Ecology and Environment ›› 2022, Vol. 31 ›› Issue (2): 344-353.DOI: 10.16258/j.cnki.1674-5906.2022.02.015
• Research Articles • Previous Articles Next Articles
QIN Kun1,2,3(), WANG Zhikang1,2, WANG Zhanghong1,2,3,4,*(
), YANG Cheng2,3, LIU Jiegang2,3, SHEN Dekui4
Received:
2021-06-22
Online:
2022-02-18
Published:
2022-04-14
Contact:
WANG Zhanghong
秦坤1,2,3(), 王志康1,2, 王章鸿1,2,3,4,*(
), 杨成2,3, 刘杰刚2,3, 沈德魁4
通讯作者:
王章鸿
作者简介:
秦坤(1996年生),男,硕士研究生,主要从事喀斯特地区典型固体废弃物的资源化利用。E-mail: 2435004756@qq.com
基金资助:
CLC Number:
QIN Kun, WANG Zhikang, WANG Zhanghong, YANG Cheng, LIU Jiegang, SHEN Dekui. Cd(II) Adsorption Capability of the Biochar Derived from Co-pyrolysis of Lignin and Polyethylene[J]. Ecology and Environment, 2022, 31(2): 344-353.
秦坤, 王志康, 王章鸿, 杨成, 刘杰刚, 沈德魁. 木质素-聚乙烯共热解生物炭对Cd(II)的吸附性能[J]. 生态环境学报, 2022, 31(2): 344-353.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2022.02.015
样品 Sample | 比表面积 Specific surface area/ (m2∙g-1) | 孔比表面积 Pore specific surface area/ (m2∙g-1) | 总孔容 Total pore volume/ (m3∙g-1) | 微孔孔容 Micropore volume/ (m3∙g-1) | 平均孔隙直径 Average pore diameter/ nm |
---|---|---|---|---|---|
LG-600C | 89.12 | 44.84 | 0.15 | 0.09 | 40.12 |
LG/PE-600C | 213.87 | 108.74 | 0.75 | 0.29 | 23.85 |
Table 1 Biochar pore analysis
样品 Sample | 比表面积 Specific surface area/ (m2∙g-1) | 孔比表面积 Pore specific surface area/ (m2∙g-1) | 总孔容 Total pore volume/ (m3∙g-1) | 微孔孔容 Micropore volume/ (m3∙g-1) | 平均孔隙直径 Average pore diameter/ nm |
---|---|---|---|---|---|
LG-600C | 89.12 | 44.84 | 0.15 | 0.09 | 40.12 |
LG/PE-600C | 213.87 | 108.74 | 0.75 | 0.29 | 23.85 |
样品 Sample | w(C)/% | w(H)/% | w(O)/% | w(S)/% | pH | 灰分 Ash/% |
---|---|---|---|---|---|---|
LG-600C | 80.15 | 4.12 | 14.23 | 0.32 | 7.48 | 3.54 |
LG/PE-600C | 90.14 | 3.48 | 4.94 | 0.51 | 7.66 | 3.87 |
Table 2 The physical and chemical properties of biochar
样品 Sample | w(C)/% | w(H)/% | w(O)/% | w(S)/% | pH | 灰分 Ash/% |
---|---|---|---|---|---|---|
LG-600C | 80.15 | 4.12 | 14.23 | 0.32 | 7.48 | 3.54 |
LG/PE-600C | 90.14 | 3.48 | 4.94 | 0.51 | 7.66 | 3.87 |
样品 Sample | Langmuir模型 Langmuir model | Freundlich模型 Freundlich model | ||||
---|---|---|---|---|---|---|
qm/ (mg∙g-1) | k1/ (L∙mg-1) | R2 | kf/ [mg(1-n)Ln∙g-1] | n | R2 | |
LG-600C | 5.54 | 0.18 | 0.998 | 2.36 | 6.13 | 0.974 |
LG/PE-600C | 40.82 | 0.23 | 0.999 | 7.20 | 2.34 | 0.929 |
Table 3 Adsorption isotherm parameters of biochar
样品 Sample | Langmuir模型 Langmuir model | Freundlich模型 Freundlich model | ||||
---|---|---|---|---|---|---|
qm/ (mg∙g-1) | k1/ (L∙mg-1) | R2 | kf/ [mg(1-n)Ln∙g-1] | n | R2 | |
LG-600C | 5.54 | 0.18 | 0.998 | 2.36 | 6.13 | 0.974 |
LG/PE-600C | 40.82 | 0.23 | 0.999 | 7.20 | 2.34 | 0.929 |
样品 Sample | 实验平衡吸附量qe,exp/(mg∙g-1) | 准一级动力学模型 Pseudo-first-order model | 准二级动力学模型 Pseudo-second-order model | ||||
---|---|---|---|---|---|---|---|
k1/(h-1) | qe/(mg∙g-1) | R2 | k2/(g∙mgh-1) | qe/(mg∙g-1) | R2 | ||
LG-600C | 3.14 | 0.042 | 3.14 | 0.459 | 0.35 | 3.60 | 0.936 |
LG/PE-600C | 36.58 | 0.037 | 36.58 | 0.230 | 0.050 | 40.16 | 0.928 |
Table 4 Biochar adsorption kinetic parameters
样品 Sample | 实验平衡吸附量qe,exp/(mg∙g-1) | 准一级动力学模型 Pseudo-first-order model | 准二级动力学模型 Pseudo-second-order model | ||||
---|---|---|---|---|---|---|---|
k1/(h-1) | qe/(mg∙g-1) | R2 | k2/(g∙mgh-1) | qe/(mg∙g-1) | R2 | ||
LG-600C | 3.14 | 0.042 | 3.14 | 0.459 | 0.35 | 3.60 | 0.936 |
LG/PE-600C | 36.58 | 0.037 | 36.58 | 0.230 | 0.050 | 40.16 | 0.928 |
样品 Sample | 吉布斯自由能 ΔG0/(kJ·mol-1) | 焓 ΔH0/ (kJ∙mol-1) | 熵 ΔS0/ [J∙(mol∙K)-1] | |||
---|---|---|---|---|---|---|
288 K | 298 K | 308 K | 318 K | |||
LG-600C | -6.05 | -9.83 | -10.47 | -11.58 | 43.84 | 175.97 |
LG/PE-600C | -9.47 | -12.25 | -14.54 | -16.20 | 55.44 | 226.26 |
Table 5 Thermodynamic parameters of Cd(II) adsorption by biochar
样品 Sample | 吉布斯自由能 ΔG0/(kJ·mol-1) | 焓 ΔH0/ (kJ∙mol-1) | 熵 ΔS0/ [J∙(mol∙K)-1] | |||
---|---|---|---|---|---|---|
288 K | 298 K | 308 K | 318 K | |||
LG-600C | -6.05 | -9.83 | -10.47 | -11.58 | 43.84 | 175.97 |
LG/PE-600C | -9.47 | -12.25 | -14.54 | -16.20 | 55.44 | 226.26 |
[1] |
DEWANGAN A, PRADHAN D, SINGH R K, 2016. Co-pyrolysis of sugarcane bagasse and low-density polyethylene: Influence of plastic on pyrolysis product yield[J]. Fuel, 185: 508-516.
DOI URL |
[2] |
CHEN T, ZHOU Z Y, HAN R, et al., 2015. Adsorption of cadmium by biochar derived from municipal sewage sludge: Impact factors and adsorption mechanism[J]. Chemosphere, 134: 286-293.
DOI URL |
[3] | CHEN W M, CHEN M Z, ZHOU X Y, 2015. Characterization of biochar obtained by co-pyrolysis of waste newspaper with high-density polyethylene[J]. BioResources, 10(4): 8253-8267. |
[4] | FAHAD A A, BASEL A, ABDALLA M A, et al., 2015. Cadmium removal by activated carbon, carbon nanotubes, carbon nanofibers, and carbon fly ash: A comparative study[J]. Desalination and Water Treatment, 53(5): 1417-1429. |
[5] |
FAN X L, ZHANG J J, XIE Y, et al., 2021. Biochar produced from the co-pyrolysis of sewage sludge and waste tires for cadmium and tetracycline adsorption from water[J]. Water Science and Technology, 83(6): 1429-1445.
DOI URL |
[6] |
KEILUWEIT M, NICO P S, JOHNSON M G, et al., 2010. Dynamic molecular structure of plant biomass-derived black carbon (biochar)[J]. Environmental Science & Technology, 44(4): 1247-1253.
DOI URL |
[7] |
LIU J, YANG X Y, LIU H H, et al., 2021. Mixed biochar obtained by the co-pyrolysis of shrimp shell with corn straw: Co-pyrolysis characteristics and its adsorption capability[J]. Chemosphere, DOI: 10.1016/j.chemosphere.2021.131116.
DOI |
[8] |
MARINA B Š, MILE T K, MIRJANA G A, 2011. Study of the biosorption of different heavy metal ions onto Kraft lignin[J]. Ecological Engineering, 37(12): 2092-2095.
DOI URL |
[9] |
MENG J, FENG X L, DAI Z M, et al.,2014 Adsorption characteristics of Cu(II) from aqueous solution onto biochar derived from swine manure[J]. Environmental Science and Pollution Research, 21(11): 7035-7046.
DOI URL |
[10] |
MURAT K, ÇISEM K, ÖZGE Ç, et al., 2013. Adsorption of heavy metal ions from aqueous solutions by bio-char, a by-product of pyrolysis[J]. Applied Surface Science, 283: 856-862.
DOI URL |
[11] |
SEWU D, BOAKYE P, JUNG H, et al., 2017. Synergistic dye adsorption by biochar from co-pyrolysis of spent mushroom substrate and Saccharina japonica[J]. Bioresources Technology, 244(1): 1142-1149.
DOI URL |
[12] |
SHEN Y F, 2015. Chars as carbonaceous adsorbents/catalysts for tar elimination during biomass pyrolysis or gasification[J]. Renewable and Sustainable Energy Reviews, 43: 281-295.
DOI URL |
[13] |
SU D S, CHEN X W, WEINBERG G, et al., 2005. Hierarchically structured carbon: Synthesis of carbon nanofibers nested inside or immobilized onto modified activated carbon[J]. Angewandte Chemie (International ed. in English), 44(34): 5488-5492.
DOI URL |
[14] |
WANG Z H, SHEN D K, SHEN F, et al., 2016. Phosphate adsorption on lanthanum loaded biochar[J]. Chemosphere, 150: 1-7.
DOI URL |
[15] |
WANG Z H, SHEN F, SHEN D K, et al., 2017. Immobilization of Cu2+ and Cd2+ by earthworm manure derived biochar in acidic circumstance[J]. Journal of Environmental Sciences, 53(3): 293-300.
DOI URL |
[16] |
WEI J, SHEN D K, LIU Q, et al., 2016. Evaluation of the co-pyrolysis of lignin with plastic polymers by TG-FTIR and Py-GC/MS[J]. Polymer Degradation and Stability, 133: 65-74.
DOI URL |
[17] |
XU D Y, ZHAO Y, SUN K, et al., 2014. Cadmium adsorption on plant-and manure-derived biochar and biochar-amended sandy soils: Impact of bulk and surface properties[J]. Chemosphere, 111: 320-326.
DOI URL |
[18] | 蔡佳佩, 朱坚, 彭华, 等, 2018. 不同镉污染消减措施对水稻-土壤镉累积的影响[J]. 生态环境学报, 27(12): 2337-2342. |
CAI J P, ZHU J, PENG H, et al., 2018, Accumulation of cadmium in paddy rice and soil affected by different reduction measures[J]. Ecology and Environmental Sciences, 27(12): 2337-2342. | |
[19] | 曹健华, 刘凌沁, 黄亚继, 等, 2019. 原料种类和热解温度对生物炭吸附Cd2+的影响[J]. 化工进展, 38(9): 4183-4190. |
CAO J H, LIU L Q, HUANG Y J, et al., 2019. Effects of feedstock type and pyrolysis temperature on Cd2+ adsorption by biochar[J]. Chemical Industry and Engineering Progress, 38(9): 4183-4190. | |
[20] | 陈能场, 郑煜基, 何晓峰, 等, 2017. 《全国土壤污染状况调查公报》探析[J]. 农业环境科学学报, 36(9): 1689-1692. |
CHEN N C, ZHENG Y J, HE X F, et al., 2017. Analysis of the bulletin of national soil pollution survey[J]. Journal of Agro-Environment Science, 36(9): 1689-1692. | |
[21] | 姜禹奇, 都琳, 2021. 生物质炭修复重金属镉污染水体的研究[J]. 中国资源综合利用, 39(2): 201-204. |
JIANG Y Q, DU L, 2021. Study on Biomass Charcoal Remediation of Heavy Metal Cadmium Polluted Water[J]. China Resources Comprehensive Utilization, 39(2): 201-204. | |
[22] | 康彩艳, 李秋燕, 刘金玉, 等, 2021. 不同热解温度生物炭对Cd2+的吸附影响[J]. 工业水处理, 41(5): 68-72, 79. |
KANG C Y, LI Q Y, LIU J Y, et al., 2021. Effect of biochar at different pyrolysis temperatures on the adsorption of Cd2+[J]. Industrial Water Treatment, 41(5): 68-72, 79. | |
[23] | 刘岑薇, 叶菁, 林怡, 等, 2021. 大薸生物炭对水中铜离子的吸附特征[J]. 安徽农学通报, 27(6): 134-138. |
LIU C W, YE J, LIN Y, et al., 2021. Removal of Copper(II)Using Water Lettuce (Pistia Stratiotes L.) Biochar in Aqueous Solutions[J]. Anhui Agri, Sci, Bull, 27(6): 134-138. | |
[24] | 刘群星, 宋琳, 何彪, 2020. 不同热解温度万寿菊秸秆制备生物炭对Cd的吸附特性研究[J]. 安徽农学通报, 26(19): 138-139. |
LIU Q X, SONG L, HE B, 2020. Adsorption Characteristics of Cd on Biochar Derived from Straw of Tagetes erecta at Different Pyrolysis Temperatures[J]. Anhui Agricultural Science Bulletin, 26(19): 138-139. | |
[25] | 刘莹莹, 秦海芝, 李恋卿, 等, 2012. 不同作物原料热裂解生物质炭对溶液中Cd2+和Pb2+的吸附特性[J]. 生态环境学报, 21(1): 146-152. |
LIU Y Y, QIN H Z, LI L Q, et al., 2012. Adsorption of Cd2+ and Pb2+ in aqueous solution by biochars produced from the pyrolysis of different crop feedstock[J]. Ecology and Environmental Sciences, 21(1): 146-152. | |
[26] |
马贵, 韩新宁, 赵文霞, 等, 2021. 马铃薯生物炭对土壤中Cd的钝化效果[J]. 新疆农业科学, 58(4): 663-671.
DOI |
MA G, HAN X N, ZAHO W X, et al., 2021. Immobilization of Cadmium in Soils by Potato Straw Biochar[J]. Xinjiang Agricultural Sciences, 58(4): 663-671. | |
[27] | 王丹丹, 林静雯, 张岩, 等, 2015. 牛粪生物炭对Cd2+的吸附影响因素及特性[J]. 环境工程学报, 9(7): 3197-3203. |
WANG D D, LIN J W, ZHANG Y, et al., 2015. Cd2+ adsorption influential factors and performance of dairy dung biochar[J]. Chinese Journal of Environmental Engineering, 9(7): 3197-3203. | |
[28] | 王道涵, 李景阳, 汤家喜, 2020. 不同热解温度生物炭对溶液中镉的吸附性能研究[J]. 工业水处理, 40(1): 18-23. |
WANG D H, LI J Y, TANG J X, 2020. Adsorption of cadmium in solution by biochar at different pyrolysis temperatures[J]. Industrial Water Treatment, 40(1): 18-23. | |
[29] | 张晓峰, 方利平, 李芳柏, 等, 2020. 水稻全生育期内零价铁与生物炭钝化土壤镉砷的协同效应与机制[J]. 生态环境学报, 29(7): 1455-1465. |
ZHANG X F, FANG L P, LI F B, et al., 2020. Synergistic Passivating Effects and Mechanisms of Zero Valent Iron and Biochar on Cadmium and Arsenic in Paddy Soil over A Whole Growth Period of Rice[J]. Ecology and Environmental Sciences, 29(7): 1455-1465. | |
[30] | 张长平, 张彤, 王子月, 2016. 镉污染水处理技术及展望[J]. 化工技术与开发, 45(11): 47-50. |
ZHANG C P, ZHANG T, WANG Z Y, 2016. Treatment Technology and Prospect of Cadmium Polluted Water[J]. Technology & Development of Chemical Industry, 45(11): 47-50. | |
[31] | 周艳, 张红平, 张建平, 等, 2016. 多齿配体改性碱木质素对Hg2+和Cd2+的吸附性能[J]. 环境化学, 35(9): 1952-1960. |
ZHOU Y, ZHANG H P, ZHANG J P, et al., 2016. Adsorption of Cd2+/Hg2+ in aqueous solutions using chelating ligands modified alkali lignin[J]. Environmental Chemistry, 35(9): 1952-1960. |
[1] | ZHAO Weibin, TANG Li, WANG Song, LIU Lingling, WANG Shufeng, XIAO Jiang, CHEN Guangcai. Improvement Effect of Two Biochars on Coastal Saline-Alkaline Soil [J]. Ecology and Environment, 2023, 32(4): 678-686. |
[2] | CUI Yuanyuan, ZHANG Zhengyun, LIU Peng, ZHANG Yunchun, ZHANG Qiaoying. Morphological Characteristics and Fractal Dimension of Brassia chinensis Root System under Cadmium and Polyethylene Microplastic Stress [J]. Ecology and Environment, 2023, 32(1): 158-165. |
[3] | WANG Jie, SHAN Yan, MA Lan, SONG Yanjing, WANG Xiangyu. Effects of Straw and Biochar Synergistic Returning on the Improvement of Salt-affected Soil in the Yellow River Delta [J]. Ecology and Environment, 2023, 32(1): 90-98. |
[4] | YOU Hongjian, ZHANG Wenwen, LAN Zhengfang, MA Lan, ZHANG Baodi, MU Xiaokun, LI Wenhui, CAO Yune. Effects of Earthworm in-situ Composting and Biochar on Cucumber Root-knot Nematodes and Rhizosphere Microorganisms [J]. Ecology and Environment, 2023, 32(1): 99-109. |
[5] | LI Xiaohui, AI Xianbin, LI Liang, WANG Xiyang, XIN Zaijun, SUN Xiaoyan. Study on Passivation Effects of New Modified Rice Husk Biochar Materials on Cadmium Contaminated Soil [J]. Ecology and Environment, 2022, 31(9): 1901-1908. |
[6] | TAO Ling, HUANG Lei, ZHOU Yilei, LI Zhongxing, REN Jun. Influences of Biochar Prepared by Co-pyrolysis with Sludge and Attapulgite on Bioavailability and Environmental Risk of Heavy Metals in Mining Soil [J]. Ecology and Environment, 2022, 31(8): 1637-1646. |
[7] | FANG Xianbao, ZHANG Zhijun, LAI Yangqing, YE Mai, DIAO Zenghui. Remediation of Heavy Metals Cr and Cd in Soil by A Novel Sludge-derived Biochar [J]. Ecology and Environment, 2022, 31(8): 1647-1656. |
[8] | QIAN Lianwen, YU Tiantian, LIANG Xujun, WANG Yixiang, CHEN Yongshan. Stability of Biochar after Application for 5 Years in the Amendment of Acidified Tea Garden Soil [J]. Ecology and Environment, 2022, 31(7): 1442-1447. |
[9] | LIU Xiaohong, LIU Liuqingqing, LI Min, LIU Qiang, CAO Dongdong, ZHENG Hao, LUO Xianxiang. Effects of Polyethylene Microplastics with Different Particle Sizes on Seed Germination and Seedling Growth of Maize and Cucumber [J]. Ecology and Environment, 2022, 31(6): 1263-1271. |
[10] | ZHANG Huiqi, LI Zizhong, QI Yan. Effects of Corn Straw-based Biochar Amount on Pores and Water Holding Capacity of Sandy Soil [J]. Ecology and Environment, 2022, 31(6): 1272-1277. |
[11] | DENG Xiao, WU Chunyuan, YANG Guisheng, LI Yi, LI Qinfen. Improvement Effect of Coconut-shell Biochar on Coastal Soil in Hainan [J]. Ecology and Environment, 2022, 31(4): 723-731. |
[12] | WEI Lan, HUANG Lianxi, LI Xiang, WANG Zehuang, CHEN Weisheng, HUANG Qing, HUANG Yufen, LIU Zhongzhen. Biochar Medium Could Significantly Improve Banana Seedling Growth [J]. Ecology and Environment, 2022, 31(4): 732-739. |
[13] | ZHAO Chaofan, ZHOU Dandan, SUN Jiancai, QIAN Kunpeng, LI Fangfang. The Effect of Soluble Components on the Adsorption of Cadmium on Biochar [J]. Ecology and Environment, 2022, 31(4): 814-823. |
[14] | CHENG Wenyuan, LI Fayun, LÜ Jianhua, LIN Meixia, WANG Wei. Sorption Characteristics of Polycyclic Aromatic Hydrocarbons Phenanthrene on Sunflower Straw Biochar Modified with Alkali [J]. Ecology and Environment, 2022, 31(4): 824-834. |
[15] | SU Yan, QUAN Yanhong, HUAN Ziyan, YAO Jia, SU Xiaojuan. Effect of phosphate-modified Biochar on Remediation of Pb- and Zn-polluted Farmlands Around A Pb/Zn Mine in Yunnan Province, China [J]. Ecology and Environment, 2022, 31(3): 593-602. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn