Ecology and Environmental Sciences ›› 2025, Vol. 34 ›› Issue (10): 1507-1518.DOI: 10.16258/j.cnki.1674-5906.2025.10.002
• Papers on “Emerging Pollutants” • Previous Articles Next Articles
GUo Qin1,2(), LI Fayun1,3,*(
), LI Xiaotong1,3, MA Yiming1,2, ZHOU Chunliang1,3, HU Yaru1,3
Received:
2024-12-04
Online:
2025-10-18
Published:
2025-09-26
郭琴1,2(), 李法云1,3,*(
), 李晓桐1,3, 马佚铭1,2, 周纯亮1,3, 胡亚茹1,3
通讯作者:
E-mail: 作者简介:
郭琴(1999年生),女,硕士研究生,研究方向为修复生态学。E-mail: guoqin6166@163.com
基金资助:
CLC Number:
GUo Qin, LI Fayun, LI Xiaotong, MA Yiming, ZHOU Chunliang, HU Yaru. Construction of Bacterial Consortium of Bacillus and Acinetobacter and Its Synergistic Degradation Characteristics of Benzo[a]pyrene[J]. Ecology and Environmental Sciences, 2025, 34(10): 1507-1518.
郭琴, 李法云, 李晓桐, 马佚铭, 周纯亮, 胡亚茹. 芽孢杆菌与不动杆菌复合菌群构建及其对苯并[a]芘的协同降解特性[J]. 生态环境学报, 2025, 34(10): 1507-1518.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2025.10.002
处理组 | 梯度 | 培养条件 |
---|---|---|
苯并[a]芘质量浓度/(mg∙L−1) | 5,10,50,100,200 | 37 ℃,150 r∙min−1气浴恒温振荡7 d |
pH | 5,6,7,8,9 | |
NaCl质量浓度/(g∙L−1) | 4,8,12,16,20 | |
外加碳源 | 牛肉膏,甘油, 葡萄糖,淀粉,果糖 | |
外加氮源 | 豆粕,蛋白胨,尿素, NH4Cl,KNO3,壳聚糖 |
Table 1 Single factor experiment set gradient under different conditions
处理组 | 梯度 | 培养条件 |
---|---|---|
苯并[a]芘质量浓度/(mg∙L−1) | 5,10,50,100,200 | 37 ℃,150 r∙min−1气浴恒温振荡7 d |
pH | 5,6,7,8,9 | |
NaCl质量浓度/(g∙L−1) | 4,8,12,16,20 | |
外加碳源 | 牛肉膏,甘油, 葡萄糖,淀粉,果糖 | |
外加氮源 | 豆粕,蛋白胨,尿素, NH4Cl,KNO3,壳聚糖 |
峰号 | 峰面积/% | 质谱碎片m/z | 相似度/% | CAS号 | 化合物 |
---|---|---|---|---|---|
1 | 51.56 | 44 | 97 | 124-38-9 | 二氧化碳 |
2 | 7.64 | 29,31,44 | 89 | 75-07-0 | 乙醛 |
3 | 13.52 | 30,33,47,58 | 72 | 75-57-0 | 四甲基氯化铵 |
4 | 6.73 | 29,41,53,67 | 86 | 78-79-5 | 异戊二烯 |
5 | 0.53 | 29,41,57,72 | 96 | 78-84-2 | 异丁醛 |
6 | 0.80 | 29,41,58,71 | 97 | 590-86-3 | 异戊醛 |
7 | 2.54 | 39,51,65,91 | 98 | 108-88-3 | 甲苯 |
8 | 4.03 | 41,43,60,85 | 88 | 1002-84-2 | 正十五烷酸 |
9 | 1.70 | 41,70,125,154 | 88 | 2854-40-2 | 环(L−脯氨酰−L−缬氨酰) |
10 | 1.20 | 41,57,100,113 | 91 | 6289-31-2 | 硬脂酸烯丙酯 |
11 | 0.79 | 41,55,70,154 | 77 | 5654-86-4 | 环(L−脯氨酰−L−亮氨酰) |
12 | 0.53 | 41,57,97,100 | 86 | 57856-81-2 | 烯丙基正癸酸酯 |
13 | 0.58 | 43,57,98,197 | 80 | 3452-07-1 | 1−二十碳烯 |
14 | 1.25 | 43,57,98,225 | 77 | 23470-00-0 | 2−单棕榈酸甘油 |
15 | 0.59 | 41,55,59,72 | 90 | 301-02-0 | 油酸酰胺 |
16 | 1.28 | 41,55,69,83 | 85 | 112-91-4 | (Z)−9−十八烯腈 |
17 | 2.05 | 41,55,59,72 | 96 | 112-84-5 | 芥酸酰胺 |
18 | 0.62 | 43,57,183,439 | 72 | 538-24-9 | 甘油三月桂酸酯 |
19 | 1.26 | 43,57,183,257 | 73 | 539-93-5 | 1,3−二月桂酸甘油酯 |
20 | 0.82 | 69,81,119,145 | 82 | 125456-63-5 | 2,6,10,14−十六碳四烯−1−醇,3,7,11,15−四甲基 |
Table 2 TB1 biosurfactant pyrolysis products
峰号 | 峰面积/% | 质谱碎片m/z | 相似度/% | CAS号 | 化合物 |
---|---|---|---|---|---|
1 | 51.56 | 44 | 97 | 124-38-9 | 二氧化碳 |
2 | 7.64 | 29,31,44 | 89 | 75-07-0 | 乙醛 |
3 | 13.52 | 30,33,47,58 | 72 | 75-57-0 | 四甲基氯化铵 |
4 | 6.73 | 29,41,53,67 | 86 | 78-79-5 | 异戊二烯 |
5 | 0.53 | 29,41,57,72 | 96 | 78-84-2 | 异丁醛 |
6 | 0.80 | 29,41,58,71 | 97 | 590-86-3 | 异戊醛 |
7 | 2.54 | 39,51,65,91 | 98 | 108-88-3 | 甲苯 |
8 | 4.03 | 41,43,60,85 | 88 | 1002-84-2 | 正十五烷酸 |
9 | 1.70 | 41,70,125,154 | 88 | 2854-40-2 | 环(L−脯氨酰−L−缬氨酰) |
10 | 1.20 | 41,57,100,113 | 91 | 6289-31-2 | 硬脂酸烯丙酯 |
11 | 0.79 | 41,55,70,154 | 77 | 5654-86-4 | 环(L−脯氨酰−L−亮氨酰) |
12 | 0.53 | 41,57,97,100 | 86 | 57856-81-2 | 烯丙基正癸酸酯 |
13 | 0.58 | 43,57,98,197 | 80 | 3452-07-1 | 1−二十碳烯 |
14 | 1.25 | 43,57,98,225 | 77 | 23470-00-0 | 2−单棕榈酸甘油 |
15 | 0.59 | 41,55,59,72 | 90 | 301-02-0 | 油酸酰胺 |
16 | 1.28 | 41,55,69,83 | 85 | 112-91-4 | (Z)−9−十八烯腈 |
17 | 2.05 | 41,55,59,72 | 96 | 112-84-5 | 芥酸酰胺 |
18 | 0.62 | 43,57,183,439 | 72 | 538-24-9 | 甘油三月桂酸酯 |
19 | 1.26 | 43,57,183,257 | 73 | 539-93-5 | 1,3−二月桂酸甘油酯 |
20 | 0.82 | 69,81,119,145 | 82 | 125456-63-5 | 2,6,10,14−十六碳四烯−1−醇,3,7,11,15−四甲基 |
[1] | ABO-STATE M A M, OSMAN M E, KHATTAB O H, et al., 2021. Degradative pathways of polycyclic aromatic hydrocarbons (PAHs) by Phanerochaete chrysosporium under optimum conditions[J]. Journal of Radiation Research and Applied Sciences, 14(1): 507-520. |
[2] | BELAHMADI M S O, ABDESSEMED A, 2024. Enhancement of benzo [a]pyrene mineralization: Symbiotic biodegradation by Acinetobacter sp. strain HAP1 in Association with Cyanobacteriota sp. S66[J]. Journal of Environmental Science and Health Part B-Pesticides Food Contaminants and Agricultural Wastes, 59(5): 248-262. |
[3] | CAO Z B, YAN W L, DING M Z, et al., 2022. Construction of microbial consortia for microbial degradation of complex compounds[J]. Frontiers in Bioengineering and Biotechnology, 10: 1051233. |
[4] | CHIAVARI G, GALLETTI G, 1992. Pyrolysis-Gas chromatography mass-spectrometry of amino-acids[J]. Journal of Analytical and Applied Pyrolysis, 24(2): 123-137. |
[5] |
FATHEPURE B Z, 2014. Recent studies in microbial degradation of petroleum hydrocarbons in hypersaline environments[J]. Frontiers in Microbiology, 5: 173.
DOI PMID |
[6] | GOVARTHANAN M, ASHRAF Y Z, KHALIFA S, et al., 2020. Significance of allochthonous brackish water Halomonas sp. on biodegradation of low and high molecular weight polycyclic aromatic hydrocarbons[J]. Chemosphere, 243: 125389. |
[7] | GUO G, TIAN F, DING K Q, et al., 2017. Effect of a bacterial consortium on the degradation of polycyclic aromatic hydrocarbons and bacterial community composition in Chinese soils[J]. International Biodeterioration & Biodegradation, 123: 56-62. |
[8] | GUO J Y, WEN X Y, 2021. Performance and kinetics of benzo(a)pyrene biodegradation in contaminated water and soil and improvement of soil properties by biosurfactant amendment[J]. Ecotoxicology and Environmental Safety, 207: 111292. |
[9] | HAN B, GAO W, LI Q, et al., 2022. Residues of persistent toxic substances in surface soils of Ny-Ålesund in the arctic: Occurrence, source, and ecological risk assessment[J]. Chemosphere, 303: 135092. |
[10] | JIANG G Q, SONG X, XIE J Y, et al., 2023. Polycyclic aromatic hydrocarbons (PAHs) in ambient air of Guangzhou city: Exposure levels, health effects and cytotoxicity[J]. Ecotoxicology and Environmental Safety, 262: 115308. |
[11] | KONG X H, DONG R R, KING T, et al., 2022. Biodegradation Potential of Bacillus sp. PAH-2 on PAHs for Oil-Contaminated Seawater[J]. Molecules, 27(3): 687. |
[12] | LAI L, LI S Q, ZHANG S P, et al., 2024. Enhancing benzo[a]pyrene degradation by pantoea dispersa MSC14 through biostimulation with sodium gluconate: Insights into mechanisms and molecular regulation[J]. Microorganisms, 12(3): 592. |
[13] |
LI R J, GAO H, JI Z Q, et al., 2020. Distribution and sources of polycyclic aromatic hydrocarbons in the water column of Kongsfjorden, Arctic[J]. Journal of Environmental Sciences, 97: 186-193.
DOI PMID |
[14] | LU H X, WEI J L, TANG G X, et al., 2024. Microbial consortium degrading of organic pollutants: Source, degradation efficiency, pathway, mechanism and application[J]. Journal of Cleaner Production, 451: 141913. |
[15] | MUANGCHINDA C, RUNGSIHIRANRUT A, PROMBUTARA P, et al., 2018. 16S metagenomic analysis reveals adaptability of a mixed-PAH- degrading consortium isolated from crude oil-contaminated seawater to changing environmental conditions[J]. Journal of Hazardous Materials, 357: 119-127. |
[16] | MURALIDHARAN M, KAVITHA R, KUMAR P S, et al., 2021. Performance evaluation and mechanism analysis of halotolerant bacterial strains and cerium oxide nanoparticle to degrade Benzo[a]pyrene[J]. Environmental Technology & Innovation, 24: 101980. |
[17] | NZILA A, MUSA M M, AFUECHETA E, et al., 2023. Benzo[a]pyrene biodegradation by multiple and individual mesophilic bacteria in axenic conditions and in soil samples[J]. International Journal of Environmental Research and Public Health, 20(3): 1855. |
[18] | NZILA A, MUSA M M, SANKARA S, et al., 2021. Degradation of benzo[a]pyrene by halophilic bacterial strain Staphylococcus Haemoliticus strain 10SBZ1A[J]. Public Library Scinece, 16(2): e0247723. |
[19] | SONG X H, XU Y, LI G M, et al., 2011. Isolation, characterization of Rhodococcus sp P14 capable of degrading high-molecular-weight polycyclic aromatic hydrocarbons and aliphatic hydrocarbons[J]. Marine Pollution Bulletin, 62(10): 2122-2128. |
[20] | THACHARODI A, HASSAN S, SINGH T, et al., 2023. Bioremediation of polycyclic aromatic hydrocarbons: An updated microbiological review[J]. Chemosphere, 328: 138498. |
[21] | WANG F K, LI C, WANG H J, et al., 2016. Characterization of a phenanthrene-degrading microbial consortium enriched from petrochemical contaminated environment[J]. International Biodeterioration & Biodegradation, 115: 286-292. |
[22] | YAN Z S, ZHANG Y, WU H F, et al., 2017. Isolation and characterization of a bacterial strain Hydrogenophaga sp. PYR1 for anaerobic pyrene and benzo[a]pyrene biodegradation[J]. RSC Advances, 7(74): 46690-46698. |
[23] | ZHANG T, ZHANG H J, 2022. Microbial consortia are needed to degrade soil pollutants[J]. Microorganisms, 10(2): 261. |
[24] | ZHANG X, ZHANG Z F, ZHANG X M, et al., 2021. Dissolved polycyclic aromatic hydrocarbons from the Northwestern Pacific to the Southern Ocean: Surface seawater distribution, source apportionment, and air-seawater exchange[J]. Water Research, 207: 117780. |
[25] | ZOU X S, SU Q, YI Q W, et al., 2023. Determining the degradation mechanism and application potential of benzopyrene-degrading bacterium Acinetobacter XS-4 by screening[J]. Journal of Hazardous Materials, 456: 131666. |
[26] | 陈梅梅, 邓皓, 宋佳宇, 等, 2014. 嗜盐菌的筛选及原油降解性能[J]. 环境工程学报, 8(1): 372-377. |
CHEN M M, DENG H, SONG J Y, et al., 2014. Isolation and oil-degrading characteristics of halophilic bacteria[J]. Chinese Journal of Environmental Engineering, 8(1): 372-377. | |
[27] | 崔长征, 陈欣, 石杰, 等, 2018. 一株中度嗜盐芳香族污染物降解菌及其应用: 中国, CN201710768383.0[P]. (2018-04-06) [2025-3-11]. |
CUI C Z, CHEN X, SHI J, et al., 2018. A moderately halophilic aromatic pollutant degrading bacterium and its application: China, CN 201710768383.0[P]. (2018-04-06) [2025-3-11]. | |
[28] | 崔长征, 沈萍, 张甲耀, 2012. 铜绿假单胞菌的高含量双鼠李糖脂在生物修复中的应用: 中国, CN201010230691.6[P]. (2012-02-01) [2025-3-11]. |
CUI C Z, SHEN P, ZHANG J Y, 2012. Application of high content of dirhamnoolipid in Pseudomonas aeruginosa in bioremediation: China, CN201010230691.6[P]. (2012-02-01) [2025-3-11]. | |
[29] | 董星辰, 张晓昀, 王亚男, 等, 2021. 高效降解苯并芘假单胞菌的分离、鉴定与应用[J]. 环境科学与技术, 44(3): 1-7. |
DONG X C, ZHANG X Y, WANG Y N, et al., 2021. Isolation, identification and application of a benzopyrene degrading bacteria Pseudomonas sp[J]. Environmental Science & Technology, 44(3): 1-7. | |
[30] |
龚莹, 王海花, 马思远, 等, 2020. 海南红树林沉积物中多环芳烃降解菌群组成及降解率的比较研究[J]. 生态环境学报, 29(5): 1005-1013.
DOI |
GONG Y, WANG H H, MA S Y, et al., 2020. Comparative study on the degradation rates of polycyclic aromatic hydrocarbon (PAHs) degradation bacteria in mangrove sediments in Hainan[J]. Ecology and Environmental Sciences, 29(5): 1005-1013. | |
[31] |
韩晓云, 胡长林, 许可, 等, 2022. 玉米芯降解复合菌剂的构建及其发酵效果初探[J]. 中国农学通报, 38(20): 20-28.
DOI |
HAN X Y, HU C L, XU K, et al., 2022. Construction of corncob degradation compound microbial agent and analysis of its degradation effect[J]. Chinese Agricultural Science Bulletin, 38(20): 20-28.
DOI |
|
[32] | 黄燕, 冯劲, 周刚, 等, 2023. 原油污染土壤中生物表面活性剂菌株的筛选和产物鉴定[J]. 微生物学报, 63(3): 1060-1071. |
HUANG Y, FENG J, ZHOU G, et al., 2023. Screening and product identification of biosurfactant-producing strains in crude oil-contaminated soil[J]. Acta Microbiologica Sinica, 63(3): 1069-1071. | |
[33] | 李法云, 马佚铭, 李晓桐, 等, 2024. 一种石油烃降解菌株、培养方法、应用和微生物菌剂: 中国, CN202410540355.3[P]. (2024-08-16) [2025-3-11]. |
LI F Y, MA Y M, LI X T, et al., 2024. The invention relates to a petroleum hydrocarbon degrading strain, culture method, application and microbial agent: China, CN202410540355.3[P]. (2024-08-16) [2025-3-11]. | |
[34] |
刘猛, 李岩, 张小雪, 等, 2021. 芽孢杆菌M1对苯并芘的耐性响应研究[J]. 河北农业大学学报, 44(4): 63-68.
DOI |
LIU M, LI Y, ZHANG X X, et al., 2021. Study on the resistance response of Bacillus M1 to benzopyrene[J]. Journal of Heibei Agricultural University, 44(4): 63-68. | |
[35] | 罗皓丽, 李海红, 马倩, 2024. 产表面活性剂石油降解菌的筛选鉴定及修复效能[J]. 环境工程, 42(3): 199-206. |
LUO H L, LI H H, MA Q, 2024. Screening and identification of surfactant-producing petroleum-degrading bacteria and their remediation efficacy[J]. Environmental Engineering, 42(3): 199-206. | |
[36] | 毛健, 骆永明, 滕应, 等, 2008. 一株高分子量多环芳烃降解菌的筛选、鉴定及降解特性研究[J]. 微生物学通报, 35(7): 1011-1015. |
MAO J, LUO Y M, TENG Y, et al., 2008. Isolation and characterization of a high-molecular-weight (HMW) PAHs degrading bacterial strain[J]. Microbiology China, 35(7): 1011-1015. | |
[37] | 苏俊涛, 石家萱, 孙爱丽, 等, 2022. 石油烃降解菌LYC-1和LYC-2的筛选及其降解效能研究[J]. 给水排水, 58(S2): 311-318. |
SU J T, SHI J X, SUN A L, et al., 2022. Screening identification and degradation characteristics of petroleum hydrocarbon degrading bacteria[J]. Water & Wastewater Engineering, 48(S2): 311-318. | |
[38] | 汪洋, 2017. 大庆油田石油污染土壤堆肥修复及微生物群落结构研究[D]. 哈尔滨: 东北农业大学. |
WANG Y, 2017. Study on composting remediation of oil contaminated soil in Daqing oil field and structure of the microbial community[D]. Harbin: Northeast Forestry University. | |
[39] | 吴健, 王敏, 靳志辉, 等, 2016. 土壤环境中多环芳烃研究的回顾与展望——基于Web of Science大数据的文献计量分析[J]. 土壤学报, 53(5): 1085-1096. |
WU J, WANF M, JIN Z H, et al., 2016. Review and prospect of research on polycyclic aromatic hydrocarbons in soil environment: A bibliometric analysis based on megadata of web of science[J]. Acta Pedologica Sinica, 53(5): 1085-1096. | |
[40] | 张惠, 杨英, 杨晨, 等, 2020. 高效石油降解菌群的构建及对芳香烃化合物萘的协同降解性能[J]. 微生物学通报, 47(5): 1366-1376. |
ZHANG H, YANG Y, YANG C, et al., 2020. Construction of highly efficient crude oil degrading bacteria and synergistic degradation performance on aromatic hydrocarbon compound naphthalene[J]. Microbiology China, 47(5): 1366-1376. | |
[41] |
阎洁, 余雪巍, 李鉴博, 等, 2021. 一株菲降解细菌产生生物表面活性剂特性的研究[J]. 生态环境学报, 30(8): 1683-1694.
DOI |
YAN J, YU X W, LI J B, et al., 2021. Research on the characterization of surfactant produced by a phenanthrene-degrading strain[J]. Ecology and Environmental Sciences, 30(8): 1683-1694. | |
[42] | 张舒雯, 王亚思, 刘慧利, 等, 2021. TG-FTIR-MS和TG-GC/MS联用研究地沟油的热裂解特性[J]. 中南大学学报(自然科学版), 52(4): 1297-1306. |
ZHNAG S W, WANG Y S, LIU H L, et al., 2021. Characterisitics of waste cooking oil pyrolysis by TG-FTIR-MS and TG-GC/MS[J]. Journal of Central South University (Science and Technology), 52(4): 1297-1306. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn