial, endoplasmic reticulum and oxidative stress[J]. Journal of Nanoparticle Research, 16(11): 2664.
DOI URL |
[74] |
PIRELA S V, BHATTACHARYA K, WANG Y, et al., 2019. A 21-day sub-acute, whole-body inhalation exposure to printer-emitted engineered nanoparticles in rats: Exploring pulmonary and systemic effects[J]. NanoImpact, 15: 100176.
DOI URL |
[75] |
PRATA J, LAVORANTE B, MONTENEGRO M, et al., 2018. Influence of microplastics on the toxicity of the pharmaceuticals procainamide and doxycycline on the marine microalgae Tetraselmis chuii[J]. Aquatic Toxicology, 197: 143-152.
DOI URL |
[76] |
RAFIEEPOUR A, AZARI M R, PEIROVI H, et al., 2019. Investigation of the effect of magnetite iron oxide particles size on cytotoxicity in A549 cell line[J]. Toxicology and Industrial Health, 35(11-12): 703-713.
DOI URL |
[77] |
RAFIEEPOUR A, RAZARI M, POURAHMAD JAKTAJI J, et al., 2021. The effect of particle size on the cytotoxicity of amorphous silicon dioxide: An in vitro toxicological study[J]. Asian Pacific Journal of Cancer Prevention, 22(2): 325-332.
DOI PMID |
[78] |
RAGURAMAN V, SUTHINDHIRAN K, 2020. Comparative ecotoxicity assessment of magnetosomes and magnetite nanoparticles[J]. International Journal of Environmental Health Research, 30(1): 13-25.
DOI PMID |
[79] |
RAMBARRAN S, MAHARAJ R, MOHAMMED S, et al., 2022. The utilization of waste toner as a modifier in trinidad asphalts[J]. Recycling, 7(5): 1-13.
DOI URL |
[80] |
RAMESH R, KAVITHA P, KANIPANDIAN N, et al., 2012. Alteration of antioxidant enzymes and impairment of DNA in the SiO2 nanoparticles exposed zebra fish (Danio rerio)[J]. Environmental monitoring and assessment, 185(7): 5873-5881.
DOI URL |
[81] |
RONG H, GARG S and WAITE T D, 2019. Impact of light and Suwanee River fulvic acid on O2 and H2O2 mediated oxidation of silver nanoparticles in simulated natural waters[J]. Environmental Science & Technology, 53(12): 6688-6698.
DOI URL |
[82] | RUAN J J, DONG L P, HUANG J, et al., 2017. Vacuum-gasification-condensation of waste toner to produce industrial chemicals and nanomaterials[J]. ACS Sustainable Chemistry & Engineering, 5(6): 4923-4929. |
[83] |
RUAN J J, QIN B J, HUANG J X, 2018. Controlling measures of micro-plastic and nano pollutants: A short review of disposing waste toners[J]. Environment International, 118: 92-96.
DOI PMID |
[84] |
SAINI D, AGGARWAL R, ANAND S R, et al., 2019. Sunlight induced photodegradation of toxic azo dye by self-doped iron oxide nano-carbon from waste printer ink[J]. Solar Energy, 193: 65-73.
DOI URL |
[85] |
SAINI D, AGGARWAL R, ANAND S R, et al., 2020. Sustainable feasibility of waste printer ink to magnetically separable iron oxide-doped nanocarbons for styrene oxidation[J]. Materials Today Chemistry, 16: 100256.
DOI URL |
[86] |
SAUVÉ S, DESROSIERS M, 2014. A review of what is an emerging contaminant[J]. Chemistry Central Journal, 8(1): 15.
DOI PMID |
[87] |
SISLER J D, PIRELA S V, FRIEND S, et al., 2015. Small airway epithelial cells exposure to printer-emitted engineered nanoparticles induces cellular effects on human microvascular endothelial cells in an alveolar-capillary co-culture model[J]. Nanotoxicology, 9(6): 769-779.
DOI PMID |
[88] | SOBHANI Z, PANNEERSELVAN L, FANG C, et al., 2022. Chronic and transgenerational effects of polyethylene microplastics at environmentally relevant concentrations in earthworms[J]. Environmental Technology & Innovation, 25: 102226. |
[89] |
SPANÒ C, MUCCIFORA S, RUFFINI CASTIGLIONE M, et al., 2022. Polystyrene nanoplastics affect seed germination, cell biology and physiology of rice seedlings in-short term treatments: Evidence of their internalization and translocation[J]. Plant Physiology and Biochemistry, 172: 158-166.
DOI PMID |
[90] |
SRIKANTH K, ANJUM N A, TRINDADE T, et al., 2015. Lipid peroxidation and its control in Anguilla anguilla hepatocytes under silica-coated iron oxide nanoparticles (with or without mercury) exposure[J]. Environmental Science and Pollution Research, 22(13): 9617-9625.
DOI URL |
[91] |
SUGANYA D, RAMAKRITINAN C M, RAJAN M R, 2018. Adverse effects of genotoxicity, bioaccumulation and ionoregulatory modulation of two differently synthesized iron oxide nanoparticles on zebrafish (Danio rerio)[J]. Journal of Inorganic and Organometallic Polymers and Materials, 28(6): 2603-2611.
DOI |
[92] |
SUN X M, CHEN B J, LI Q F, et al., 2018. Toxicities of polystyrene nano- and microplastics toward marine bacterium Halomonas alkaliphile[J]. Science of The Total Environment, 642: 1378-1385.
DOI URL |
[93] |
TADA Y, YANO N, TAKAHASHI H, et al., 2013. Long-term pulmonary responses to quadweekly intermittent intratracheal spray instillations of magnetite (Fe3O4) nanoparticles for 52 weeks in Fischer 344 rats[J]. Journal of Toxicologic Pathology, 26(4): 393-403.
DOI PMID |
[94] |
TANG T, GMINSKI R, KÖNCZÖL M, et al., 2012. Investigations on cytotoxic and genotoxic effects of laser printer emissions in human epithelial A549 lung cells using an air/liquid exposure system[J]. Environmental and Molecular Mutagenesis, 53(2): 125-135.
DOI PMID |
[95] |
TENG M M, ZHAO X L, WANG C J, et al., 2022. Polystyrene nanoplastics toxicity to zebrafish: Dysregulation of the brain-intestine-microbiota axis[J]. ACS Nano, 16(5): 8190-8204.
DOI PMID |
[96] |
TERUNUMA N, IKEGAMI K, KITAMURA H, et al., 2020. Effects of toner-handling work on respiratory function, chest X-ray findings, and biomarkers of inflammation, allergy, and oxidative stress: A ten-year prospective Japanese cohort study[J]. BMC Pulmonary Medicine, 20(1): 280.
DOI |
[97] | TIAN Z S, CAO K S, BAI S Z, et al., 2019. One-pot transformation of waste toner powder into 3D graphene oxide hydrogel[J]. ACS Sustainable Chemistry & Engineering, 7(1): 496-501. |
[98] |
TIWARI R R, SADHU H G and SHARMA Y K, 2021. Respiratory health of workers exposed to polyacrylate dust[J]. Lung India, 38(3): 252-257.
DOI PMID |
[99] |
TORRES A, BASTIEN D, COLLIN F, et al., 2020. Repeated vs. acute exposure of RAW264.7 mouse macrophages to silica nanoparticles: A bioaccumulation and functional change study[J]. Nanomaterials, 10(2): 215.
DOI URL |
[100] |
TOUSI S, ZOUFAN P and GHAHFARROKHIE A R, 2020. Alleviation of cadmium-induced phytotoxicity and growth improvement by exogenous melatonin pretreatment in mallow (Malva parviflora) plants[J]. Ecotoxicology and Environmental Safety, 206: 111403.
DOI URL |
[101] |
VALÉRIE F, 2021. Combined effects of nanoparticles and other environmental contaminants on human health - an issue often overlooked[J]. NanoImpact, 23: 100344.
DOI URL |
[102] | VIGNESH R V, GNANAKUMAR G, 2014. Synthesis of hybrid black toner from waste toner using nano technology - optimization technique[J]. International Journal of Engineering and Advanced Technology, 3(3): 204-213. |
[103] |
WANG J Y, TAN L J, NI Z Q, et al., 2022a. Is hydrodynamic diameter the decisive factor? Comparison of the toxic mechanism of nSiO2 and mPS on marine microalgae Heterosigma akashiwo[J]. Aquatic Toxicology, 252: 106309.
DOI URL |
[104] |
WANG Y X, LIU M J, GENG X H, et al., 2022b. The combined effects of microplastics and the heavy metal cadmium on the marine periphytic ciliate Euplotes vannus[J]. Environmental Pollution, 308: 119663.
DOI URL |
[105] |
WANG Z H, WANG Y X, QIN S S, et al., 2023. Polystyrene microplastics weaken the predator-induced defenses of Daphnia magna: Evidences from the changes in morphology and behavior[J]. Environmental Pollution, 316(Part 2): 120657.
DOI URL |
[106] |
WANG Z Y, YUE L, DHANKHER O P, et al., 2020. Nano-enabled improvements of growth and nutritional quality in food plants driven by rhizosphere processes[J]. Environment International, 142: 105831.
DOI URL |
[107] |
WATANABE M, YONEDA M, MOROHASHI A, et al., 2013. Effects of Fe3O4 magnetic nanoparticles on A549 cells[J]. International Journal of Molecular Sciences, 14(8): 15546-15560.
DOI URL |
[108] |
WIN-SHWE T T, MITSUSHIMA D, YAMAMOTO S, et al., 2008. Changes in neurotransmitter levels and proinflammatory cytokine mRNA expressions in the mice olfactory bulb following nanoparticle exposure[J]. Toxicology and Applied Pharmacology, 226(2): 192-198.
DOI URL |
[109] |
WU A M, ZHAO X L, YANG C Y, et al., 2022. A comparative study on aggregation and sedimentation of natural goethite and artificial Fe3O4 nanoparticles in synthetic and natural waters based on extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory and molecular dynamics simulations[J]. Journal of Hazardous Materials, 435: 128876.
DOI URL |
[110] |
WU F, YOU Y Q, WERNER D, et al., 2020a. Carbon nanomaterials affect carbon cycle-related functions of the soil microbial community and the coupling of nutrient cycles[J]. Journal of Hazardous Materials, 390: 122144.
DOI URL |
[111] |
WU X L, LYU X Y, LI Z Y, et al., 2020b. Transport of polystyrene nanoplastics in natural soils: Effect of soil properties, ionic strength and cation type[J]. Science of The Total Environment, 707: 136065.
DOI URL |
[112] |
XAVIER F L, MONEY B K, JOHN A, et al., 2022. Removal of cadmium heavy metal ion using recycled black toner powder[J]. Materials Today: Proceedings, 59: 649-654.
DOI URL |
[113] |
XU G H, LIN X L, YU Y, 2022. Different effects and mechanisms of polystyrene micro- and nano-plastics on the uptake of heavy metals (Cu, Zn, Pb and Cd) by lettuce (Lactuca sativa L.)[J]. Environmental Pollution, 316(Part 2): 120656.
DOI URL |
[114] |
XU K, WANG X F, LU C X, et al., 2021. Toxicity of three carbon-based nanomaterials to earthworms: Effect of morphology on biomarkers, cytotoxicity, and metabolomics[J]. Science of The Total Environment, 777: 146224.
DOI URL |
[115] |
XU M K, HALIMU G, ZHANG Q R, et al., 2019a. Internalization and toxicity: A preliminary study of effects of nanoplastic particles on human lung epithelial cell[J]. Science of The Total Environment, 694: 133794.
DOI URL |
[116] |
XU Q, GONG Y, ZHANG Z F, et al., 2019b. Preparation of graphene oxide quantum dots from waste toner, and their application to a fluorometric DNA hybridization assay[J]. Microchimica Acta, 186(7): 483.
DOI |
[117] |
YAMASHITA K, YOSHIOKA Y, HIGASHISAKA K, et al., 2011. Silica and titanium dioxide nanoparticles cause pregnancy complications in mice[J]. Nature Nanotechnology, 6(5): 321-328.
DOI PMID |
[118] |
YAN J, WANG D G, LI K, et al., 2020. Toxic effects of the food additives titanium dioxide and silica on the murine intestinal tract: Mechanisms related to intestinal barrier dysfunction involved by gut microbiota[J]. Environmental Toxicology and Pharmacology, 80: 103485.
DOI URL |
[119] |
YANAGI N, ANDO H, IKEGAMI K, et al., 2021. A 10-year follow-up cohort study of the health effects in toner-handling workers[J]. Journal of UOEH, 43(2): 205-215.
DOI PMID |
[120] |
YANG D Q, ZHU J D, ZHOU X S, et al., 2022c. Polystyrene micro- and nano-particle coexposure injures fetal thalamus by inducing ROS-mediated cell apoptosis[J]. Environment International, 166: 107362.
DOI URL |
[121] |
YANG L H, WANG X T, MA J, et al., 2022b. Nanoscale polystyrene intensified the microbiome perturbation and antibiotic resistance genes enrichment in soil and Enchytraeus crypticus caused by tetracycline[J]. Applied Soil Ecology, 174: 104426.
DOI URL |
[122] |
YANG X Y, ZHANG L, CHEN Y, et al., 2022a. Micro(nano)plastic size and concentration co-differentiate nitrogen transformation, microbiota dynamics, and assembly patterns in constructed wetlands[J]. Water Research, 220: 118636.
DOI URL |
[123] |
YAO S, NI N, LI X N, et al., 2023. Interactions between white and black carbon in water: A case study of concurrent aging of microplastics and biochar[J]. Water Research, 238: 120006.
DOI URL |
[124] |
YAZDANABDAD T E, FORGHANIHA A, EMTYAZJOO M, et al., 2022. Toxicity effects of engineered iron nanoparticles (Fe3O4) on the growth, cell density, and pigment content of Chlorella vulgaris[J]. Archives of Environmental Contamination and Toxicology, 83(2): 155-167.
DOI |
[125] |
YI X L, LI W T, LIU Y, et al., 2021. Effect of polystyrene microplastics of different sizes to Escherichia coli and Bacillus cereus[J]. Bulletin of Environmental Contamination and Toxicology, 107(4): 626-632.
DOI |
[126] |
YIN J Y, DONG Z M, LIU Y Y, et al., 2020. Toxicity of reduced graphene oxide modified by metals in microalgae: Effect of the surface properties of algal cells and nanomaterials[J]. Carbon, 169: 182-192.
DOI URL |
[127] |
YOU M T, YOU X Q, YANG X, et al., 2022. Adsorption of antibiotics onto graphene oxide imparts their antagonistic effects on Synechocystis sp.: model development and proteomic analysis[J]. Environmental Science: Nano, 9(1): 243-253.
DOI URL |
[128] |
YU H, FAN P, HOU J H, et al., 2020. Inhibitory effect of microplastics on soil extracellular enzymatic activities by changing soil properties and direct adsorption: An investigation at the aggregate-fraction level[J]. Environmental Pollution, 267: 115544.
DOI URL |
[129] |
YU S J, LI Q C, SHAN W Y, et al., 2021. Heteroaggregation of different surface-modified polystyrene nanoparticles with model natural colloids[J]. Science of The Total Environment, 784: 147190.
DOI URL |
[130] |
YU X X, ZHU C X, WANG H, et al., 2022b. Waste toner-derived micro-materials as low-cost magnetic solid-phase extraction adsorbent for the analysis of trace Pb in environmental and biological samples[J]. Analytical and Bioanalytical Chemistry, 414(7): 2409-2418.
DOI |
[131] |
YU Z Y, ZHANG L, HUANG Q S, et al., 2022a. Combined effects of micro-/nano-plastics and oxytetracycline on the intestinal histopathology and microbiome in zebrafish (Danio rerio)[J]. Science of The Total Environment, 843: 156917.
DOI URL |
[132] |
ZHANG F, WANG Z, SONG L, et al., 2020a. Aquatic toxicity of iron-oxide-doped microplastics to Chlorella pyrenoidosa and Daphnia magna[J]. Environmental Pollution, 257: 113451.
DOI URL |
[133] |
ZHANG L, WANG X Q, MIAO Y M, et al., 2016. Magnetic ferroferric oxide nanoparticles induce vascular endothelial cell dysfunction and inflammation by disturbing autophagy[J]. Journal of Hazardous Materials, 304: 186-195.
DOI PMID |
[134] |
ZHANG L S, WEI J L, DUAN J C, et al., 2020d. Silica nanoparticles exacerbates reproductive toxicity development in high-fat diet-treated Wistar rats[J]. Journal of Hazardous Materials, 384: 121361.
DOI URL |
[135] |
ZHANG P, YAN Z H, LU G H, et al., 2019. Single and combined effects of microplastics and roxithromycin on Daphnia magna[J]. Environmental Science and Pollution Research, 26(17): 17010-17020.
DOI |
[136] |
ZHANG W Y, GUAN H M, HU Y F, et al., 2022. Visible-light-driven hydrogen evolution from waste toner powder activated by Ni species[J]. Green Chemistry, 24(3): 1335-1341.
DOI URL |
[137] |
ZHANG X J, LI J J, LI D L, et al., 2020c. Silicon dioxide nanoparticles have contrasting effects on the temporal dynamics of sulfonamide and β-lactam resistance genes in soils amended with antibiotics[J]. Environmental Research Letters, 15(3): 034001.
DOI |
[138] |
ZHANG Y, WANG J, GENG X H, et al., 2021. Does microplastic ingestion dramatically decrease the biomass of protozoa grazers? A case study on the marine ciliate Uronema marinum[J]. Chemosphere, 267: 129308.
DOI URL |
[139] |
ZHANG Y Y, LUO Y Y, GUO X T, et al., 2020b. Charge mediated interaction of polystyrene nanoplastic (PSNP) with minerals in aqueous phase[J]. Water Research, 178: 115861.
DOI URL |
[140] |
ZHANG Z G, CHAI A Y, 2012. Core-shell magnetite-silica composite nanoparticles enhancing DNA damage induced by a photoactive platinum-diimine complex in red light[J]. Journal of Inorganic Biochemistry, 117: 71-76.
DOI PMID |
[141] |
ZHAO J J, GOMES D, JIN L X, et al., 2022. Polystyrene bead ingestion promotes adiposity and cardiometabolic disease in mice[J]. Ecotoxicology and Environmental Safety, 232: 113239.
DOI URL |
[142] |
ZHU H, ZHOU Y C, WANG S S, et al., 2018. Preparation and application synthesis of magnetic nanocomposite using waste toner for the removal of Cr(VI)[J]. RSC Advances, 8(49): 27654-27660.
DOI URL |
[143] |
ZHU Y, ZHANG Y K, LI Y B, et al., 2022. Integrative proteomics and metabolomics approach to elucidate metabolic dysfunction induced by silica nanoparticles in hepatocytes[J]. Journal of Hazardous Materials, 434: 128820.
DOI URL |
[144] | 北京智研科信咨询有限公司, 2018. 2018-2024年中国碳粉产业全景调研及发展前景预测报告[R]. 北京: 北京智研科信咨询有限公司. |
Beijing Zhiyan Kexin Consulting Co., LTD., 2018. 2018-2024 China toner industry panorama survey and development prospect forecast report[R]. Beijing: Beijing Zhiyan Kexin Consulting Co., LTD. | |
[145] | 廖苑辰, 娜孜依古丽, 李梅, 等, 2019. 微塑料对小麦生长及生理生化特性的影响[J]. 环境科学, 40(10): 4661-4667. |
LIAO Y C, NaZ Y G L, LI M, et al., 2019. Effects of microplastics on growth and physiological and biochemical characteristics of wheat[J]. Environmental Science, 40(10): 4661-4667. | |
[146] | 阮晓颖, 傅红, 朱霖, 等, 2019. 某垃圾生态填埋场项目职业病危害风险预评价[J]. 预防医学, 31(12): 1193-1199. |
RUAN X Y, FU H, ZHU L, et al., 2019. Risk pre-assessment of occupational hazards in a waste ecological landfill project[J]. Preventive Medicine, 31(12): 1193-1199. |
[1] | ZHANG Ruihan, ZHI Yancai, JIA Minghao, LI Xiaona, WANG Zhenyu. Effects of Feedstock Types and Hydrothermal Solution pH on the Properties of Artificial Humic Acids [J]. Ecology and Environment, 2023, 32(8): 1496-1506. |
[2] | ZHENG Qingzhou, HE Jun, LI Shenzhi, DENG Chengzhi, WU Zhipeng, HUANG Xiaolin, WU Xia. Analysis on the Differences and Influencing Factors of Human Comfort between Urban and Rural Areas in Chongqing [J]. Ecology and Environment, 2023, 32(6): 1089-1097. |
[3] | LI Shuting, HU Guanjiu, LUO Xiaosan. Sources, Spatial-temporal Distribution, and Health Risks of Per- and Polyfluoroalkyl Substances (PFASs) in the Atmospheric Environment: A Review [J]. Ecology and Environment, 2023, 32(12): 2103-2114. |
[4] | LI Xiuhua, ZHAO Ling, TENG Ying, LUO Yongming, HUANG Biao, LIU Chong, LIU Benle, ZHAO Qiguo. Characteristics, Spatial Distribution and Risk Assessment of Combined Mercury and Cadmium Pollution in Farmland Soils Surrounding Mercury Mining Areas in Guizhou [J]. Ecology and Environment, 2022, 31(8): 1629-1636. |
[5] | LI Fengmin, CHEN Lin, JIANG Xiaohua, LI Chenguang, ZHAO Shasha, CHONG Yunxiao, HU Hongying, GAO Shuaiqiang. The Construction of Index System for Selecting Aquatic Plant in Water Purification and Ecological Restoration [J]. Ecology and Environment, 2021, 30(12): 2411-2422. |
[6] | ZHAO Qi-guo. Modern ecological agriculture and agricultural safety [J]. Ecology and Environment, 2003, 12(3): 253-259. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn