Ecology and Environment ›› 2025, Vol. 34 ›› Issue (4): 642-652.DOI: 10.16258/j.cnki.1674-5906.2025.04.013
• Research Article【Environmental Science】 • Previous Articles Next Articles
CHEN Yan1,2(), SHI Chenglong1,*(
), LI Pujun2, XIAO Jiang2,*(
), CHEN Guangcai2
Received:
2024-10-20
Online:
2025-04-18
Published:
2025-04-24
Contact:
SHI Chenglong,XIAO Jiang
陈岩1,2(), 石成龙1,*(
), 李璞君2, 肖江2,*(
), 陈光才2
通讯作者:
石成龙,肖江
作者简介:
陈岩(1998年生),男,硕士研究生,主要研究方向为环境功能材料制备及土壤重金属修复。E-mail: wellness1027@163.com
基金资助:
CLC Number:
CHEN Yan, SHI Chenglong, LI Pujun, XIAO Jiang, CHEN Guangcai. Co-hydrothermal Liquid Phase Product of Heavy Metal-containing Trees and Bone Meal: Analysis and Preliminary Evaluation[J]. Ecology and Environment, 2025, 34(4): 642-652.
陈岩, 石成龙, 李璞君, 肖江, 陈光才. 含重金属林木生物质与骨粉共水热液相产物:解析及应用潜力初步评价[J]. 生态环境学报, 2025, 34(4): 642-652.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2025.04.013
实验顺序 | PB/BM混合比/ % | 反应温度/ ℃ | 固体负载量/ % | 停留时间/ min |
---|---|---|---|---|
PB/BM混合比 | *1) | 200 | 5 | 60 |
反应温度 | 25 | * | 5 | 60 |
固体负载量 | 25 | 220 | * | 60 |
停留时间 | 25 | 220 | 20 | * |
Table 1 Single factor experiment sequence and parameters setting
实验顺序 | PB/BM混合比/ % | 反应温度/ ℃ | 固体负载量/ % | 停留时间/ min |
---|---|---|---|---|
PB/BM混合比 | *1) | 200 | 5 | 60 |
反应温度 | 25 | * | 5 | 60 |
固体负载量 | 25 | 220 | * | 60 |
停留时间 | 25 | 220 | 20 | * |
实验编号 | PB/BM混合比/% | 固体负载量/% | 时间/min |
---|---|---|---|
1 | 22.2 | 14.3 | 60 |
2 | 28.6 | 14.3 | 60 |
3 | 22.2 | 20 | 60 |
4 | 28.6 | 20 | 60 |
5 | 22.2 | 17.15 | 45 |
6 | 28.6 | 17.15 | 45 |
7 | 22.2 | 17.15 | 75 |
8 | 28.6 | 17.15 | 75 |
9 | 25 | 14.3 | 45 |
10 | 25 | 20 | 45 |
11 | 25 | 14.3 | 75 |
12 | 25 | 20 | 75 |
13 | 25 | 17.15 | 60 |
14 | 25 | 17.15 | 60 |
15 | 25 | 17.15 | 60 |
16 | 25 | 17.15 | 60 |
17 | 25 | 17.15 | 60 |
Table 2 The design scheme of the RSM Box-Behnken
实验编号 | PB/BM混合比/% | 固体负载量/% | 时间/min |
---|---|---|---|
1 | 22.2 | 14.3 | 60 |
2 | 28.6 | 14.3 | 60 |
3 | 22.2 | 20 | 60 |
4 | 28.6 | 20 | 60 |
5 | 22.2 | 17.15 | 45 |
6 | 28.6 | 17.15 | 45 |
7 | 22.2 | 17.15 | 75 |
8 | 28.6 | 17.15 | 75 |
9 | 25 | 14.3 | 45 |
10 | 25 | 20 | 45 |
11 | 25 | 14.3 | 75 |
12 | 25 | 20 | 75 |
13 | 25 | 17.15 | 60 |
14 | 25 | 17.15 | 60 |
15 | 25 | 17.15 | 60 |
16 | 25 | 17.15 | 60 |
17 | 25 | 17.15 | 60 |
样品 | ρ(Mg)/ (g∙L−1) | ρ(Al)/ (g∙L−1) | ρ(Fe)/ (g∙L−1) | ρ(Cu)/ (g∙L−1) | ρ(Ca)/ (g∙L−1) | ρ(Na)/ (g∙L−1) |
---|---|---|---|---|---|---|
1 | 6.23 | 0.045 | 0.54 | 1.0×10−4 | 26.61 | 63.22 |
2 | 5.77 | 0.048 | 0.29 | 8.5×10−5 | 27.92 | 61.99 |
3 | 9.33 | 0.065 | 0.82 | 1.1×10−4 | 42.85 | 94.23 |
4 | 8.00 | 0.062 | 0.59 | 1.0×10−4 | 40.80 | 90.25 |
5 | 7.23 | 0.053 | 0.54 | - | 32.41 | 81.35 |
6 | 6.59 | 0.061 | 0.65 | - | 36.20 | 81.16 |
7 | 7.47 | 0.054 | 0.26 | 8.0×10−5 | 36.86 | 81.25 |
8 | 7.21 | 0.052 | 0.41 | 1.2×10−4 | 36.63 | 78.16 |
9 | 5.28 | 0.028 | 0.28 | 2.0×10−5 | 29.01 | 66.02 |
10 | 7.82 | 0.047 | 0.60 | 7.0×10−5 | 43.75 | 98.61 |
11 | 6.10 | 0.035 | 0.15 | 2.0×10−4 | 29.14 | 66.75 |
12 | 8.70 | 0.058 | 0.60 | 7.0×10−5 | 42.00 | 89.08 |
13 | 5.95 | 0.037 | 0.23 | 1.9×10−4 | 30.48 | 67.37 |
14 | 6.18 | 0.021 | 0.46 | 1.1×10−3 | 31.94 | 73.58 |
15 | 5.85 | 0.025 | 0.27 | 5.0×10−5 | 28.67 | 66.78 |
16 | 5.75 | 0.034 | 0.21 | 2.2×10−4 | 29.17 | 69.58 |
17 | 6.31 | 0.034 | 0.26 | 6.5×10−5 | 31.13 | 73.51 |
Table 3 Contents of Mg, Al, Fe, Cu, and Na in PB/BM-L
样品 | ρ(Mg)/ (g∙L−1) | ρ(Al)/ (g∙L−1) | ρ(Fe)/ (g∙L−1) | ρ(Cu)/ (g∙L−1) | ρ(Ca)/ (g∙L−1) | ρ(Na)/ (g∙L−1) |
---|---|---|---|---|---|---|
1 | 6.23 | 0.045 | 0.54 | 1.0×10−4 | 26.61 | 63.22 |
2 | 5.77 | 0.048 | 0.29 | 8.5×10−5 | 27.92 | 61.99 |
3 | 9.33 | 0.065 | 0.82 | 1.1×10−4 | 42.85 | 94.23 |
4 | 8.00 | 0.062 | 0.59 | 1.0×10−4 | 40.80 | 90.25 |
5 | 7.23 | 0.053 | 0.54 | - | 32.41 | 81.35 |
6 | 6.59 | 0.061 | 0.65 | - | 36.20 | 81.16 |
7 | 7.47 | 0.054 | 0.26 | 8.0×10−5 | 36.86 | 81.25 |
8 | 7.21 | 0.052 | 0.41 | 1.2×10−4 | 36.63 | 78.16 |
9 | 5.28 | 0.028 | 0.28 | 2.0×10−5 | 29.01 | 66.02 |
10 | 7.82 | 0.047 | 0.60 | 7.0×10−5 | 43.75 | 98.61 |
11 | 6.10 | 0.035 | 0.15 | 2.0×10−4 | 29.14 | 66.75 |
12 | 8.70 | 0.058 | 0.60 | 7.0×10−5 | 42.00 | 89.08 |
13 | 5.95 | 0.037 | 0.23 | 1.9×10−4 | 30.48 | 67.37 |
14 | 6.18 | 0.021 | 0.46 | 1.1×10−3 | 31.94 | 73.58 |
15 | 5.85 | 0.025 | 0.27 | 5.0×10−5 | 28.67 | 66.78 |
16 | 5.75 | 0.034 | 0.21 | 2.2×10−4 | 29.17 | 69.58 |
17 | 6.31 | 0.034 | 0.26 | 6.5×10−5 | 31.13 | 73.51 |
样品 | ρ(TOC)/(g∙L−1) | ρ(N)/(g∙L−1) | ρ(P)/(g∙L−1) | ρ(K)/(g∙L−1) | pH |
---|---|---|---|---|---|
1 | 9.07 | 12.87 | 0.32 | 13.50 | 4.53 |
2 | 8.97 | 13.60 | 0.29 | 13.19 | 4.62 |
3 | 12.64 | 15.82 | 0.42 | 20.03 | 4.61 |
4 | 12.79 | 16.25 | 0.34 | 19.53 | 4.62 |
5 | 11.72 | 16.00 | 0.28 | 17.03 | 4.61 |
6 | 11.59 | 16.71 | 0.37 | 16.63 | 4.70 |
7 | 11.84 | 13.83 | 0.25 | 17.22 | 4.55 |
8 | 11.95 | 16.21 | 0.32 | 16.69 | 4.60 |
9 | 9.58 | 14.63 | 0.27 | 12.95 | 4.72 |
10 | 13.32 | 17.78 | 0.34 | 19.41 | 4.67 |
11 | 9.72 | 12.39 | 0.22 | 13.77 | 4.58 |
12 | 13.46 | 14.99 | 0.33 | 19.59 | 4.58 |
13 | 9.95 | 13.82 | 0.29 | 13.72 | 4.65 |
14 | 10.01 | 13.87 | 0.26 | 14.42 | 4.67 |
15 | 9.69 | 13.50 | 0.27 | 13.13 | 4.62 |
16 | 10.12 | 13.79 | 0.26 | 13.33 | 4.61 |
17 | 9.80 | 14.36 | 0.26 | 14.51 | 4.60 |
Table 4 Mass concentrations of TN, TP, TK, TOC, and pH in PB/BM-L
样品 | ρ(TOC)/(g∙L−1) | ρ(N)/(g∙L−1) | ρ(P)/(g∙L−1) | ρ(K)/(g∙L−1) | pH |
---|---|---|---|---|---|
1 | 9.07 | 12.87 | 0.32 | 13.50 | 4.53 |
2 | 8.97 | 13.60 | 0.29 | 13.19 | 4.62 |
3 | 12.64 | 15.82 | 0.42 | 20.03 | 4.61 |
4 | 12.79 | 16.25 | 0.34 | 19.53 | 4.62 |
5 | 11.72 | 16.00 | 0.28 | 17.03 | 4.61 |
6 | 11.59 | 16.71 | 0.37 | 16.63 | 4.70 |
7 | 11.84 | 13.83 | 0.25 | 17.22 | 4.55 |
8 | 11.95 | 16.21 | 0.32 | 16.69 | 4.60 |
9 | 9.58 | 14.63 | 0.27 | 12.95 | 4.72 |
10 | 13.32 | 17.78 | 0.34 | 19.41 | 4.67 |
11 | 9.72 | 12.39 | 0.22 | 13.77 | 4.58 |
12 | 13.46 | 14.99 | 0.33 | 19.59 | 4.58 |
13 | 9.95 | 13.82 | 0.29 | 13.72 | 4.65 |
14 | 10.01 | 13.87 | 0.26 | 14.42 | 4.67 |
15 | 9.69 | 13.50 | 0.27 | 13.13 | 4.62 |
16 | 10.12 | 13.79 | 0.26 | 13.33 | 4.61 |
17 | 9.80 | 14.36 | 0.26 | 14.51 | 4.60 |
处理 | 含水量/% | 容重/ (g∙cm−3) | 孔隙度/% | 土壤pH | 全氮质量分数/ (mg∙kg−1) | 水解氮质量分数/ (mg∙kg−1) | 有机碳质量分数/ (g∙kg−1) | 有效磷质量分数/ (mg∙kg−1) | 速效钾质量分数/ (mg∙kg−1) | |
---|---|---|---|---|---|---|---|---|---|---|
Control | 15.79±0.15b | 2.07±0.01a | 37.78±0.35a | 7.96±0.03a | 3.03±0.03b | 236.30±1.56a | 27.69±0.30a | 31.39±1.12a | 49.07±6.06a | |
L-1% | 16.04±0.45b | 1.98±0.01b | 37.23±0.64a | 7.93±0.01a | 3.07±0.02a | 238.59±1.29a | 27.75±0.48a | 32.23±0.69a | 59.21±2.92a | |
L-3% | 17.80±0.22a | 1.90±0.01c | 38.77±0.73a | 7.84±0.03b | 3.12±0.01ab | 242.47±4.34a | 28.74±0.47a | 32.45±0.84a | 64.84±5.13a |
Table 5 The physical and chemical properties of soil under different treatments
处理 | 含水量/% | 容重/ (g∙cm−3) | 孔隙度/% | 土壤pH | 全氮质量分数/ (mg∙kg−1) | 水解氮质量分数/ (mg∙kg−1) | 有机碳质量分数/ (g∙kg−1) | 有效磷质量分数/ (mg∙kg−1) | 速效钾质量分数/ (mg∙kg−1) | |
---|---|---|---|---|---|---|---|---|---|---|
Control | 15.79±0.15b | 2.07±0.01a | 37.78±0.35a | 7.96±0.03a | 3.03±0.03b | 236.30±1.56a | 27.69±0.30a | 31.39±1.12a | 49.07±6.06a | |
L-1% | 16.04±0.45b | 1.98±0.01b | 37.23±0.64a | 7.93±0.01a | 3.07±0.02a | 238.59±1.29a | 27.75±0.48a | 32.23±0.69a | 59.21±2.92a | |
L-3% | 17.80±0.22a | 1.90±0.01c | 38.77±0.73a | 7.84±0.03b | 3.12±0.01ab | 242.47±4.34a | 28.74±0.47a | 32.45±0.84a | 64.84±5.13a |
[1] | AGEGNEHU G, SRIVASTAVA A K, BIRD M I, 2017. The role of biochar and biochar-compost in improving soil quality and crop performance: A review[J]. Applied Soil Ecology, 119: 156-170. |
[2] | AKHTAR J, AMIN N A S, 2011. A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass[J]. Renewable and Sustainable Energy Reviews, 15(3): 1615-1624. |
[3] | BALASUNDRAM N, SUNDRAM K, SAMMAN S, 2006. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses[J]. Food Chemistry, 99(1): 191-203. |
[4] | BRAZDIS R I, FIERASCU I, AVRAMESCU S M, et al., 2021. Recent progress in the application of hydroxyapatite for the adsorption of heavy metals from water matrices[J]. Materials, 14(22): 6898. |
[5] | DAHLAWI S, NAEEM A, RENGEL Z, et al., 2018. Biochar application for the remediation of salt-affected soils: Challenges and opportunities[J]. Science of the Total Environment, 625: 320-335. |
[6] |
ELLIOTT D C, BILLER P, ROSS A B, et al., 2015. Hydrothermal liquefaction of biomass: Developments from batch to continuous process[J]. Bioresource Technology, 178: 147-156.
DOI PMID |
[7] | FERNÁNDEZ-DELGADO M, DELAMO-MATEOS E, LUCAS S, et al., 2022. Liquid fertilizer production from organic waste by conventional and microwave-assisted extraction technologies: Techno-economic and environmental assessment[J]. Science of the Total Environment, 806(Part 4): 150904. |
[8] | GAI C, ZHANG Y H, CHEN W T, et al., 2014. Energy and nutrient recovery efficiencies in biocrude oil produced via hydrothermal liquefaction of Chlorella pyrenoidosa[J]. RSC Advances, 4(33): 16958-16967. |
[9] | GARBOWSKI T, BAR-MICHALCZYK D, CHARAZIŃSKA S, et al., 2023. An overview of natural soil amendments in agriculture[J]. Soil and Tillage Research, 225: 105462. |
[10] | GOLLAKOTA A R K, KISHORE N, GU S, 2018. A review on hydrothermal liquefaction of biomass[J]. Renewable and Sustainable Energy Reviews, 81(Part 1): 1378-1392. |
[11] | GUGLIUCCI W, CIRILLO V, MAGGIO A, et al., 2023. Valorisation of hydrothermal liquefaction wastewater in agriculture: Effects on tobacco plants and rhizosphere microbiota[J]. Frontiers in Plant Science, 14: 1180061. |
[12] | HE C, GIANNIS A, WANG J Y, 2013. Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: Hydrochar fuel characteristics and combustion behavior[J]. Applied Energy, 111: 257-266. |
[13] | HE K, HE G, WANG C P, et al., 2020. Biochar amendment ameliorates soil properties and promotes Miscanthus growth in a coastal saline-alkali soil[J]. Applied Soil Ecology, 155: 103674. |
[14] | HUNT J, DUPONTE M, SATO D, et al., 2010. The basics of biochar: A natural soil amendment[J]. Soil and Crop Management, 30(7): 1-6. |
[15] | KLOSS S, ZEHETNER F, WIMMER B, et al., 2014. Biochar application to temperate soils: Effects on soil fertility and crop growth under greenhouse conditions[J]. Journal of Plant Nutrition and Soil Science, 177(1): 3-15. |
[16] | KREY T, VASSILEV N, BAUM C, et al., 2013. Effects of long-term phosphorus application and plant-growth promoting rhizobacteria on maize phosphorus nutrition under field conditions[J]. European Journal of Soil Biology, 55: 124-130. |
[17] | LENG L J, ZHANG W J, PENG H Y, et al., 2020. Nitrogen in bio-oil produced from hydrothermal liquefaction of biomass: A review[J]. Chemical Engineering Journal, 401: 126030. |
[18] |
LEÓN M, MARCILLA A F, GARCÍA Á N, 2019. Hydrothermal liquefaction (HTL) of animal by-products: Influence of operating conditions[J]. Waste Management, 99: 49-59.
DOI PMID |
[19] | LI C F, ZHOU K H, QIN W Q, et al., 2019. A review on heavy metals contamination in soil: Effects, sources, and remediation techniques[J]. Soil and Sediment Contamination: An International Journal, 28(4): 380-394. |
[20] | MADDI B, PANISKO E, WIETSMA T, et al., 2016. Quantitative characterization of the aqueous fraction from hydrothermal liquefaction of algae[J]. Biomass and Bioenergy, 93: 122-130. |
[21] | MADSEN R B, BILLER P, JENSEN M M, et al., 2016. Predicting the chemical composition of aqueous phase from hydrothermal liquefaction of model compounds and biomasses[J]. Energy & Fuels, 30(12): 10470-10483. |
[22] | PAN X, SHI M, CHEN X C, et al., 2022. An investigation into biochar, acid-modified biochar, and wood vinegar on the remediation of saline-alkali soil and the growth of strawberries[J]. Frontiers in Environmental Science, 10: 1057384. |
[23] | PAULINE A L, JOSEPH K, 2020. Hydrothermal carbonization of organic wastes to carbonaceous solid fuel-A review of mechanisms and process parameters[J]. Fuel, 279: 118472. |
[24] | PETROVIĆ J, ERCEGOVIĆ M, SIMIĆ M, et al., 2024. Hydrothermal carbonization of waste biomass: A review of hydrochar preparation and environmental application[J]. Processes, 12(1): 207. |
[25] | PETROVIĿ J, PERIŠIĿ N, MAKSIMOVIĿ J D Ŀ, et al., 2016. Hydrothermal conversion of grape pomace: Detailed characterization of obtained hydrochar and liquid phase[J]. Journal of Analytical and Applied Pyrolysis, 118: 267-277. |
[26] |
REGMI P, MOSCOSO J L G, KUMAR S, et al., 2012. Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process[J]. Journal of Environmental Management, 109: 61-69.
DOI PMID |
[27] | SUNDAR RAJAN P, GOPINAATH K P, ARUN J, et al., 2021. Insights into valuing the aqueous phase derived from hydrothermal liquefaction[J]. Renewable and Sustainable Energy Reviews, 144: 111019. |
[28] | TIAN K, ZHAO Y C, XU X H, et al., 2015. Effects of long-term fertilization and residue management on soil organic carbon changes in paddy soils of China: A meta-analysis[J]. Agriculture, Ecosystems & Environment, 204: 40-50. |
[29] | VALDEZ P J, NELSON M C, WANG H Y, et al., 2012. Hydrothermal liquefaction of Nannochloropsis sp.: Systematic study of process variables and analysis of the product fractions[J]. Biomass and Bioenergy, 46: 317-331. |
[30] | WANG R K, LIN Z H, MENG S, et al., 2022. Effect of lignocellulosic components on the hydrothermal carbonization reaction pathway and product properties of protein[J]. Energy, 259: 125063. |
[31] | XIAO J, HU R, CHEN G C, 2020. Micro-nano-engineered nitrogenous bone biochar developed with a ball-milling technique for high-efficiency removal of aquatic Cd (II), Cu (II) and Pb (II)[J]. Journal of Hazardous Materials, 387: 121980. |
[32] | XU G, ZHANG Y, SUN J N, et al., 2016. Negative interactive effects between biochar and phosphorus fertilization on phosphorus availability and plant yield in saline sodic soil[J]. Science of the Total Environment, 568: 910-915. |
[33] | YANG C, WANG S Z, REN M M, et al., 2019. Hydrothermal liquefaction of an animal carcass for biocrude oil[J]. Energy & Fuels, 33(11): 11302-11309. |
[34] |
YUAN T, CHENG Y F, HUANG W W, et al., 2018. Fertilizer potential of liquid product from hydrothermal treatment of swine manure[J]. Waste Management, 77: 166-171.
DOI PMID |
[35] | ZHANG X H, JIANG W K, MA H, et al., 2020. Relationship between the formation of oligomers and monophenols and lignin structure during pyrolysis process[J]. Fuel, 276: 118048. |
[36] | ZHOU C L, SONG X, WANG Y W, et al., 2022. The sorption and short-term immobilization of lead and cadmium by nano-hydroxyapatite/biochar in aqueous solution and soil[J]. Chemosphere, 286(Part 3): 131810. |
[37] | ZHU Z, ROSENDAHL L, TOOR S S, et al., 2015. Hydrothermal liquefaction of barley straw to bio-crude oil: Effects of reaction temperature and aqueous phase recirculation[J]. Applied Energy, 137: 183-192. |
[38] | 鲍士旦, 2000. 土壤农化分析[M]. 第3版. 北京: 中国农业出版社. |
BAO S D, 2000. Soil agricultural chemistry analysis[M]. Third edition. Beijing: China Agriculture Press. | |
[39] | 林开敏, 叶发茂, 林艳, 等, 2010. 酚类物质对土壤和植物的作用机制研究进展[J]. 中国生态农业学报, 18(5): 1130-1137. |
LIN K M, YE F M, LIN Y, et al., 2010. Research advances of phenolic functional mechanisms in soils and plants[J]. Chinese Journal of Eco-Agriculture, 18(5): 1130-1137. | |
[40] | 关松荫, 1986. 土壤酶及其研究法[M]. 北京: 农业出版社. |
GUAN S Y, 1986. Soil enzymes and their research methods[M]. Beijing: Agriculture Press. | |
[41] | 刘凯楠, 李国峰, 云梁, 等, 2023. 农业废弃生物质在废水处理中的应用研究进展[J]. 合成材料老化与应用, 52(3): 119-121. |
LIU K N, LI G F, YUN L, et al., 2023. Research Progress on the Application of Agricultural Waste Biomass in Wastewater Treatment[J]. Synthetic Materials Aging and Application, 52(3): 119-121. | |
[42] | 马云华, 王秀峰, 魏珉, 等, 2005. 黄瓜连作土壤酚酸类物质积累对土壤微生物和酶活性的影响[J]. 应用生态学报, 16(11): 145-149. |
MA Y H, WANG X F, WEI M, et al., 2005. Accumulation of phenolic acids in continuously cropped cucumber soil and their effects on soil microbes and enzyme activities[J]. Chinese Journal of Applied Ecology, 16(11): 145-149. | |
[43] | 欧祥鹏, 郑永红, 张治国, 等, 2024. 羟基磷灰石在土壤污染修复中的应用研究进展[J]. 应用化工, 53(6): 1412-1415. |
OU X P, ZHENG Y H, ZHANG Z G, et al., 2024. Research progress on the application of hydroxyapatite in soil pollution remediation[J]. Applied Chemical Industry, 53(6): 1412-1415. | |
[44] |
徐永洞, 刘志丹, 2021. 生物质水热液化水相产物形成机理及资源回收[J]. 化学进展, 33(11): 2150-2162.
DOI |
XU Y D, LIU Z D, 2021. Formation mechanism and resource recovery perspectives of aqueous phase from hydrothermal liquefaction of biomass[J]. Progress Chemistry, 33(11): 2150-2162. | |
[45] | 杨家学, 高微微, 2009. 酚酸类化感物质对两种西洋参病原真菌的作用[J]. 中国农学通报, 25(9): 207-211. |
YANG J X, GAO W W, 2009. Effects of phenolic allelochemicals on the pathogen of Panax quiquefolium L.[J]. Chinese Agricultural Science Bulletin, 25(9): 207-211. | |
[46] | 王友保, 2018. 土壤污染生态修复实验技术[M]. 北京: 科学出版社. |
WANG Y B, 2018. Experimental technology for ecological remediation of soil pollution[M]. Beijing: Science Press. | |
[47] |
吴东阳, 吴家欢, 李伟志, 等, 2024. 蚓粪、猪粪配施化肥对土壤质量、辣椒生长及品质的影响[J]. 生态环境学报, 33(9): 1416-1425.
DOI |
WU D Y, WU J H, LI W Z, et al., 2024. Effects of vermicompost and pig manure combined with chemical fertilizers on soil quality, growth and quality of peppers[J]. Ecology and Environmental Sciences, 33(9): 1416-1425. | |
[48] | 中华人民共和国环境保护部, 1997. 中华人民共和国国家标准污水综合排放标准: GB 8978—1996[S]. 北京: 中国环境出版社: 9-12. |
Ministry of Environmental Protection of the People’s Republic of China, 1997. National standard of the People’s Republic of China integrated wastewater discharge standard: GB 8978—1996[S]. Beijing: China Environmental Press. | |
[49] | 中华人民共和国环境保护部, 2007. 固体废物浸出毒性浸出方法醋酸缓冲溶液法: HJ/T 300—2007[S]. 北京: 中国环境出版社: 4-13. |
Ministry of Environmental Protection of the People’s Republic of China, 2007. Solid waste Extraction procedure for leaching toxicity Acetic acid buffer solution method: HJ/T 300—2007[S]. Beijing: China Environmental Press: 4-13. |
[1] | CHEN Lin, LAN Guanyu, XU Yan, LI Xue, MAO Xuefei. Advances in Hydrogen-bonded Organic Framework Materials for Adsorption and Detection of Environmental Pollutants [J]. Ecology and Environment, 2025, 34(3): 474-483. |
[2] | WANG Bin, ZENG Zhaohe, DONG Lu, YUE Lin. The Modification and Practical Effects of Nemerow Index Method in Groundwater Quality Assessment [J]. Ecology and Environment, 2025, 34(2): 293-301. |
[3] | ZHANG Chuanhua, LIU Li, DAI Jie, LI Manman, ZHANG Fengtai, DENG Ling. Classification and Risk Management of Cultivated Land Environmental Quality Based on Evaluation of Soil Heavy Metal Pollution and Accumulation [J]. Ecology and Environment, 2025, 34(2): 311-320. |
[4] | HAN Junchao, ZHENG Maokun, TU Chen, LIU Ying, CAO Zhenyu, XING Qianwen, SHEN Weishou, LUO Yongming. Research Progresses and Prospects on the Application of Magnetotactic Bacteria in Environmental Remediation [J]. Ecology and Environment, 2025, 34(1): 145-155. |
[5] | CHANG Chunying, WANG Gang, CAO Haoxuan, DENG Yirong, TAO Liang. Impact of Simulated Dry-wet Process on Nickel (Ni) and Lead (Pb) in Stabilization Remediated Soils [J]. Ecology and Environment, 2025, 34(1): 118-125. |
[6] | CONG Xin, ZHANG Huaidi, ZHANG Rong, ZHAO Cen, CHEN Kun, LIU Hanbing. Pollution Characteristics and Risk Analysis of Heavy Metal in Farmland Soils of China in Recent 10 Years Based on Meta Analysis [J]. Ecology and Environment, 2024, 33(9): 1451-1459. |
[7] | LIU Dongyi, QU Yonghua, FENG Yaowei, QU Ran. Research on Chromium Ion Content Inversion of GF-5 Satellite Images Based on Grid Search Optimization CatBoost Model [J]. Ecology and Environment, 2024, 33(9): 1460-1470. |
[8] | OUYANG Meifeng, YIN Yuying, ZHANG Jinchen, LIU Qinglin, XIE Yinan, FANG Ping. Spatial Distribution Characteristics and Source Analysis of Heavy Metals in Typical Water Areas of Dongting Lake [J]. Ecology and Environment, 2024, 33(8): 1269-1278. |
[9] | WU Wenwei, SHEN Cheng, SHA Chenyan, LIN Kuangfei, WU Jian, XIE Yuqing, ZHOU Xuan. Soil Heavy Metal Enrichment Characteristics, Risk Assessment, and Source Analysis in Redevelopment Areas during Urban Industrial Plots [J]. Ecology and Environment, 2024, 33(5): 791-801. |
[10] | XIAO Jiang, LI Xiaogang, ZHAO Bo, CHEN Yan, CHEN Guangcai. Effect of Micro/nano Scale Phosphorus-enriched Biochar on Cu and Pb Stabilization in Soil-Salix jiangsuensis ‘172’ System [J]. Ecology and Environment, 2024, 33(3): 439-449. |
[11] | JIANG Runhai, WEN Shaofu, ZHU Chengqiang, ZHANG Mei, YANG Runling, WANG Chunxue, HOU Xiuli. Research on the Promotion of Maize Growth and Immobilization of Pb in the Rhizosphere by Pb-tolerant Phosphate Solubilizing Bacteria in Pb-contaminated Mining Areas [J]. Ecology and Environment, 2024, 33(2): 291-300. |
[12] | LI Jiahui, TONG Hui, CHEN Manjia, LIU Chengshuai, JIANG Qi, YI Xiu. Formation of Fe(Ⅲ) Minerals by Microaerophilic Fe(Ⅱ)-oxidizing Bacteria and Its Effect on Immobilization of Heavy Metals: A Review [J]. Ecology and Environment, 2024, 33(2): 310-320. |
[13] | MA Zhiwei, ZHANG Congzhi, ZHAO Zhanhui, WU Qicong, ZHAO Jinhua, CHEN Zhuo, LI Jingwang, ZHANG Nan, XUE Ya, WANG Yaru, LU Yunxuan, ZHANG Jiabao. Research Progress on Soil Health Cultivation Based on Woody Peat [J]. Ecology and Environment, 2024, 33(12): 1964-1977. |
[14] | LI Pujun, TANG Li, ZHAO Bo, DI Dongliu, CHEN Yan, XIAO Jiang, CHEN Guangcai. The Amelioration of Biochar Soil Amendment on Antimony Mining Soil and Growth of Betula luminifera [J]. Ecology and Environment, 2024, 33(12): 1953-1963. |
[15] | TANG Shuya, WANG Chunhui, SONG Jing, LI Gang. Characteristics and Risk Assessment of Soil Heavy Metal Pollution in the Xiangshan Bay Area [J]. Ecology and Environment, 2024, 33(11): 1768-1781. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn