Ecology and Environmental Sciences ›› 2025, Vol. 34 ›› Issue (10): 1532-1546.DOI: 10.16258/j.cnki.1674-5906.2025.10.004
• Papers on “Emerging Pollutants” • Previous Articles Next Articles
LUO Shijie#(), WEN Qingqi#, CHEN Chengyu*(
)
Received:
2025-02-18
Online:
2025-10-18
Published:
2025-09-26
通讯作者:
E-mail: 作者简介:
罗诗睫(2000年生),女,硕士研究生,主要从事环境大分子对纳米塑料在水环境中凝聚动力学的影响研究。E-mail: 20222167012@stu.scau.edu.cn第一联系人:#共同第一作者对本文的贡献相同。
基金资助:
CLC Number:
LUO Shijie, WEN Qingqi, CHEN Chengyu. Research Progress on the Occurrence, Migration, Fate, and Environmental Risks of Nanoplastics in Oceans and Freshwaters[J]. Ecology and Environmental Sciences, 2025, 34(10): 1532-1546.
罗诗睫, 温清淇, 陈澄宇. 纳米塑料在海洋和淡水中的赋存、迁移与归趋及其环境风险研究进展[J]. 生态环境学报, 2025, 34(10): 1532-1546.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2025.10.004
地区 | 类型 | 质量浓度/(μg·L−1) | 尺寸/nm | 检测方法(检出限) | 参考文献 |
---|---|---|---|---|---|
中国都江 | PP、PE、PET、PS、PVC、PMMA | 0.283-0.793 | <200 | 100 kDa Py-CC-MS(pg-ng) | Shi et al., |
格陵兰冰芯 | PE、PET、PS、PVC、PP/PPC、Tire wear | 13.2 | <200 | TD-PTR-MS系列(pg-ng) | 张晓栋等, |
洞庭湖 | PE、PP | 0.9-2.8 | 450 | 解剖显微镜(2-10 μm)、SEM (1-10 nm)、SERS(pM-fM) | Wang et al., |
长江 | PE、PP、PET | 0.5-10.2 | <200 | 浮选(1-1000 μm)、立体显微镜(2- 10 μm)、Py-GC-TOF-MS(pg-ng) | Zhao et al., |
英国塔威河 | PS | 241.8 | <450 | Py-GC-TOF-MS(pg-ng) | Shi et al., |
鄱阳湖 | PP、PE、PVC | 5-34 | 450 | 立体显微镜(2-10 μm)、SERS(pM-fM) | Yuan et al., |
泰国湄南河 | PS、PVC、PET、PE、PP、PS、Others | 336 | <20-450 | SEM-ED(0.1-1 wt%) | Shi et al., |
荷兰瓦登海 | PS | 4.2 | <200 | TD-PTR-MS系列(pg-ng) | Shi et al., |
茅洲河 | PE、PS、PP、PVC | 3.5-25.5 | <200 | ATR-FTIR(μg-ng)、荧光显微镜(<nM) | Wu et al., |
北大西洋 | PE、PP、PVC、PS、PET | - | <999 | 100 kDa Py·CC-MS(pg-ng)、FTIR(μg-ng) | Shi et al., |
中国渤海 | PE、PS、PP、PA、PES、PMMA | 7.35-9.25 | <1000 | FTIR(μg-ng)、双目显微镜(200- 500 nm)、IPP(200-1000 nm) | Xu et al., |
Table 1 Nanoplastic types and concentrations in oceans and freshwaters
地区 | 类型 | 质量浓度/(μg·L−1) | 尺寸/nm | 检测方法(检出限) | 参考文献 |
---|---|---|---|---|---|
中国都江 | PP、PE、PET、PS、PVC、PMMA | 0.283-0.793 | <200 | 100 kDa Py-CC-MS(pg-ng) | Shi et al., |
格陵兰冰芯 | PE、PET、PS、PVC、PP/PPC、Tire wear | 13.2 | <200 | TD-PTR-MS系列(pg-ng) | 张晓栋等, |
洞庭湖 | PE、PP | 0.9-2.8 | 450 | 解剖显微镜(2-10 μm)、SEM (1-10 nm)、SERS(pM-fM) | Wang et al., |
长江 | PE、PP、PET | 0.5-10.2 | <200 | 浮选(1-1000 μm)、立体显微镜(2- 10 μm)、Py-GC-TOF-MS(pg-ng) | Zhao et al., |
英国塔威河 | PS | 241.8 | <450 | Py-GC-TOF-MS(pg-ng) | Shi et al., |
鄱阳湖 | PP、PE、PVC | 5-34 | 450 | 立体显微镜(2-10 μm)、SERS(pM-fM) | Yuan et al., |
泰国湄南河 | PS、PVC、PET、PE、PP、PS、Others | 336 | <20-450 | SEM-ED(0.1-1 wt%) | Shi et al., |
荷兰瓦登海 | PS | 4.2 | <200 | TD-PTR-MS系列(pg-ng) | Shi et al., |
茅洲河 | PE、PS、PP、PVC | 3.5-25.5 | <200 | ATR-FTIR(μg-ng)、荧光显微镜(<nM) | Wu et al., |
北大西洋 | PE、PP、PVC、PS、PET | - | <999 | 100 kDa Py·CC-MS(pg-ng)、FTIR(μg-ng) | Shi et al., |
中国渤海 | PE、PS、PP、PA、PES、PMMA | 7.35-9.25 | <1000 | FTIR(μg-ng)、双目显微镜(200- 500 nm)、IPP(200-1000 nm) | Xu et al., |
地区 | 形状 | 颜色 | 参考文献 |
---|---|---|---|
南大洋 | 纤维 | 透明、蓝色、黑色、橙色、粉色、绿色、棕色、银色 | Rowlands et al., |
红海 | 纤维、碎片、薄膜、颗粒 | 白色、绿色、黑色、棕色、黄色 | Dhavamani et al., |
渤海 | 纤维、碎片、颗粒 | 透明、蓝色、黑色、红色、黄色、绿色、白色、银色 | Xu et al., |
弗罗比舍湾 | 纤维、碎片、薄膜、颗粒 | 红色、棕色、白色、透明、黑色、黄色、蓝色、绿色 | Liboiron et al., |
格陵兰岛 | 薄膜、碎片 | 红色、灰色、透明、黑色、黄色、蓝色、绿色 | Liboiron et al., |
波罗的海 | 纤维、碎片 | 蓝色、红色、黑色、绿色、白色 | Gewert et al., |
智利中部海洋 | 纤维、碎片、薄膜、颗粒 | 白色、黑色、红色、绿色、蓝色、透明、黄色 | Gomez et al., |
英国北康沃尔海 | 碎片、薄膜、颗粒 | - | Shi et al., |
弗罗比舍湾 | 纤维、碎片、薄膜、颗粒 | 红色、棕色、白色、透明、黑色、黄色、蓝色、绿色 | Liboiron et al., |
Table 2 Nanoplastic shape and color in oceans and freshwaters
地区 | 形状 | 颜色 | 参考文献 |
---|---|---|---|
南大洋 | 纤维 | 透明、蓝色、黑色、橙色、粉色、绿色、棕色、银色 | Rowlands et al., |
红海 | 纤维、碎片、薄膜、颗粒 | 白色、绿色、黑色、棕色、黄色 | Dhavamani et al., |
渤海 | 纤维、碎片、颗粒 | 透明、蓝色、黑色、红色、黄色、绿色、白色、银色 | Xu et al., |
弗罗比舍湾 | 纤维、碎片、薄膜、颗粒 | 红色、棕色、白色、透明、黑色、黄色、蓝色、绿色 | Liboiron et al., |
格陵兰岛 | 薄膜、碎片 | 红色、灰色、透明、黑色、黄色、蓝色、绿色 | Liboiron et al., |
波罗的海 | 纤维、碎片 | 蓝色、红色、黑色、绿色、白色 | Gewert et al., |
智利中部海洋 | 纤维、碎片、薄膜、颗粒 | 白色、黑色、红色、绿色、蓝色、透明、黄色 | Gomez et al., |
英国北康沃尔海 | 碎片、薄膜、颗粒 | - | Shi et al., |
弗罗比舍湾 | 纤维、碎片、薄膜、颗粒 | 红色、棕色、白色、透明、黑色、黄色、蓝色、绿色 | Liboiron et al., |
海洋生物 | 尺寸/nm | 类型 | 颗粒负载程度/(g∙L−1) | 参考文献 |
---|---|---|---|---|
栅藻属和小球藻属 | 20 | PLS | <0.55 | Bhattacharya et al., |
斜生栅藻 | 70 | PLS | 极少 | Besseling et al., |
大型蚤 | 70 | PLS | <0.030-0.103 | Besseling et al., |
双唇藻、三角褐指藻和安基斯特勒藻 | 23 | PLS | 1×10−5-0.001 | Chen et al., |
日本虎鱼 | 500 | PLS | 0.0013和0.025 | Lee et al., |
太平洋牡蛎 | 100 | PLS | 1.3×107 | Ward et al., |
食用贻贝 | 30 | PLS | 0.1、0.2和0.3 | Wegner et al., |
贻贝 | 200 | PLS | 0.050 | Canesi et al., |
青鳉 | 39.4 | LP | 0.010 | Kashiwada, |
青鳉胚胎及幼苗 | 50和500 | LP | 0.010 | Manabe et al., |
紫青副刺藻胚胎 | ~90 | PLS | >0.0039 | Della Torre et al., |
鲫鱼 | 24、27和28 | PLS | 9.3×1015 | Mattsson et al., |
丰年虫 | 40 | PLS | 10 | Cedervall et al., |
沟鼠 | 64 | PLS | 0.005、0.025和0.050 | Brown et al., |
Table 3 Summary of the findings of the uptakes of NPs by marine organisms
海洋生物 | 尺寸/nm | 类型 | 颗粒负载程度/(g∙L−1) | 参考文献 |
---|---|---|---|---|
栅藻属和小球藻属 | 20 | PLS | <0.55 | Bhattacharya et al., |
斜生栅藻 | 70 | PLS | 极少 | Besseling et al., |
大型蚤 | 70 | PLS | <0.030-0.103 | Besseling et al., |
双唇藻、三角褐指藻和安基斯特勒藻 | 23 | PLS | 1×10−5-0.001 | Chen et al., |
日本虎鱼 | 500 | PLS | 0.0013和0.025 | Lee et al., |
太平洋牡蛎 | 100 | PLS | 1.3×107 | Ward et al., |
食用贻贝 | 30 | PLS | 0.1、0.2和0.3 | Wegner et al., |
贻贝 | 200 | PLS | 0.050 | Canesi et al., |
青鳉 | 39.4 | LP | 0.010 | Kashiwada, |
青鳉胚胎及幼苗 | 50和500 | LP | 0.010 | Manabe et al., |
紫青副刺藻胚胎 | ~90 | PLS | >0.0039 | Della Torre et al., |
鲫鱼 | 24、27和28 | PLS | 9.3×1015 | Mattsson et al., |
丰年虫 | 40 | PLS | 10 | Cedervall et al., |
沟鼠 | 64 | PLS | 0.005、0.025和0.050 | Brown et al., |
[1] | AHMED S M, KAMAL I, 2022. Electrical resistivity and compressive strength of cement mortar based on green magnetite nanoparticles and wastes from steel industry[J]. Case Studies in Construcyion Materials, 17: e01712. |
[2] | ALI I, TAN X, LI J Y, et al., 2022. Interaction of microplastics and nanoplastics with natural organic matter (NOM) and the impact of NOM on the sorption behavior of anthropogenic contaminants: A critical review[J]. Journal of Cleaner Production, 376: 134314. |
[3] | ALIMI O S, FARNER J M, ROWENCZYK L, et al., 2022. Mechanistic understanding of the aggregation kinetics of nanoplastics in marine environments: Comparing synthetic and natural water matrices[J]. Journal of Hazardous Materials Advances, 7: 100115. |
[4] | AMELIA T S M, KHALIK W M A W M, ONG M C, et al., 2021. Marine microplastics as vectors of major ocean pollutants and its hazards to the marine ecosystem and humans[J]. Progress in Earth and Planetary Science, 8: 12. |
[5] | ANGNUNAVURI P N, ATTIOGBE F, MENSAH B, 2023. Particulate plastics in drinking water and potential human health effects: Current knowledge for management of freshwater plastic materials in Africa[J]. Environmental Pollution, 316(Part 1): 120714. |
[6] | ARIAS A H, ALFONSO M B, GIRONES L, et al., 2022. Synthetic microfibers and tyre wear particles pollution in aquatic systems: Relevance and mitigation strategies[J]. Environmental Pollution, 295: 118607. |
[7] | ARTHUR C, BAKER J E, BAMFORD H A, et al., 2009. Proceedings of the international research workshop on the occurrence, effects, and fate of microplastic marine debris[C]// United States, National Ocean Service. National Oceanic and Atmospheric Administration Technical Memorandum: 30. |
[8] | ATUGODA T, PIYUMALI H, WIJESEKARA H, et al., 2023. Nanoplastic occurrence, transformation and toxicity: A review[J]. Environmental Chemistry Letters, 21: 363-381. |
[9] |
BESSELING E, QUIK J T K, SUN M, et al., 2017. Fate of nano- and microplastic in freshwater systems: A modeling study[J]. Environmental Pollution, 220(Part A): 540-548.
DOI PMID |
[10] | BESSELING E, WANG B, LÜRLING M, et al., 2014. Nanoplastic affects growth of S. obliquus and reproduction of D. magna[J]. Environmental Science & Technology, 48(20): 12336-12343. |
[11] | BHAGAT K, BARRIOS A C, RAJWADE K, et al., 2022. Aging of microplastics increases their adsorption affinity towards organic contaminants[J]. Chemosphere, 298: 134238. |
[12] | BHATTACHARYA P, LIN S, TURNER J P, et al., 2010. Physical adsorption of charged plastic nanoparticles affects algal photosynthesis[J]. The Journal of Physical Chemistry C, 114(39): 16556-16561. |
[13] | BIAN P Y, LIU Y X, ZHAO K H, et al., 2022. Spatial variability of microplastic pollution on surface of rivers in a mountain-plain transitional area: A case study in the Chin Ling-Wei River Plain, China[J]. Ecotoxicology and Environmental Safety, 232: 113298. |
[14] | BIANCO A, PASSANANTI M, 2020. Atmospheric micro and nanoplastics: An enormous microscopic problem[J]. Sustainability, 12(18): 7327. |
[15] |
BROWN D M, WILSON M R, MACNEE W, et al., 2001. Size-dependent proinflammatory effects of ultrafine polystyrene particles: A role for surface area and oxidative stress in the enhanced activity of ultrafines[J]. Toxicology and Applied Pharmacology, 175(3): 191-199.
DOI PMID |
[16] | BURELO M, HERNANDEZ-VARELA J D, MEDINA D I, et al., 2023. Recent developments in bio-based polyethylene: Degradation studies, waste management and recycling[J]. Heliyon, 9(11): e21374. |
[17] | BURROWS S, COLWELL J, COSTANZO S, et al., 2024. UV sources and plastic composition influence microplastic surface degradation: Implications for plastic weathering studies[J]. Journal of Hazardous Materials Advances, 14: 100428. |
[18] | CANESI L, CIACCI C, BERGAMI E, et al., 2015. Evidence for immunomodulation and apoptotic processes induced by cationic polystyrene nanoparticles in the hemocytes of the marine bivalve Mytilus[J]. Marine Environmental Research, 111: 34-40. |
[19] | CASTRO G B, BERNEGOSSI A C, PINHEIRO F R, et al., 2022. The silent harm of polyethylene microplastics: Invertebrates growth inhibition as a warning of the microplastic pollution in continental waters[J]. Limnologica, 93: 125964. |
[20] | CEDERVALL T, HANSSON L A, LARD M, et al., 2012. Food chain transport of nanoparticles affects behaviour and fat metabolism in fish[J]. PLoS One, 7(2): e32254. |
[21] |
CHAE Y, AN Y J, 2017. Effects of micro- and nanoplastics on aquatic ecosystems: Current research trends and perspectives[J]. Marine Pollution Bulletin, 124(2): 624-632.
DOI PMID |
[22] | CHEN C S, ANAYA J M, ZHANG S, et al., 2011. Effects of engineered nanoparticles on the assembly of exopolymeric substances from phytoplankton[J]. PLoS One, 6(7): e21865. |
[23] | CHEN H E, XU L H, YU K, et al., 2023. Release of microplastics from disposable cups in daily use[J]. Science of the total Environment, 854: 158606. |
[24] | CHEN H, SHAN X L, QIU X R, et al., 2024. High-resolution mass spectrometry combined with reactive oxygen species reveals differences in photoreactivity of dissolved organic matter from microplastic sources in aqueous environments[J]. Environmental Science & Technology, 58(23): 10334-10346. |
[25] | CHOUDHURY A, SIMNANI F Z, SINGH D, et al., 2023. Atmospheric microplastic and nanoplastic: The toxicological paradigm on the cellular system[J]. Ecotoxicology and Environmental Safety, 259: 115018. |
[26] | CORSI I, BERGAMI E, GRASSI G, 2020. Behavior and bio-interactions of anthropogenic particles in marine environment for a more realistic ecological risk assessment[J]. Frontiers in Environmental Science, 8: 00060. |
[27] | CORTES-ARRIAGADA D, MIRANDA-ROJAS S, CAMARADA M B, et al., 2023. The interaction mechanism of polystyrene microplastics with pharmaceuticals and personal care products[J]. Science of the Total Environment, 861: 160632. |
[28] | DA SILVA ANTUNES J C, SOBRAL P, BRANCO V, et al., 2025. Uncovering layer by layer the risk of nanoplastics to the environment and human health[J]. Journal of Toxicology and Environmental Health, Part B, 28(2): 63-121. |
[29] | DELLA TORRE C, BERGAMI E, SALVATI A, et al., 2014. Accumulation and embryotoxicity of polystyrene nanoparticles at early stage of development of sea urchin embryos paracentrotus lividus[J]. Environmental Science & Technology, 48(20): 12302-12311. |
[30] |
DENG Y F, ZHANG Y, QIAO R X, et al., 2018. Evidence that microplastics aggravate the toxicity of organophosphorus flame retardants in mice (Mus musculus)[J]. Journal of Hazardous Materials, 357: 348-354.
DOI PMID |
[31] | DHAVAMANI J, BECK A J, GLEDHILL M, et al., 2022. Phthalate esters and plastic debris abundance in the Red Sea and Sharm Obhur and their ecological risk level[J]. Environmental Pollution, 315: 120447. |
[32] | DING R R, TONG L, ZHANG W C, 2021. Microplastics in freshwater environments: Sources, fates and toxicity[J]. Water Air and Soil Pollution, 232: 181. |
[33] | DONG S N, CAI W W, XIA J H, et al., 2021. Aggregation kinetics of fragmental PET nanoplastics in aqueous environment: Complex roles of electrolytes, pH and humic acid[J]. Environmental Pollution, 268(Part B): 115828. |
[34] | DU J J, QV W R, NIU Y L, et al., 2022. Nanoplastic pollution inhibits stream leaf decomposition through modulating microbial metabolic activity and fungal community structure[J]. Journal of Hazardous Materials, 424(Part A): 127392. |
[35] | DU J J, WANG X L, TAO T Y, et al., 2023. Polystyrene size-dependent impacts on microbial decomposers and nutrient cycling in streams[J]. Science of The Total Environment, 905: 167032. |
[36] | EVANGELIOU N, TICHÝ O, ECKHARDT S, et al., 2022. Sources and fate of atmospheric microplastics revealed from inverse and dispersion modelling: From global emissions to deposition[J]. Journal of Hazardous Materials, 432: 128585. |
[37] | FACCIOLA A, VISALLI G, CIARELLO M P, et al., 2021. Newly emerging airborne pollutants: Current knowledge of health impact of micro and nanoplastics[J]. International Journal of Environmental Research and Public Health, 18(6): 2997. |
[38] | FAN X L, SHI S, XIANG Y, et al., 2022. Insights into the characteristics, adsorption, and desorption behaviors of polylactic acid aged with or without salinities[J]. Journal of Environmental Engineering, 148(9): 04022047. |
[39] |
FAZELI SANGANI M, OWENS G, FOTOVAT A, 2019. Transport of engineered nanoparticles in soils and aquifers[J]. Environmental Reviews, 27(1): 43-70.
DOI |
[40] | FENG H, LIU Y J, XU Y, et al., 2022. Benzo[a]pyrene and heavy metal ion adsorption on nanoplastics regulated by humic acid: Cooperation/ competition mechanisms revealed by molecular dynamics simulations[J]. Journal of Hazardous Materials, 424(Part B): 127431. |
[41] | FU D L, WU H Q, WANG Z K, et al., 2023. Effects of microplastics/ nanoplastics on Vallisneria natans roots and sediment: Size effect, enzymology, and microbial communities[J]. Chemosphere, 341: 140052. |
[42] | GALGANI L, GOβMANN I, SCHOLZ-BÖTTCHER B, et al., 2022. Hitchhiking into the deep: How microplastic particles are exported through the biological carbon pump in the North Atlantic Ocean[J]. Environmental Science & Technology, 56(22): 15638-15649. |
[43] |
GEWERT B, OGONOWSKI M, BARTH A, et al., 2017. Abundance and composition of near surface microplastics and plastic debris in the Stockholm Archipelago, Baltic Sea[J]. Marine Pollution Bulletin, 120(1-2): 292-302.
DOI PMID |
[44] | GODOY V, BLÁZQUEZ G, CALERO M, et al., 2019. The potential of microplastics as carriers of metals[J]. Environmental Pollution, 255(Part 3): 113363. |
[45] | GOMEZ V, POZO K, NUNEZ D, et al., 2020. Marine plastic debris in Central Chile: Characterization and abundance of macroplastics and burden of persistent organic pollutants (POPs)[J]. Marine Pollution Bulletin, 152: 110881. |
[46] |
HARRAQ A A, BRAHANA P J, ARCEMONT O, et al., 2022. Effects of weathering on microplastic dispersibility and pollutant uptake capacity[J]. ACS Environmental Au, 2: 549-555.
DOI PMID |
[47] | HEINZE W M, MITRANO D M, LAHIVE E, et al., 2021. Nanoplastic transport in soil via bioturbation by Lumbricus terrestris [J]. Environmental Science & Technology, 55(24): 16423-16433. |
[48] | HERNANDEZ L M, YOUSEFI N, TUFENKJI N, 2017. Are there nanoplastics in your personal care products?[J]. Environmental Science & Technology Letters, 4(7): 280-285. |
[49] | HU X G, WANG S T, FENG R H, et al., 2024. Natural organic small molecules promote the aging of plastic wastes and refractory carbon decomposition in water[J]. Journal of Hazardous Materials, 469: 134043. |
[50] | HUANG D F, XU Y B, YU X Q, et al., 2021. Effect of cadmium on the sorption of tylosin by polystyrene microplastics[J]. Ecotoxicology and Environmental Safety, 207: 111255. |
[51] | HUANG Z Q, CHEN C Y, LIU Y J, et al., 2022. Influence of protein configuration on aggregation kinetics of nanoplastics in aquatic environment[J]. Water Research, 219: 118522. |
[52] | IVLEVA N P, WIESHEU A C, NIESSNER R, 2016. Microplastic in aquatic ecosystems[J]. Angewandte Chemie International Edition, 56(7): 1720-1739. |
[53] | JAMBECK J R, GEYER R, WILCOX C, et al., 2015. Plastic waste inputs from land into the ocean[J]. Science, 347(6223): 768-771. |
[54] | JI Y X, WANG Y Q, SHEN D Z, et al., 2021. Revisiting the cellular toxicity of benzo[a]pyrene from the view of nanoclusters: size- and nanoplastic adsorption-dependent bioavailability[J]. Nanoscale, 13(2): 1016-1028. |
[55] | JIAO R Y, SUN H Y, XU S M, et al., 2022. Aggregation, settling characteristics and destabilization mechanisms of nano-particles under different conditions[J]. Science of the Total Environment, 827: 154228. |
[56] | JUNAID M, ABBAS Z, SIDDIQUI J A, et al., 2023. Ecotoxicological impacts associated with the interplay between micro (nano) plastics and pesticides in aquatic and terrestrial environments[J]. TrAC Trends in Analytical Chemistry, 165: 117133. |
[57] | KASHIWADA S, 2006. Distribution of nanoparticles in the see-through medaka (Oryzias latipes)[J]. Environmental Health Perspect, 114(11): 1697-1702. |
[58] | KATIJA K, CHOY C A, SHERLOCK R E, et al., 2017. From the surface to the seafloor: How giant larvaceans transport microplastics into the deep sea[J]. Science Advances, 3(8): e1700715. |
[59] | KUKKOLA A T, SENIOR G, SILBURN B, et al., 2022. A large-scale study of microplastic abundance in sediment cores from the UK continental shelf and slope[J]. Marine Pollution Bulletin, 178: 113554. |
[60] |
LAW C K Y, KUNDU K, BONIN L, et al., 2023. Electrochemically assisted production of biogenic palladium nanoparticles for the catalytic removal of micropollutants in wastewater treatment plants effluent[J]. Journal of Environmental Sciences, 128: 203-212.
DOI PMID |
[61] |
LEADS R R, WEINSTEIN J E, 2019. Occurrence of tire wear particles and other microplastics within the tributaries of the Charleston Harbor Estuary, South Carolina, USA[J]. Marine Pollution Bulletin, 145: 569-582.
DOI PMID |
[62] | LEE K W, SHIM W J, KWON O Y, et al., 2013. Size-dependent effects of micro polystyrene particles in the marine copepod tigriopus japonicus[J]. Environmental Science & Technology, 47(19): 11278-11283. |
[63] | LI F, HUANG D L, WANG G F, et al., 2024b. Microplastics/nanoplastics in porous media: Key factors controlling their transport and retention behaviors[J]. Science of The Total Environment, 926: 171658. |
[64] | LI L H, LUO D, LUO S J, et al., 2024a. Heteroaggregation, disaggregation, and migration of nanoplastics with nanosized activated carbon in aquatic environments: Effects of particle property, water chemistry, and hydrodynamic condition[J]. Water Research, 266: 122399. |
[65] | LI R X, NIE J J, QIU D G, et al., 2023a. Toxic effect of chronic exposure to polyethylene nano/microplastics on oxidative stress, neurotoxicity and gut microbiota of adult zebrafish (Danio rerio)[J]. Chemosphere, 339: 139774. |
[66] | LI T, CAO X F, ZHAO R, et al., 2023b. Stress response to nanoplastics with different charges in Brassica napus L. during seed germination and seedling growth stages[J]. Frontiers of Environmental Science & Engineering, 17: 43. |
[67] |
LI Y, WANG X J, FU W Y, et al., 2019. Interactions between nano/micro plastics and suspended sediment in water: Implications on aggregation and settling[J]. Water Research, 161: 486-495.
DOI PMID |
[68] | LI Z X, LOUIE S M, ZHAO J T, et al., 2024c. Deciphering the roles of molecular weight and carboxyl richness of organic matter on their adsorption onto ferrihydrite nanoparticles and the resulting aggregation[J]. Environmental Science & Technology, 58(46): 20480-20489. |
[69] | LIBOIRON M, ZAHARA A, HAWKINS K, et al., 2021. Abundance and types of plastic pollution in surface waters in the Eastern Arctic (Inuit Nunangat) and the case for reconciliation science[J]. Science of The Total Environment, 782: 146809. |
[70] | LIU X, SONG P P, LAN R Y, et al., 2022. Heteroaggregation between graphene oxide and titanium dioxide particles of different shapes in aqueous phase[J]. Journal of Hazardous Materials, 428: 128146. |
[71] | LIU Y J, HU Y B, YANG C, et al., 2019. Aggregation kinetics of UV irradiated nanoplastics in aquatic environments[J]. Water Research, 163: 114870. |
[72] | LIU Y J, HUANG Z Q, ZHOU J N, et al., 2020. Influence of environmental and biological macromolecules on aggregation kinetics of nanoplastics in aquatic systems[J]. Water Research, 186: 116316. |
[73] | LIU W X, GU C B, LI J Y, et al., 2024b. High salinity alters the adsorption behavior of microplastics towards typical pollutants and the phytotoxicity of microplastics to synechococcus[J]. Sustainability, 16(3): 1107. |
[74] | LIU Z Y, HUA X, ZHAO Y, et al., 2024a. Polyethylene nanoplastics cause reproductive toxicity associated with activation of both estrogenic hormone receptor NHR-14 and DNA damage checkpoints in C. elegans[J]. The Science of the Total Environment, 906: 167471. |
[75] | LÜ B W, WANG C, HOU J, et al., 2018. Towards a better understanding on aggregation behavior of CeO2 nanoparticles in different natural waters under flow disturbance[J]. Journal of Hazardous Materials, 343: 235-244. |
[76] | LÜ B W, WANG C, HOU J, et al., 2020. Development of a comprehensive understanding of aggregationsettling movement of CeO2 nanoparticles in natural waters[J]. Environmental Pollution, 257: 113584. |
[77] | LU S H, ZHU K R, SONG W C, et al., 2018. Impact of water chemistry on surface charge and aggregation of polystyrene microspheres suspensions[J]. Science of the Total Environment, 630: 951-959. |
[78] | LUO C J, HOU Y Z, YE W K, et al., 2024. Algae polysaccharide-induced transport transformation of nanoplastics in seawater-saturated porous media[J]. Water Research, 259: 121807. |
[79] | LUO H W, LI Y, ZHAO Y Y, et al., 2020. Effects of accelerated aging on characteristics, leaching, and toxicity of commercial lead chromate pigmented microplastics[J]. Environmental Pollution, 257: 113475. |
[80] |
MANABE M, TATARAZAKO N, KINOSHITA M, 2011. Uptake, excretion and toxicity of nano-sized latex particles on medaka (Oryzias latipes) embryos and larvae[J]. Aquatic Toxicology, 105(3-4): 576-581.
DOI PMID |
[81] | MARTÍN J, SANTOS J L, APARICIO I, et al., 2022. Microplastics and associated emerging contaminants in the environment: Analysis, sorption mechanisms and effects of co-exposure[J]. Trends in Environmental Analytical Chemistry, 35: e00170. |
[82] | MATERIC D, PEACOCK M, DEAN J, et al., 2022. Presence of nanoplastics in rural and remote surface waters[J]. Environmental Research Letters, 17: 054036. |
[83] | MATTSSON K, EKVALL M T, HANSSON L A, et al., 2015. Altered behavior, physiology, and metabolism in fish exposed to polystyrene nanoparticles[J]. Environmental Science & Technology, 49(1): 553-561. |
[84] | MENG Q L, WANG Z J, SHI F Q, et al., 2024. Effect of background ions and physicochemical factors on the cotransport of microplastics with Cu2+ in saturated porous media[J]. Scientific Reports, 14(1): 27101. |
[85] | MENZEL T, MEIDES N, MAUEL A, et al., 2022. Degradation of low-density polyethylene to nanoplastic particles by accelerated weathering[J]. Science of The Total Environment, 826: 154035. |
[86] | MOSLEY L M, RENGASAMY P, FITZPATRICK R, 2024. Soil pH: Techniques, challenges and insights from a global dataset[J]. European Journal of Soil Science, 75(6): e70021. |
[87] | OKOYE C O, ADDEY C I, ODERINDE O, et al., 2022. Toxic chemicals and persistent organic pollutants associated with micro-and nanoplastics pollution[J]. Chemical Engineering Journal Advances, 11: 100310. |
[88] | OLUWOYE I, MACHUCA L L, HIGGINS S, et al., 2023. Degradation and lifetime prediction of plastics in subsea and offshore infrastructures[J]. Science of The Total Environment, 904: 166719. |
[89] | OMURA T, ISOBE N, MIURA T, et al., 2024. Microbial decomposition of biodegradable plastics on the deep-sea floor[J]. Nature Communications, 15(1): 568. |
[90] | OSMAN D M, YUAN W K, SHABAKA S, et al., 2023. The threat of micro/nanoplastic to aquatic plants: current knowledge, gaps, and future perspectives[J]. Aquatic Toxicology, 265: 106771. |
[91] | PEIPONEN K E, RATY J, ISHAQ U, et al., 2019. Outlook on optical identification of micro- and nanoplastics in aquatic environments[J]. Chemosphere, 214: 424-429. |
[92] | PENG X, CHEN M, CHEN S, et al., 2018. Microplastics contaminate the deepest part of the world’s ocean[J]. Geochemical Perspectives Letters, 9: 1-5. |
[93] | RODRÍGUEZ-TORRES R, RIST S, ALMEDA R, et al., 2024. Research trends in nano- and microplastic ingestion in marine planktonic food webs[J]. Environmental Pollution, 363(Part 1): 125136. |
[94] | ROWLANDS E, GALLOWAY T, COLE M, et al., 2023. Vertical flux of microplastic, a case study in the Southern Ocean, South Georgia[J]. Marine Pollution Bulletin, 193: 115117. |
[95] | RUAN J H, YANG J H, WANG X Y, et al., 2024. Heteroaggregation kinetics of oppositely charged nanoplastics in aquatic environments: Effects of particle ratio, solution chemistry, and interaction sequence[J]. Jouranal of Hazardous Materials, 475: 134857. |
[96] | SAMANDRA S, MESCALL O J, PLAISTED K, et al., 2022. Assessing exposure of the Australian population to microplastics through bottled water consumption[J]. Journal of Hazardous Materials, 837: 155329. |
[97] | SHAMS M, ALAM I, CHOWDHURY I, 2020. Aggregation and stability of nanoscale plastics in aquatic environment[J]. Water Research, 171: 115401. |
[98] |
SHEN M C, ZHU Y, ZHANG Y X, et al., 2019. Micro(nano)plastics: Unignorable vectors for organisms[J]. Marine Pollution Bulletin, 139: 328-331.
DOI PMID |
[99] | SHI C L, LIU Z Q, YU B Z, et al., 2024. Emergence of nanoplastics in the aquatic environment and possible impacts on aquatic organisms[J]. Science of The Total Environment, 906: 167404. |
[100] | SHI Y Q, LIU P, WU X W, et al., 2021. Insight into chain scission and release profiles from photodegradation of polycarbonate microplastics[J]. Water Research, 195: 116980. |
[101] |
SHUPE H J, BOENISCH K M, HARPER B J, et al., 2021. Effect of nanoplastic type and surface chemistry on particle agglomeration over a salinity gradient[J]. Environmental Toxicology and Chemistry, 40(7): 1822-1828.
DOI PMID |
[102] | SINGH N, TIWARI E, KHANDELWAL N, et al., 2019. Understanding the stability of nanoplastics in aqueous environments: Effect of ionic strength, temperature, dissolved organic matter, clay, and heavy metals[J]. Environmental Science: Nano, 6(10): 2968-2976. |
[103] | SORASAN C, EDO C, GONZALEZ-PLEITER M, et al., 2021. Generation of nanoplastics during the photoageing of low-density polyethylene[J]. Environmental Pollution, 289: 117919. |
[104] | SU J N, RUAN J H, LUO D, et al., 2023. Differential photoaging effects on colored nanoplastics in aquatic environments: Physicochemical properties and aggregation kinetics[J]. Environmental Science & Technology, 57(41): 15656-15666. |
[105] | SUN M Q, DING R Y, MA Y M, et al., 2021. Cardiovascular toxicity assessment of polyethylene nanoplastics on developing zebrafish embryos[J]. Chemosphere, 282: 131124. |
[106] | SUN H Y, JIAO R Y, YU J J, et al., 2023. Combined effects of particle size and humic acid corona on the aggregation kinetics of nanoplastics in aquatic environments[J]. Science of The Total Environment, 901: 165987. |
[107] | SUN Y M, GUO G L, SHI H D, et al., 2020. Decadal shifts in soil pH and organic matter differ between land uses in contrasting regions in China[J]. Science of The Total Environment, 740: 139904. |
[108] | TER HALLE A, LADIRAT L, GENDRE X, et al., 2016. Understanding the fragmentation pattern of marine plastic debris[J]. Environmental Science & Technology, 50(11): 5668-5675. |
[109] | TREVISAN R, UZOCHUKWU D, DI GIULIO R T, 2020. PAH sorption to nanoplastics and the Trojan Horse effect as drivers of mitochondrial toxicity and PAH localization in Zebrafish[J]. Frontiers in Environmental Science, 8: 78. |
[110] | TONG F, LIU D, ZHANG Z H, et al., 2023. Heavy metal-mediated adsorption of antibiotic tetracycline and ciprofloxacin on two microplastics: Insights into the role of complexation[J]. Environmental Research, 216(Part 3): 114716. |
[111] | UNRINE J M, SHOULTS-WILSON W A, ZHURBICH O, et al., 2012. Trophic transfer of Au nanoparticles from soil along a simulated terrestrial food chain[J]. Environmental Science & Technology, 46(17): 9753-9760. |
[112] | VAN SEBILLE E, WILCOX C, LEBRETON L, et al., 2015. A global inventory of small floating plastic debris[J]. Environmental Research Letters, 10(10): 124006. |
[113] |
VANCE M E, KUIKEN T, VEJERANO E P, et al., 2015. Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory[J]. Beilstein Journal of Nanotechnology, 6: 1769-1780.
DOI PMID |
[114] | VEGA-MORENO D, ABAROA-PÉREZ B, REIN-LORING P D, et al., 2021. Distribution and transport of microplastics in the upper 1150 m of the water column at the Eastern North Atlantic Subtropical Gyre, Canary Islands, Spain[J]. Science of The Total Environment, 788: 147802. |
[115] | VETHAAK A D, LESLIE H A, 2016. Plastic debris Is a human health issue[J]. Environmental Science & Technology, 50(13): 6825-6826. |
[116] | VOLD M J, 1954. Van der Waals' attraction between anisometric particles[J]. Journal of Colloid Science, 9(5): 451-459. |
[117] | WANG C, LÜ B, HOU J, et al., 2019. Quantitative measurement of aggregation kinetics process of nanoparticles using nanoparticle tracking analysis and dynamic light scattering[J]. Journal of Nanoparticle Research, 21(5): 87. |
[118] | WANG F, ZHANG M, SHA W, et al., 2020. Sorption behavior and mechanisms of organic contaminants to nano and microplastics[J]. Molecules, 25(8): 1827. |
[119] | WANG H L, YANG Q, LI D, et al., 2023a. Stable isotopic and metagenomic Analyses reveal microbial-mediated effects of microplastics on sulfur cycling in coastal sediments[J]. Environmental Science & Technology, 57(2): 1167-1176. |
[120] | WANG J Y, ZHAO X L, WU A M, et al., 2021. Aggregation and stability of sulfate-modified polystyrene nanoplastics in synthetic and natural waters[J]. Environmental Pollution, 268(Part A): 114240. |
[121] | WANG Q J, ZHANG Y Y, CHEN H J, et al., 2023b. Effects of humic acids on the adsorption of Pb(II) ions onto biofilm-developed microplastics in aqueous ecosystems[J]. Science of The Total Environment, 882: 163466. |
[122] | WANG Q Y, ENYOH C E, CHOWDHURY T, et al., 2022. Analytical techniques, occurrence and health effects of micro and nano plastics deposited in street dust[J]. International Journal of Environmental Analytical Chemistry, 102(18): 6435-6453. |
[123] | WANG W F, YUAN W K, CHEN Y L, et al., 2018. Microplastics in surface waters of Dongting Lake and Hong Lake, China[J]. Science of The Total Environment, 633: 539-545. |
[124] | WANG Y, CHEN X W, WANG F F, et al., 2023c. Influence of typical clay minerals on aggregation and settling of pristine and aged polyethylene microplastics[J]. Environmental Pollution, 316(Part 2): 120649. |
[125] |
WARD J E, KACH D J, 2009. Marine aggregates facilitate ingestion of nanoparticles by suspension-feeding bivalves[J]. Marine Environmental Research, 68(3): 137-142.
DOI PMID |
[126] | WEGNER A, BESSELING E, FOEKEMA E M, et al., 2012. Effects of nanopolystyrene on the feeding behavior of the blue mussel (Mytilus edulis L.)[J]. Environmental Toxicology and Chemistry, 31(11): 2490-2497. |
[127] | WEN Q, LIU N, QU R H, et al., 2023. High salinity promotes the photoaging of polystyrene microplastics with humic acid in seawater[J]. Science of The Total Environment, 901: 165741. |
[128] | WU J Y, JIANG R F, LIU Q L, et al., 2020b. Impact of different modes of adsorption of natural organic matter on the environmental fate of nanoplastics[J]. Chemosphere, 263: 127967. |
[129] | WU P F, TANG Y Y, DANG M, et al., 2020a. Spatial-temporal distribution of microplastics in surface water and sediments of Maozhou River within Guangdong-Hong Kong-Macao Greater Bay Area[J]. Science of The Total Environment, 717: 135187. |
[130] | WU X W, LIU P, WANG H Y, et al., 2021. Photo aging of polypropylene microplastics in estuary water and coastal seawater: Important role of chlorine ion[J]. Water Research, 202: 117396. |
[131] | XIAO F, FENG L J, SUN X D, et al., 2022. Do polystyrene nanoplastics have similar effects on duckweed (Lemna minor L.) at environmentally relevant and observed-effect concentrations?[J]. Environmental Science & Technology, 56(7): 4071-4079. |
[132] | XIONG X, ZHANG K, CHEN X C, et al., 2018. Sources and distribution of microplastics in China's largest inland lake-Qinghai Lake[J]. Environmental Pollution, 235: 899-906. |
[133] | XU L L, CAO L, HUANG W, et al., 2021a. Assessment of plastic pollution in the Bohai Sea: Abundance, distribution, morphological characteristics and chemical components[J]. Environmental Pollution, 278: 116874. |
[134] | XU Y H, OU Q, HE Q, et al., 2021b. Influence of dissolved black carbon on the aggregation and deposition of polystyrene nanoplastics: Comparison with dissolved humic acid[J]. Water Research, 196: 117054. |
[135] | XU Y H, OU Q, VAN DER HOEK J P, et al., 2024. Photo-oxidation of Micro- and Nanoplastics: Physical, Chemical, and Biological Effects in Environments[J]. Environmental Science & Technology, 58(2): 991-1009. |
[136] | YIN M Y, YAN B, WANG H, et al., 2023. Effects of microplastics on nitrogen and phosphorus cycles and microbial communities in sediments[J]. Environmental Pollution, 318: 120852. |
[137] | YU S J, SHEN M H, LI S S, et al., 2019. Aggregation kinetics of different surface-modified polystyrene nanoparticles in monovalent and divalent electrolytes[J]. Environmental Pollution, 255(Part 2): 113302. |
[138] | YU Y M, MO W Y, LUUKKONEN T, 2021. Adsorption behaviour and interaction of organic micropollutants with nano and microplastics: A review[J]. Science of The Total Environment, 797: 149140. |
[139] | YU Y X, LIN S, SARKAR B, et al., 2024a. Mineralization and microbial utilization of poly (lactic acid) microplastic in soil[J]. Journal of Hazardous Materials, 476: 135080. |
[140] | YU Y, KUMAR M, BOLAN S, et al., 2024b. Various additive release from microplastics and their toxicity in aquatic environments[J]. Environmental Pollution, 343: 123219. |
[141] |
YUAN W K, LIU X N, WANG W F, et al., 2019. Microplastic abundance, distribution and composition in water, sediments, and wild fish from Poyang Lake, China[J]. Ecotoxicology and Environmental Safety, 170: 180-187.
DOI PMID |
[142] | ZHANG M, XU L H, 2022d. Transport of micro- and nanoplastics in the environment: Trojan-Horse effect for organic contaminants[J]. Critical Reviews in Environmental Science and Technology, 52(5): 810-846. |
[143] | ZHANG X, PENG X, 2022c. How long for plastics to decompose in the deep sea?[J]. Geochemical Perspectives Letters, 22: 20-25. |
[144] | ZHANG Y N, CHENG F Y, ZHANG T T, et al., 2022a. Dissolved organic matter enhanced the aggregation and oxidation of nanoplastics under simulated sunlight irradiation in water[J]. Environmental Science & Technology, 56(5): 3085-3095. |
[145] | ZHANG Y Y, LUO Y Y, YU X Q, et al., 2022b. Aging significantly increases the interaction between polystyrene nanoplastic and minerals[J]. Water Research, 219: 118544. |
[146] | ZHAO H H, WU J H, SU F M, et al., 2023. Removal of polystyrene nanoplastics from aqueous solutions by a novel magnetic zeolite adsorbent[J]. Human and Ecological Risk Assessment: An International Journal, 29(2): 327-346. |
[147] |
ZHAO S Y, ZHU L X, WANG T, et al., 2014. Suspended microplastics in the surface water of the Yangtze Estuary System, China: First observations on occurrence, distribution[J]. Marine Pollution Bulletin, 86(1-2): 562-568.
DOI PMID |
[148] | ZHOU Y F, ZHOU X X, JIANG H, et al., 2024. In vitro toxicity and modeling reveal nanoplastic effects on marine bivalves[J]. ACS Nano, 18(26): 17228-17239. |
[149] | ZHOU Z Y, ZHANG C, XI M N, et al., 2023. Multi-scale modeling of natural organic matter-heavy metal cations interactions: Aggregation and stabilization mechanisms[J]. Water Research, 238: 120007. |
[150] | ZHU K C, JIA H Z, SUN Y J, et al., 2020. Long-term phototransformation of microplastics under simulated sunlight irradiation in aquatic environments: Roles of reactive oxygen species[J]. Water Research, 173: 115564. |
[151] | ZHU M L, ZHANG Z H, ZHANG T, et al., 2022. Eco-corona dictates mobility of nanoplastics in saturated porous media: The critical role of preferential binding of macromolecules[J]. Environmental Science & Technology, 57(1): 331-339. |
[152] | ZHU H L, FU S F, ZOU H, et al., 2021. Effects of nanoplastics on microalgae and their trophic transfer along the food chain: recent advances and perspectives[J]. Environmental Science: Processes & Impacts, 23(12): 1873-1883. |
[153] | ZJACIC J P, KATANCIC Z, KOVACIC M, et al., 2024. Fragmentation of polypropylene into microplastics promoted by photo-aging; release of metals, toxicity and inhibition of biodegradability[J]. Science of the Total Environment, 935: 173344. |
[154] | 毕延凤, 于洪军, 徐兴永, 等, 2012. 莱州湾南岸平原地下水化学特征研究[J]. 海洋通报, 31(3): 241-247. |
BI Y F, YU H J, XU X Y, et al., 2021. Study on the groundwater hydrochemical characteristics in the southern Laizhou Bay[J]. Marine Science Bulletin, 31(3): 241-247. | |
[155] | 康满萍, 赵成章, 李群, 2022. 苏干湖湿地土壤全盐含量特征及其与地下水的关联[J]. 生态学报, 42(22): 9026-9034. |
KANG M P, ZHAO C Z, LI Q, Characteristics of soil total salt content and its correlation with groundwater in Sugan Lake wetland[J]. Acta Ecologica Sinica, 42(22): 9026-9034. | |
[156] | 李欣雨, 赵明松, 谷欣逾, 等, 2024. 基于GTWR模型的环境因子对安徽省土壤pH时空异质性影响[J]. 湖南农业科学 (10): 53-59. |
LI X Y, ZHAO M S, GU X Y, et al., 2024. Impact of environmental factors on spatial and temporal heterogeneity of soil pH in Anhui Province based on GTWR model[J]. Hunan Agricultural Sciences (10): 53-59. | |
[157] | 李俊飞, 叶权运, 王亚西, 2024. 水环境中纳米塑料的行为及其生态毒性研究进展[J]. 生态毒理学报, 19(5): 173-188. |
LI J F, YE Q Y, WANG Y X, 2024. Research progress on the behavior and ecotoxicity of nanoplastics in aquatic environments[J]. Journal of Ecotoxicology, 19(5): 173-188. | |
[158] | 张瑾, 李丹, 2021. 环境中微/纳米塑料的污染现状、分析方法、毒性评价及健康效应研究进展[J]. 环境化学, 40(1): 28-40. |
ZHANG J, LI D, 2021. Research progress on pollution status, analysis methods, toxicity assessment and health effects of micro/nano plastics in the environment[J]. Environmental Chemistry, 40(1): 28-40. | |
[159] |
张晓栋, 刘志飞, 张艳伟, 等, 2019. 海洋微塑料源汇搬运过程的研究进展[J]. 地球科学进展, 34(9): 936-949.
DOI |
ZHANG X D, LIU Z F, ZHANG Y W, 2019. Research progress on the source-sink transport process of marine microplastics[J]. Progress in Earth Sciences, 34(9): 936-949. |
[1] | FANG Hua, WANG Yan, LI Xuan, ZHANG Tingting, ZHAO Yi, XU Lin. Combined Effects of Natural Organic Matters, Calcium and Magnesium Ions on the Stability of GO in Water [J]. Ecology and Environmental Sciences, 2025, 34(5): 754-762. |
[2] | LI Haiyan, YANG Xiaoqin, JAN Meipeng, ZHANG Xiaoran. [J]. Ecology and Environmental Sciences, 2023, 32(2): 407-420. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn