Ecology and Environment ›› 2024, Vol. 33 ›› Issue (10): 1563-1569.DOI: 10.16258/j.cnki.1674-5906.2024.10.008
• Research Article [Environmental Science] • Previous Articles Next Articles
HUANG Rui(), LU Lei, LI Weijun, DU Huihui*(
)
Received:
2024-07-08
Online:
2024-10-18
Published:
2024-11-15
Contact:
DU Huihui
通讯作者:
杜辉辉
作者简介:
黄瑞(2000年生),男,硕士,主要从事重金属污染化学研究。E-mail: 944619624@qq.com
基金资助:
CLC Number:
HUANG Rui, LU Lei, LI Weijun, DU Huihui. Redistribution of Tungsten During the Crystalline Phase Transformation of Ferrihydrite[J]. Ecology and Environment, 2024, 33(10): 1563-1569.
黄瑞, 卢磊, 李伟峻, 杜辉辉. 水铁矿结晶转化过程中钨的再分配研究[J]. 生态环境学报, 2024, 33(10): 1563-1569.
[1] | BOLAN S, WIJESEKARA H, IRESHIKA A, et al., 2023. Tungsten contamination, behavior and remediation in complex environmental settings[J]. Environment International, 181: 108276. |
[2] | CUI M M, JOHANNESSON K H, 2017. Comparison of tungstate and tetrathiotungstate adsorption onto pyrite[J]. Chemical Geology, 464: 57-68. |
[3] | DU H H, XU Z L, HU M, et al., 2020. Natural organic matter decreases uptake of W(VI), and reduces W(VI) to W(V), during adsorption to ferrihydrite[J]. Chemical Geology, 540: 119567. |
[4] | GUSTAFSSON J P, 2003. Modelling molybdate and tungstate adsorption to ferrihydrite[J]. Chemical Geology, 200(1-2): 105-115. |
[5] | HIEMSTRA T, 2013. Surface and mineral structure of ferrihydrite[J]. Geochimica et Cosmochimica Acta, 105: 316-325. |
[6] | HU S W, LU Y, PENG L F, et al., 2018. Coupled kinetics of ferrihydrite transformation and As(V) sequestration under the effect of humic acids: A mechanistic and quantitative study[J]. Environmental Science & Technology, 52(20): 11632-11641. |
[7] | IWAI T, HASHIMOTO Y, 2017. Adsorption of tungstate (WO4) on birnessite, ferrihydrite, gibbsite, goethite and montmorillonite as affected by pH and competitive phosphate (PO4) and molybdate (MoO4) oxyanions[J]. Applied Clay Science, 143: 372-377. |
[8] | JIA Y F, DEMOPOULOS G P, 2005. Adsorption of arsenate onto ferrihydrite from aqueous solution: Influence of media (sulfate vs nitrate), added gypsum, and pH alteration[J]. Environmental Science & Technology, 39(24): 9523-9527. |
[9] | JIA Y F, XU L Y, FANG Z, et al., 2006. Observation of surface precipitation of arsenate on ferrihydrite[J]. Environmental Science & Technology, 40(10): 3248-3253. |
[10] | JOHANNESSON K H, DAVE H B, MOHAJERIN T J, et al., 2013. Controls on tungsten concentrations in groundwater flow systems: The role of adsorption, aquifer sediment Fe(III) oxide/oxyhydroxide content, and thiotungstate formation[J]. Chemical Geology, 351: 76-94. |
[11] | KASHIWABARA T, KUBO S, TANAKA M, et al., 2017. Stable isotope fractionation of tungsten during adsorption on Fe and Mn(oxyhydr) oxides[J]. Geochimica et Cosmochimica Acta, 204: 52-67. |
[12] | KASHIWABARA T, TAKAHASHI Y, MARCUS M A, et al., 2013. Tungsten species in natural ferromanganese oxides related to its different behavior from molybdenum in oxic ocean[J]. Geochimica et Cosmochimica Acta, 106: 364-378. |
[13] |
KOUTSOSPYROS A, BRAIDA W, CHRISTODOULATOS C, et al., 2006. A review of tungsten: from environmental obscurity to scrutiny[J]. Journal of Hazardous Materials, 136(1): 1-19.
PMID |
[14] | LIANG C, FU F L, TANG B, 2021. Mn-incorporated ferrihydrite for Cr(VI) immobilization: Adsorption behavior and the fate of Cr(VI) during aging[J]. Journal of Hazardous Materials, 417: 126073. |
[15] | LU L, RAO W K, SONG Y Y, et al., 2022. Natural dissolved organic matter (DOM) affects W(VI) adsorption onto Al(hydr)oxide: Mechanisms and influencing factors[J]. Environ Research, 205: 112571. |
[16] | LU Y, HU S W, LIU F, et al., 2020. Effects of humic acid and fulvic acid on the sequestration of copper and carbon during the iron oxide transformation[J]. Chemical Engineering Journal, 383: 123194. |
[17] | MITSUNOBU S, MURAMATSU C, WATANABE K, et al., 2013. Behavior of antimony (V) during the transformation of ferrihydrite and its environmental implications[J]. Environmental Science & Technology, 47(17): 9660-9667. |
[18] | MITSUNOBU S, TAKAHASHI Y, TERADA Y, et al., 2010. Antimony(V) incorporation into synthetic ferrihydrite, goethite, and natural ironoxyhydroxides[J]. Environmental Science & Technology, 44(10): 3712-3718. |
[19] | OBURGER E, CID C V, PREINER J, et al., 2018. pH-dependent bioavailability, speciation, and phytotoxicity of tungsten(W) in soil affect growth and molybdoenzyme activity of nodulated soybeans[J]. Environmental Science & Technology, 52(11): 6146-6156. |
[20] | PAKTUNC D, DUTRIZAC J, GERTSMAN V, 2008. Synthesis and phase transformations involving scorodite, ferric arsenate and arsenical ferrihydrite: Implications for arsenic mobility[J]. Geochimica et Cosmochimica Acta, 72(11): 2649-2672. |
[21] | QU C C, CHEN J Z, MORTIMER M, et al., 2022. Humic acids restrict the transformation and the stabilization of Cd by iron(hydr)oxides[J]. Journal of Hazardous Materials, 430: 128365. |
[22] |
RAKSHIT S, SALLMAN B, DAVANTES A, et al., 2017. Tungstate (VI) sorption on hematite: An in situ ATR-FTIR probe on the mechanism[J]. Chemosphere, 168: 685-691.
DOI PMID |
[23] |
RUBIN C S, HOLMES A K, BELSON M G, et al., 2007. Investigating childhood leukemia in churchill county, nevada[J]. Environmental Health Perspectives, 115: 151-157.
PMID |
[24] |
SALLMAN B, RAKSHIT S, LEFEVRE G, 2018. Influence of phosphate on tungstate sorption on hematite: A macroscopic and spectroscopic evaluation of the mechanism[J]. Chemosphere, 213: 596-601.
DOI PMID |
[25] | SHAN J, HE M C, LIU P, et al., 2023. Antimony immobilization mechanism on schwertmannite: Insights from the microstructure of schwertmannite[J]. Geochimica et Cosmochimica Acta, 359: 71-83. |
[26] | SHARMA Y P, GUPTA A, 2016. Tctapc-110 left anterior descending artery stenting with stent dislodgement in left main-retrieved[J]. Journal of the American College of Cardiology, 67(16): S223-S224. |
[27] | SIMEONI M A, BATTS B D, MCRAE C, 2003. Effect of groundwater fulvic acid on the adsorption of arsenate by ferrihydrite and gibbsite[J]. Applied Geochemistry, 18(10): 1507-1515. |
[28] |
STRIGUL N, KOUTSOSPYROS A, ARIENTI P, et al., 2005. Effects of tungsten on environmental systems[J]. Chemosphere, 61(2): 248-258.
PMID |
[29] | SUN J, BOSTICK B C, 2015. Effects of tungstate polymerization on tungsten(VI) adsorption on ferrihydrite[J]. Chemical Geology, 417: 21-31. |
[30] | VU H P, SHAW S, BRINZA L, et al., 2013. Partitioning of Pb(II) during goethite and hematite crystallization: Implications for Pb transport in natural systems[J]. Applied Geochemistry, 39: 119-128. |
[31] | WANG Y F, WANG L L, VITHANA C.L, et al., 2023. Stability and transformation of ferrihydrite coprecipitated with metals: Dependence of choice of iron salt precursor[J]. ACS Earth and Space Chemistry, 7(12): 2475-2488. |
[32] | ZHANG J X, WANG S F, MA X, et al., 2022. Observation of surface precipitation of ferric molybdate on ferrihydrite: Implication for the mobility and fate of molybdate in natural and hydrometallurgical environments[J]. Science of The Total Environment, 807(1):150749. |
[33] | ZHAO X M, YUAN Z D, WANG S F, et al., 2022. The fate of co-existent cadmium and arsenic during Fe(II)-induced transformation of As(V)/Cd(II)-bearing ferrihydrite[J]. Chemosphere, 301: 134665. |
[34] | 杜辉辉, 刘新, 李杨, 等, 2022. 土壤中钨的环境行为与潜在风险: 研究进展与展望[J]. 土壤学报, 59(3): 655-666. |
DU H H, LIU X, LI Y, et al., 2022. A review on the environmental behavior and potential risk of tungsten in soils: Progress and prospects[J]. Acta Pedologica Sinica, 59(3): 655-666. | |
[35] | 胡世文, 刘同旭, 李芳柏, 等, 2022. 土壤铁矿物的生物-非生物转化过程及其界面重金属反应机制的研究进展[J]. 土壤学报, 59(1): 54-65. |
HU S W, LIU T X, LI F B, et al., 2022. The abiotic and biotic transformation processes of soil iron-bearing minerals and its interfacial reaction mechanisms of heavy metals: A review[J]. Acta Pedologica Sinica, 59(1): 54-65. | |
[36] | 廖文娟, 彭薇, 吴聪, 等, 2023. 还原态蒙脱石结构Fe(Ⅱ)催化水铁矿转化特性及影响因素[J]. 土壤学报, 60(2): 469-478. |
LIAO W J, PENG W, WU C, et al., 2023. Characteristics and influencing factors of the catalytic transformation of ferrihydrite by the structural Fe(Ⅱ) in reduced montmorillonite[J]. Acta Pedologica Sinica, 60(2): 469-478. | |
[37] | 李蜜蜜, 乐一祥, 卢磊, 等, 2023. 钨对小麦种子萌发及生长的影响[J]. 湖南生态科学学报, 10(4): 2095-7300. |
LING M M, LE Y X, LU L, et al., 2023. Effect of tungsten on seed germination and growth of wheat[J]. Journal of Hunan Ecological Science, 10(4): 2095-7300. | |
[38] | 姚远, 余光辉, 滕辉, 2023. 土壤铁氧化物-亚铁的相互作用及其环境影响研究进展[J]. 土壤, 55(4): 718-728. |
YAO Y, YU G H, TENG H, 2023. Soil iron oxide-ferrous interaction and its environmental effects: A review[J]. Soils, 55(4): 718-728. | |
[39] | 周敏, 徐则林, 刘新, 等, 2022. 蒙脱石-氧化铁二元复合胶体吸附钨的研究[J]. 土壤, 54(4): 810-816. |
ZHOU M, XU Z L, LIU X, et al., 2022. Adsorption of tungsten by montmorillonite-iron oxide binary complex[J]. Soils, 54(4): 810-816. |
[1] | WANG Shiping, LI Mei, AN Ya, QIN Haoli. The Effect of Magnesium Modification on Enhancing Cadmium Adsorption Capacity of Wheat Straw Biochar: A Surface Complexation Modeling Approach [J]. Ecology and Environment, 2024, 33(4): 617-625. |
[2] | LI Gaofan, XU Wenzhuo, WEI Haoming, YAN Zaisheng, YOU Jia, JIANG Helong, HUANG Juan. Preparation of 3D Porous Biochar Adsorbent and Its Adsorption Behavior for Phenanthrene [J]. Ecology and Environment, 2024, 33(2): 261-271. |
[3] | LI Danyi, HUANG Xianting, LI Jichao, LI Yingjie, YAN Jiapu, LIN Wei. Advances in the Removal of Antibiotics from Water by Graphene Oxide and Its Composites [J]. Ecology and Environment, 2024, 33(1): 144-155. |
[4] | LI Jiaman, WANG Xiaoming, HU Xinrui, XIE Yingying, WEN Zhen. Effects of Fe-S Ratio on the Microstructure and Cr Adsorption Properties of Schwertmannite [J]. Ecology and Environment, 2023, 32(8): 1478-1486. |
[5] | WANG Lihua, WANG Lei, XU Duanping, XUE Yang. Adsorption Characteristics of Copper and Cadmium on Coal Colloid [J]. Ecology and Environment, 2023, 32(7): 1293-1300. |
[6] | ZHOU Yongkang, YU Shengpin, LI Jiale, DONG Yihui, WANG Meng, ZHAO Qiling, LI Yeyu. Research Progress on Adsorption Behavior and Mechanism of Antibiotics in Soil [J]. Ecology and Environment, 2023, 32(11): 2072-2082. |
[7] | HOU Dongmei, ZHANG Lan, LI Chuncheng, CHEN Lutong, WANG Panpan, ZOU Jianping. Enhanced Removal of Sb(III) and Sb(V) Using Biological Iron and Manganese Oxides Modified Chitosan: Performance and Mechanism Study [J]. Ecology and Environment, 2023, 32(10): 1842-1853. |
[8] | ZHAO Chaofan, ZHOU Dandan, SUN Jiancai, QIAN Kunpeng, LI Fangfang. The Effect of Soluble Components on the Adsorption of Cadmium on Biochar [J]. Ecology and Environment, 2022, 31(4): 814-823. |
[9] | LIU Shasha, CHEN Nuo, YANG Xiaoyin. Research Progress on Adsorption-Desorption Characteristics of Organic Pollutants by Microplastics and Their Combined Toxic Effects [J]. Ecology and Environment, 2022, 31(3): 610-620. |
[10] | CONG Xin, WANG Yu, LI Yao, HE Yangyang. Adsorption Characteristics of Biochars and Graphene Oxide/biochar Composites for Antibiotics from Aqueous Solution [J]. Ecology and Environment, 2022, 31(2): 326-334. |
[11] | TANG Jiaxi, XIANG Biao, LI Yu, TAN Ting, ZHU Yongle, GAN Jianping. Study on Adsorption Characteristics of Fluoride in Water by Diatomite [J]. Ecology and Environment, 2022, 31(2): 335-343. |
[12] | QIN Kun, WANG Zhikang, WANG Zhanghong, YANG Cheng, LIU Jiegang, SHEN Dekui. Cd(II) Adsorption Capability of the Biochar Derived from Co-pyrolysis of Lignin and Polyethylene [J]. Ecology and Environment, 2022, 31(2): 344-353. |
[13] | ZHANG Yaping, CHEN Huimin, WU Zhiyu, TANG Jia, Xie Zhangzhang, LIU Fanghua. Low Concentration of Ferrihydrite Promoted the Hydrogen Production Efficiency of Clostridium sp. BY-1 Isolated from Rice Paddy Soil [J]. Ecology and Environment, 2022, 31(12): 2341-2349. |
[14] | QIN Qin, DUAN Haiqin, SONG Ke, SUN Lijuan, SUN Yafei, ZHOU Bin, XUE Yong. Effect of Conventional Fertilization on the Adsorption-desorption Characteristics and Chemical forms of Cadmium in Soil Water-stable Aggregates [J]. Ecology and Environment, 2022, 31(12): 2403-2413. |
[15] | JIANG Jing, RUAN Chengjie, CHEN Xiaoyu, WU Yi, WANG Yongchuang. Research Progress on Simulated Aging of Microplastics and Its Effects on Pollutant Adsorption [J]. Ecology and Environment, 2022, 31(11): 2263-2274. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 66
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 120
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn