Ecology and Environment ›› 2024, Vol. 33 ›› Issue (8): 1257-1268.DOI: 10.16258/j.cnki.1674-5906.2024.08.010
• Research Article [Environmental Science] • Previous Articles Next Articles
ZHANG Baodong1(), WANG Biao1,*(
), WU Yanlan2, MENG Yu3, XU Sheng4, QIAN Zhenbing4, QIN Jun4
Received:
2024-04-11
Online:
2024-08-18
Published:
2024-09-25
张宝东1(), 王彪1,*(
), 吴艳兰2, 孟玉3, 徐升4, 钱贞兵4, 秦军4
通讯作者:
王彪。E-mail: 作者简介:
张宝东(2001年生),男,硕士研究生,主要研究方向为资源环境遥感。E-mail: zbdsds@163.com
基金资助:
CLC Number:
ZHANG Baodong, WANG Biao, WU Yanlan, MENG Yu, XU Sheng, QIAN Zhenbing, QIN Jun. Analysis and Identification of Characteristics of Rural Black and Odorous Water Bodies in Anhui Province[J]. Ecology and Environment, 2024, 33(8): 1257-1268.
张宝东, 王彪, 吴艳兰, 孟玉, 徐升, 钱贞兵, 秦军. 安徽省农村黑臭水体特征分析及识别[J]. 生态环境学报, 2024, 33(8): 1257-1268.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2024.08.010
波段 | 波段号 | 波谱范围/ nm | GF-2空间分辨率/m | GF-7空间分辨率/m |
---|---|---|---|---|
全色 | Pan | 450‒900 | <0.8 | <0.7 |
多光谱 | Band1 (蓝) | 450‒520 | <3.2 | |
Band2 (绿) | 520‒590 | <2.8 | ||
Band3 (红) | 630‒690 | |||
Band4 (近红外) | 770‒890 |
Table 1 Parameters of GF-2 and GF-7 satellite sensors
波段 | 波段号 | 波谱范围/ nm | GF-2空间分辨率/m | GF-7空间分辨率/m |
---|---|---|---|---|
全色 | Pan | 450‒900 | <0.8 | <0.7 |
多光谱 | Band1 (蓝) | 450‒520 | <3.2 | |
Band2 (绿) | 520‒590 | <2.8 | ||
Band3 (红) | 630‒690 | |||
Band4 (近红外) | 770‒890 |
地区 | 调查时间 | 调查数量 |
---|---|---|
皖北地区 | 2023年1‒8月 | 168 |
皖中地区 | 2023年6‒9月 | 76 |
皖南地区 | 2023年7‒10月 | 57 |
Table 2 Field survey plan
地区 | 调查时间 | 调查数量 |
---|---|---|
皖北地区 | 2023年1‒8月 | 168 |
皖中地区 | 2023年6‒9月 | 76 |
皖南地区 | 2023年7‒10月 | 57 |
监测指标 | 指标阈值 |
---|---|
透明度/cm | <25 |
溶解氧质量浓度/(mg∙L−1) | <2 |
氨氮质量浓度/(mg∙L−1) | >15 |
Table 3 Black and odorous water monitoring indicator thresholds
监测指标 | 指标阈值 |
---|---|
透明度/cm | <25 |
溶解氧质量浓度/(mg∙L−1) | <2 |
氨氮质量浓度/(mg∙L−1) | >15 |
环境因素 | 皮尔逊相关性 | 显著性 |
---|---|---|
浮萍覆盖率 | −0.825 | 0.000** |
水体流通性 | −0.094 | 0.654 |
温度 | −0.594 | 0.000** |
浮萍覆盖率×水体流通性 | 0.000** | |
浮萍覆盖率×温度 | 0.000** |
Table 4 Correlation analysis of environmental factors and interaction effects with dissolved oxygen concentration
环境因素 | 皮尔逊相关性 | 显著性 |
---|---|---|
浮萍覆盖率 | −0.825 | 0.000** |
水体流通性 | −0.094 | 0.654 |
温度 | −0.594 | 0.000** |
浮萍覆盖率×水体流通性 | 0.000** | |
浮萍覆盖率×温度 | 0.000** |
指标 | 影响因子 | 回归方程 |
---|---|---|
Y溶解氧浓度 | X1浮萍覆盖率、X2温度 | Y=8.331−0.058X1−0.083X2 |
Table 5 Multiple regression analysis
指标 | 影响因子 | 回归方程 |
---|---|---|
Y溶解氧浓度 | X1浮萍覆盖率、X2温度 | Y=8.331−0.058X1−0.083X2 |
水体编号 | 水体类型 | 颜色 | 气味 | 透明度 | 溶解氧 | 浮萍覆盖率 | 水体编号 | 水体类型 | 颜色 | 气味 | 透明度 | 溶解氧 | 浮萍覆盖率 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
01 | 沟渠 | 无色 | 微臭 | 40 | 0.11 | 100 | 14 | 塘 | 微黄 | 无味 | 28 | 0.56 | 97.86 |
02 | 塘 | 微黄 | 微臭 | 34 | 0.15 | 100 | 15 | 塘 | 无色 | 微臭 | 38 | 0.66 | 91.35 |
03 | 塘 | 微黄 | 微臭 | 34 | 0.27 | 98.41 | 16 | 塘 | 微黄 | 微臭 | 31 | 0.66 | 92.86 |
04 | 塘 | 无色 | 无味 | 42 | 0.27 | 100 | 17 | 塘 | 无色 | 无味 | 60 | 0.68 | 93.68 |
05 | 塘 | 微黄 | 微臭 | 31 | 0.29 | 96.23 | 18 | 塘 | 黄 | 微臭 | 30 | 0.87 | 93.75 |
06 | 塘 | 无色 | 无味 | 37 | 0.31 | 99.28 | 19 | 塘 | 微黄 | 无味 | 30 | 1.26 | 89.53 |
07 | 塘 | 无色 | 无味 | 43 | 0.31 | 100 | 20 | 塘 | 无色 | 微臭 | 34 | 1.39 | 90.55 |
08 | 塘 | 微黄 | 无味 | 37 | 0.34 | 98.60 | 21 | 塘 | 无色 | 无味 | 40 | 1.66 | 87.11 |
09 | 塘 | 微黄 | 无味 | 35 | 0.38 | 98.45 | 22 | 塘 | 微黄 | 无味 | 35 | 2.22 | 86.04 |
10 | 塘 | 微黄 | 微臭 | 34 | 0.39 | 97.64 | 23 | 塘 | 微黄 | 无味 | 29 | 2.33 | 81.11 |
11 | 塘 | 黄色 | 臭 | 30 | 0.43 | 98.43 | 24 | 塘 | 微黄 | 微臭 | 38 | 2.53 | 84.21 |
12 | 塘 | 无色 | 无味 | 50 | 0.46 | 97.12 | 25 | 塘 | 无色 | 微臭 | 40 | 3.16 | 86.32 |
13 | 塘 | 微黄 | 无味 | 38 | 0.54 | 98.05 | 26 | 塘 | 黄 | 无味 | 42 | 3.8 | 83.52 |
Table 6 Part of the field verification results
水体编号 | 水体类型 | 颜色 | 气味 | 透明度 | 溶解氧 | 浮萍覆盖率 | 水体编号 | 水体类型 | 颜色 | 气味 | 透明度 | 溶解氧 | 浮萍覆盖率 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
01 | 沟渠 | 无色 | 微臭 | 40 | 0.11 | 100 | 14 | 塘 | 微黄 | 无味 | 28 | 0.56 | 97.86 |
02 | 塘 | 微黄 | 微臭 | 34 | 0.15 | 100 | 15 | 塘 | 无色 | 微臭 | 38 | 0.66 | 91.35 |
03 | 塘 | 微黄 | 微臭 | 34 | 0.27 | 98.41 | 16 | 塘 | 微黄 | 微臭 | 31 | 0.66 | 92.86 |
04 | 塘 | 无色 | 无味 | 42 | 0.27 | 100 | 17 | 塘 | 无色 | 无味 | 60 | 0.68 | 93.68 |
05 | 塘 | 微黄 | 微臭 | 31 | 0.29 | 96.23 | 18 | 塘 | 黄 | 微臭 | 30 | 0.87 | 93.75 |
06 | 塘 | 无色 | 无味 | 37 | 0.31 | 99.28 | 19 | 塘 | 微黄 | 无味 | 30 | 1.26 | 89.53 |
07 | 塘 | 无色 | 无味 | 43 | 0.31 | 100 | 20 | 塘 | 无色 | 微臭 | 34 | 1.39 | 90.55 |
08 | 塘 | 微黄 | 无味 | 37 | 0.34 | 98.60 | 21 | 塘 | 无色 | 无味 | 40 | 1.66 | 87.11 |
09 | 塘 | 微黄 | 无味 | 35 | 0.38 | 98.45 | 22 | 塘 | 微黄 | 无味 | 35 | 2.22 | 86.04 |
10 | 塘 | 微黄 | 微臭 | 34 | 0.39 | 97.64 | 23 | 塘 | 微黄 | 无味 | 29 | 2.33 | 81.11 |
11 | 塘 | 黄色 | 臭 | 30 | 0.43 | 98.43 | 24 | 塘 | 微黄 | 微臭 | 38 | 2.53 | 84.21 |
12 | 塘 | 无色 | 无味 | 50 | 0.46 | 97.12 | 25 | 塘 | 无色 | 微臭 | 40 | 3.16 | 86.32 |
13 | 塘 | 微黄 | 无味 | 38 | 0.54 | 98.05 | 26 | 塘 | 黄 | 无味 | 42 | 3.8 | 83.52 |
地区 | 正确数 | 总数 |
---|---|---|
安庆市 | 21 | 26 |
阜阳市 | 13 | 16 |
六安市 | 10 | 12 |
Table 7 Results of field verification
地区 | 正确数 | 总数 |
---|---|---|
安庆市 | 21 | 26 |
阜阳市 | 13 | 16 |
六安市 | 10 | 12 |
[1] | BUKATA R P, POZDNYAKOV D V, JEROME J H, et al., 2001. Validation of a radiometric color model applicable to optically complex water bodies[J]. Remote Sensing of Environment, 77(2): 165-172. |
[2] | CAO J X, SUN Q, ZHAO D H, et al., 2020. A critical review of the appearance of black-odorous waterbodies in China and treatment methods[J]. Journal of hazardous materials, 385: 121511. |
[3] | DUAN H T, MA R H, LOISELLE S A, et al., 2014. Optical characterization of black water blooms in eutrophic waters[J]. Science of the Total Environment, 482-483: 174-183. |
[4] | LIU M S, LI T T, WANG Z C, et al., 2022. Effect of aeration on water quality and sediment humus in rural black-odorous water[J]. Journal of Environmental Management, 320: 115867. |
[5] | SONG S K, SHON Z H, KIM Y K, et al., 2009. Characteristics of malodor pollutants and aromatic VOCs around an urban valley in Korea[J]. Environmental Monitoring and Assessment, 157(1-4): 259-275. |
[6] | WANG S L, LI J S, SHEN Q, et al., 2015. MODIS-based radiometric color extraction and classification of inland water with the forel-ule scale: A case study of lake Taihu[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(2): 907-918. |
[7] | ZHAO Y G, TU Q, YANG Y T, et al., 2022. Long-term effects of duckweed cover on the performance and microbial community of a pilot-scale waste stabilization pond[J]. Journal of Cleaner Production, 371: 133531. |
[8] | 蔡树美, 张震, 辛静, 等, 2011. 光温条件和pH对浮萍生长及磷吸收的影响[J]. 环境科学与技术, 34(6): 63-66, 75. |
CAI S M, ZHANG Z, XIN J, et al., 2011. Effects of light and temperature conditions and pH on growth and phosphorus absorption of duckweed[J]. Environmental Science and Technology, 34(6): 63-66, 75. | |
[9] | 陈侠桦, 黄荣松, 郭利利, 等, 2014. 温度对3种常见浮萍生长效应的研究[J]. 上海农业学报, 30(5): 84-89. |
CHEN X H, HUANG R S, GUO L L, et al., 2014. Effect of temperature on growth of three common duckweed species[J]. Shanghai Journal of Agricultural Sciences, 30(5): 84-89. | |
[10] | 崔艳智, 贾小梅, 黄亚捷, 等, 2022. 农村黑臭水体治理现状、问题及对策建议[J]. 中国环境管理, 14(3): 54-59. |
CUI Y Z, JIA X M, HUANG Y J, et al., 2022. Status, problems and countermeasures of black and odorous water body treatment in rural areas[J]. Chinese Environmental Management, 14(3): 54-59. | |
[11] | 董旭鑫, 赵起超, 李家国, 等, 2022. 黑臭水体遥感识别CART模型构建与应用[J]. 遥感信息, 37(5): 63-69. |
DONG X X, ZHAO Q C, LI J G, et al., 2022. Construction and application of CART model for identification of black and odorous water by remote sensing[J]. Remote Sensing Information, 37(5): 63-69. | |
[12] | 方升, 梁飞豹, 刘勇进, 2021. 统计回归模型及其优化算法综述[J]. 福州大学学报(自然科学版), 49(5): 638-654. |
FANG S, LIANG F P, LIU Y J, 2021. Overview of statistical regression models and their optimization algorithms[J]. Journal of Fuzhou University (Natural Science Edition), 49(5): 638-654. | |
[13] | 付丽, 郭雯雯, 宋开山, 等, 2022. 2020年长春市黑臭水体遥感识别研究[J]. 湿地科学, 20(4): 537-547. |
FU L, GUO W W, SONG K S, et al., 2022. Research on black and odorous water body identification by remote sensing in Changchun City in 2020[J]. Wetland Science, 20(4): 537-547. | |
[14] | 郭芳, 陈永, 王国田, 等, 2022. 我国农村生活污水处理现状、问题与发展建议[J]. 给水排水, 58(S1): 68-72. |
GUO F, CHEN Y, WANG G T, et al., 2022. Status, problems and development suggestions of rural domestic wastewater treatment in China[J]. Water supply and Drainage, 58(S1): 68-72. | |
[15] | 国家环境保护总局, 2002. 水和废水监测分析方法[M]. 第4版. 北京市: 中国环境科学出版社: 806. |
State Environmental Protection Administration, 2002. Methods for Monitoring and analysis of water and wastewater[M]. 4th Edition. Beijing: China Environmental Science Press: 806. | |
[16] |
何莎莎, 方斌, 2021. 基于栅格的安徽省人口-经济耦合关联及地形梯度差异[J]. 热带地理, 41(2): 351-363.
DOI |
HE S S, FANG B, 2021. Grid based population-economic coupling and topographic gradient difference in Anhui Province[J]. Tropical Geography, 41(2): 351-363. | |
[17] | 胡鹏, 杨庆, 杨泽凡, 等, 2019. 水体中溶解氧含量与其物理影响因素的实验研究[J]. 水利学报, 50(6): 679-686. |
HU P, YANG Q, YANG Z F, et al., 2019. Experimental study on dissolved oxygen content in water and its physical influencing factors[J]. Journal of Hydraulic Engineering, 50(6): 679-686. | |
[18] | 胡思雨, 李松, 宋广清, 等, 2024. 晋城市农村黑臭水体成因及污染因子相关性研究[J]. 给水排水, 60(2): 57-64. |
HU S Y, LI S, SONG G Q, et al., 2024. Study on the causes of black and odorous water bodies and the correlation of pollution factors in rural Jincheng[J]. Water Supply and Drainage, 60(2): 57-64. | |
[19] | 环境保护部, 2009. 水质氨氮的测定纳氏试剂分光光度法: HJ 535—2009[S]. 北京市: 中国环境科学出版社: 4. |
Ministry of Environmental Protection, 2009. Determination of ammonia nitrogen in water quality by Nessler reagent spectrophotometry: HJ 535 —2009[S]. Beijing: China Environmental Science Press: 4. | |
[20] | 环境保护部, 2009. 水质溶解氧的测定电化学探头法: HJ 506—2009[S]. 北京市: 中国建筑工业出版社: 26. |
Ministry of Environmental Protection, 2009. Determination of dissolved oxygen in water quality by electrochemical probe method: HJ 506—2009[S]. Beijing: China Architecture and Construction Press: 26. | |
[21] | 李佳琦, 李家国, 朱利, 等, 2019. 太原市黑臭水体遥感识别与地面验证[J]. 遥感学报, 23(4): 773-784. |
LI J Q, LI J G, ZHU L, et al., 2019. Remote sensing identification and ground verification of black and odorous water bodies in Taiyuan City[J]. Journal of Remote Sensing, 23(4): 773-784. | |
[22] | 李昆明, 蓝月存, 汝旋, 等, 2023. 南流江流域氨氮和总磷的污染源排放特征及水质管控成效分析[J]. 桂林理工大学学报, 43(4): 685-694. |
LI K M, LAN Y C, RU X, et al., 2023. Emission characteristics of ammonia nitrogen and total phosphorus sources and water quality control in Nanliujiang River Basin[J]. Journal of Guilin University of Technology, 43(4): 685-694. | |
[23] | 李玲玲, 李云梅, 吕恒, 等, 2020. 基于决策树的城市黑臭水体遥感分级[J]. 环境科学, 41(11): 5060-5072. |
LI L L, LI Y M, LÜ H, et al., 2020. Classification of urban black and odorous water by remote sensing based on decision tree[J]. Environmental Science, 41(11): 5060-5072. | |
[24] | 卢信, 冯紫艳, 商景阁, 等, 2012. 不同有机基质诱发的水体黑臭及主要致臭物 (VOSCs) 产生机制研究[J]. 环境科学, 33(9): 3152-3159. |
LU X, FENG Z Y, SHANG J G, et al., 2012. Study on the production mechanism of black odor and Main odor compounds (VOSCs) induced by different organic substrates[J]. Environmental Science, 33(9): 3152-3159. | |
[25] |
邵琥翔, 丁凤, 杨健, 等, 2022. 基于深度学习的黑臭水体遥感信息提取模型[J]. 长江科学院院报, 39(4): 156-162.
DOI |
SHAO Y X, DING F, YANG J, et al., 2022. Deep learning-based remote sensing information extraction model for black and odorous water bodies[J]. Journal of Yangtze River Scientific Research Institute, 39(4): 156-162. | |
[26] | 生态环境部, 2023. 农村黑臭水体治理工作指南[EB/OL]. [2023-12-26]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202309/t202309081040447.html. |
Ministry of Ecology and Environment, 2023. Guidelines for treatment of Black and odorous water bodies in rural areas[EB/OL]. [2023-11-26]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202309/t20230908_1040447.html. | |
[27] | 王莉, 姜惠源, 李亭亭, 等, 2021. 河南农村黑臭水体及影响因素调查与分析[J]. 中国农村水利水电 (3): 1-5, 12. |
WANG L, JIANG H Y, LI T T, et al., 2021. Investigation and analysis of black and odorous water bodies and influencing factors in rural areas of Henan Province[J]. China Rural Water Resources and Hydropower (3): 1-5, 12. | |
[28] | 王莉, 刘萌硕, 李亭亭, 等, 2023. 农村黑臭水体评价方法研究[J]. 中国给水排水, 39(3): 94-99. |
WANG L, LIU M S, LI T T, et al., 2023. Research on evaluation methods of black and odorous water bodies in rural areas[J]. China Water Supply and Drainage, 39(3): 94-99. | |
[29] | 王顺永, 李玉成, 张学胜, 等, 2022. 新型磁性絮凝剂的制备及其在农村黑臭水体治理中的应用[J]. 生物学杂志, 39(2): 84-89. |
WANG S Y, LI Y C, ZHANG X S, et al., 2022. Preparation of a new magnetic flocculant and its application in the treatment of black and odorous water bodies in rural areas[J]. Chinese Journal of Biology, 39(2): 84-89. | |
[30] | 温爽, 王桥, 李云梅, 等, 2018. 基于高分影像的城市黑臭水体遥感识别: 以南京为例[J]. 环境科学, 39(1): 57-67. |
WEN S, WANG Q, LI Y M, et al., 2018. Urban black and odorous water body recognition by remote sensing based on high-resolution images: a case study of Nanjing[J]. Environmental Science, 39(1): 57-67. | |
[31] | 吴颖琳, 杨愿愿, 熊倩, 等, 2022. 浮萍在水体污染修复中的应用研究进展[J]. 生态毒理学报, 17(2): 74-85. |
WU Y L, YANG Y Y, XIONG Q, et al., 2022. Application of duckweed in remediation of water pollution[J]. Journal of Ecotoxicology, 17(2): 74-85. | |
[32] | 谢朦, 张飞, 章莹颖, 等, 2016. 3种浮萍对富营养化水体的修复[J]. 环境工程学报, 10(5): 2447-2453. |
XIE M, ZHANG F, ZHANG Y Y, et al., 2016. Remediation of eutrophic water by three duckweed species[J]. Chinese Journal of Environmental Engineering, 10(5): 2447-2453. | |
[33] | 杨晶晶, 赵旭耀, 李高洁, 等, 2021. 浮萍的研究及应用[J]. 科学通报, 66(9): 1026-1045. |
YANG J J, ZHAO X Y, LI G J, et al., 2021. Research and application of duckweed[J]. Chinese Science Bulletin, 66(9): 1026-1045. | |
[34] | 姚月, 申茜, 朱利, 等, 2019. 高分二号的沈阳市黑臭水体遥感识别[J]. 遥感学报, 23(2): 230-242. |
YAO Y, SHEN Q, ZHU L, et al., 2019. Identification of black and odorous water bodies by remote sensing in Gaofen-2, Shenyang[J]. Journal of Remote Sensing, 23(2): 230-242. | |
[35] | 张兵, 李俊生, 申茜, 等, 2021. 长时序大范围内陆水体光学遥感研究进展[J]. 遥感学报, 25(1): 37-52. |
ZHANG B, LI J S, SHEN Q, et al., 2021. Research progress of optical remote sensing in long time series and large scale inland water bodies[J]. Journal of Remote Sensing, 25(1): 37-52. | |
[36] |
张淳, 葛毅, 任越, 等, 2023. 基于优化的DeeplabV3+网络和高分影像分割浮萍型农村黑臭水体[J]. 遥感技术与应用, 38(6): 1433-1444.
DOI |
ZHANG C, GE Y, REN Y, et al., 2023. Segmentation of duckweed black and odorous water bodies in rural areas based on optimized DeeplabV3+ network and high-resolution images[J]. Remote Sensing technology and Application, 38(6): 1433-1444. | |
[37] | 张飞剑, 彭云清, 章茹, 2022. 潮汐流人工湿地处理南方农村黑臭水体实验研究[J]. 水处理技术, 48(4): 114-118, 123. |
ZHANG F J, PENG Y Q, ZHANG R, 2022. Experimental study on tidal flow constructed wetland treatment of black and odorous water bodies in southern rural areas[J]. Water Treatment Technology, 48(4): 114-118, 123. | |
[38] |
赵少华, 刘思含, 刘芹芹, 等, 2019. 中国城镇生态环境遥感监测现状及发展趋势[J]. 生态环境学报, 28(6): 1261-1271.
DOI |
ZHAO S H, LIU S H, LIU Q Q, et al., 2019. Progress of urban ecological environment monitoring by remote sensing in China[J]. Ecology and Environmental Sciences, 28(6): 1261-1271. | |
[39] | 中共中央办公厅国务院办公厅, 2021. 农村人居环境整治提升五年行动方案(2021-2025年) [EB/OL]. [2023-11-28]. https://www.gov.cn/zhengce/zhengceku/202402/content_6931541.htm. |
General Office of the CPC Central Committee, General Office of the State Council. 2021. Five-year Action Plan for Improving Rural Human Living Environment (2021-2025)[EB/OL]. [2023-11-28]. https://www.gov.cn/zhengce/zhengceku/202402/content_6931541.htm. | |
[40] | 周培亮, 熊倩, 吴颖琳, 等, 2022. 浮萍在PPCPs修复中的应用与机理研究[J]. 生态毒理学报, 17(5): 128-138. |
ZHOU P L, XIONG Q, WU Y L, et al., 2022. Application and mechanism of duckweed in PPCPs repair[J]. Journal of Ecotoxicology, 17(5): 128-138. | |
[41] | 朱韻洁, 李国文, 张列宇, 等, 2018. 黑臭水体治理思路与技术措施[J]. 环境工程技术学报, 8(5): 495-501. |
ZHU Y J, LI G W, ZHANG L Y, et al., 2018. Ideas and technical measures for treating black and odorous water bodies[J]. Journal of Environmental Engineering and Technology, 8(5): 495-501. | |
[42] | 邹霞, 2023. 水力条件影响下的福山水道富营养化分析[J]. 环境生态学, 5(2): 13-22. |
ZOU X, 2023. Analysis of eutrophication of Fushan Waterway under hydraulic conditions[J]. Environmental Ecology, 5(2): 13-22. |
[1] | XU Jiale, YANG Xingchuan, ZHAO Wenji, YANG Zhiqiang, ZHONG Yixue, SHI Leyan, MA Pengfei. Evolution Characteristics of Vegetation Coverage in Central and Western Inner Mongolia under the Background of Climate Change [J]. Ecology and Environment, 2024, 33(7): 1008-1018. |
[2] | HUANG Qian, ZHU Shiying, LI Tianshun, LI Mingyan, SUO Nancuo, PU Bu. Distribution Pattern of Soil Protozoa Community along Altitude and Its Correlation with Environmental Factors in Rating National Forest Park in Tibet, China [J]. Ecology and Environment, 2024, 33(4): 499-508. |
[3] | LI Xia, CHEN Yonghao, CHEN Zhe, ZHANG Guozhuang, TANG Mengya. Analysis of Spatio-temporal Changes and Driving Vegetation NDVI in Coastal Areas of China [J]. Ecology and Environment, 2024, 33(2): 180-191. |
[4] | MA Yuan, TIAN Lulu, LÜ Jie, LIU Pei, ZHANG Xu, LI Eryang, ZHANG Qinghang. Soil Microbial Communities and Influencing Factors of Picea schrenkiana Forest on the Northern Slope of Tianshan Mountains [J]. Ecology and Environment, 2024, 33(1): 1-11. |
[5] | KOU Zhu, QING Chun, YUAN Changguo, LI Ping. Diversity and Distribution of Sulfur Oxidizing Bacteria in Hot Springs of Northeast Tibet, China [J]. Ecology and Environment, 2023, 32(5): 989-1000. |
[6] | WU Chenyu, XU Fanfan, WEI Shibo, FAN Jingjing, LIU Guanpeng, WANG Kun. Study on Response of Surface Vegetation Cover to Climate Change in Weihe River Basin [J]. Ecology and Environment, 2023, 32(5): 835-844. |
[7] | WANG Yun, ZHENG Xilai, CAO Min, LI Lei, SONG Xiaoran, LIN Xiaolei, GUO Kai. Study on Denitrification Performance and Control Factors in Brackish-Freshwater Transition Zone of Coastal Aquifer [J]. Ecology and Environment, 2023, 32(5): 980-988. |
[8] | JIANG Yongwei, DING Zhenjun, YUAN Junbin, ZHANG Zheng, LI Yang, WEN Qingchun, WANG Yeyao, JIN Xiaowei. Study on Benthic Macroinvertebrates Community Structure and Water Quality Evaluation in Main Rivers of Liaoning Province [J]. Ecology and Environment, 2023, 32(5): 969-979. |
[9] | LIU Ziwei, GE Jiwen, WANG Yuehuan, YANG Shiyu, YAO Dong, XIE Jinlin. Variation Pattern and Influential Factors of Methane Flux in the Dajiuhu Peatland [J]. Ecology and Environment, 2023, 32(4): 706-714. |
[10] | WANG Xinyu, GAO Dengzhou, LIU Bolin, WANG Bin, ZHENG Yanling, LI Xiaofei, HOU Lijun. The Tidal-cycle Variation and Influencing Factors of Dark Carbon Fixation Process in the Yangtze Estuary [J]. Ecology and Environment, 2023, 32(4): 733-743. |
[11] | WANG Jiali, FENG Jingke, YANG Yuanzheng, ZU Jiaxing, CAI Wenhua, YANG Jian. Research on Spatial Relations between Impervious Surfaces and the Urban Thermal Environment in the Central Metropolitan Area of Nanning City [J]. Ecology and Environment, 2023, 32(3): 525-534. |
[12] | LI Wenjing, HUANG Yuequn, HUANG Liangliang, LI Xiangtong, SU Qiongyuan, SUN Yangyan. Distribution Characteristics and Risk Assessment of Microplastics in Beibu Gulf Marine Fish [J]. Ecology and Environment, 2023, 32(11): 1913-1921. |
[13] | ZHOU Jiacheng, SONG Zhibin, MIAO Peng, TAN Lu, TANG Tao. Differences in Benthic Macroinvertebrate Communities and Their Driving Forces between the Edge and Center Positions of the Liujiang River Network [J]. Ecology and Environment, 2023, 32(10): 1794-1801. |
[14] | JIANG Nihao, ZHANG Shihao, ZHANG Shihan. Interspecific Associations and Environmental Interpretation of the Dominant Species of the Communities Invaded by Ageratina adenophora in Ailao Mountains [J]. Ecology and Environment, 2022, 31(7): 1370-1382. |
[15] | CHEN Wenyu, XIA Lihua, XU Guoliang, YU Shiqin, CHEN Hang, CHEN Jinfeng. Dynamic Variation of NDVI and Its Influencing Factors in the Pearl River Basin from 2000 to 2020 [J]. Ecology and Environment, 2022, 31(7): 1306-1316. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn