Ecology and Environment ›› 2023, Vol. 32 ›› Issue (7): 1301-1312.DOI: 10.16258/j.cnki.1674-5906.2023.07.013
• Research Articles • Previous Articles Next Articles
LI Zhimei(), AN Ya, LI Mei, WANG Shiping, QIN Haoli*(
)
Received:
2023-04-11
Online:
2023-07-18
Published:
2023-09-27
Contact:
QIN Haoli
通讯作者:
秦好丽
作者简介:
李治梅(1995年生),女,硕士研究生,主要从事土壤重金属钝化材料。E-mail: 1639129523@qq.com
基金资助:
CLC Number:
LI Zhimei, AN Ya, LI Mei, WANG Shiping, QIN Haoli. Study on Passivation Behavior for Cadmium with Sulfhydryl/iron-based Functionalized Montmorillonite in Soil[J]. Ecology and Environment, 2023, 32(7): 1301-1312.
李治梅, 安娅, 李梅, 王室苹, 秦好丽. 巯基/铁基功能化蒙脱土对土壤镉的钝化行为研究[J]. 生态环境学报, 2023, 32(7): 1301-1312.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2023.07.013
提取步骤 | 提取试剂 | 提取形态 |
---|---|---|
1 | 氯化镁 (1 mol·L-1) | 可交换态 |
2 | 乙酸钠和醋酸 (1 mol·L-1) | 碳酸盐结合态 |
3 | 盐酸羟胺 (0.04 mol·L-1) 和20%醋酸 | 铁锰氧化结合态 |
4 | 硝酸 (0.02 mol·L-1) 和30%过氧化氢 | 有机结合态 |
5 | 硝酸、过氧化氢和氢氟酸 | 残渣态 |
Table 1 Tessier process for extraction of heavy metals
提取步骤 | 提取试剂 | 提取形态 |
---|---|---|
1 | 氯化镁 (1 mol·L-1) | 可交换态 |
2 | 乙酸钠和醋酸 (1 mol·L-1) | 碳酸盐结合态 |
3 | 盐酸羟胺 (0.04 mol·L-1) 和20%醋酸 | 铁锰氧化结合态 |
4 | 硝酸 (0.02 mol·L-1) 和30%过氧化氢 | 有机结合态 |
5 | 硝酸、过氧化氢和氢氟酸 | 残渣态 |
样品 | 比表面积/(m2·g-1) | 平均孔径/nm | 总孔体积/(cm3·g-1) |
---|---|---|---|
Mont | 46.6 | 6.96 | 0.11 |
Fe-Mont | 71.5 | 7.67 | 0.14 |
SH-Fe-Mont | 169 | 4.95 | 0.24 |
Table 2 The surface area and pore size distribution of different passivators
样品 | 比表面积/(m2·g-1) | 平均孔径/nm | 总孔体积/(cm3·g-1) |
---|---|---|---|
Mont | 46.6 | 6.96 | 0.11 |
Fe-Mont | 71.5 | 7.67 | 0.14 |
SH-Fe-Mont | 169 | 4.95 | 0.24 |
样品 | 温度/ K | Langmuir | Freundlich | |||||
---|---|---|---|---|---|---|---|---|
qm/ (mg·g-1) | KL/ (L·mg-1) | r2 | KF/ (L·g-1) | n | r2 | |||
Mont | 293 | 0.97 | 0.069 | 0.980 | 0.167 | 0.362 | 0.988 | |
303 | 1.18 | 0.112 | 0.996 | 0.278 | 0.305 | 0.939 | ||
313 | 1.56 | 0.088 | 0.995 | 0.314 | 0.336 | 0.956 | ||
323 | 2.05 | 0.071 | 0.997 | 0.351 | 0.363 | 0.952 | ||
Fe-Mont | 293 | 37.7 | 0.003 | 0.990 | 0.806 | 0.516 | 0.983 | |
303 | 42.7 | 0.003 | 0.996 | 1.422 | 0.465 | 0.970 | ||
313 | 58.1 | 0.003 | 0.992 | 1.230 | 0.511 | 0.972 | ||
323 | 61.6 | 0.004 | 0.998 | 2.021 | 0.468 | 0.963 | ||
SH-Fe-Mont | 293 | 38.8 | 0.003 | 0.992 | 1.088 | 0.484 | 0.986 | |
303 | 55.3 | 0.003 | 0.991 | 1.297 | 0.505 | 0.971 | ||
313 | 58.2 | 0.004 | 0.993 | 2.017 | 0.460 | 0.956 | ||
323 | 68.5 | 0.004 | 0.992 | 2.239 | 0.468 | 0.947 |
Table 3 Adsorption isotherm parameters of different passivators on Cd(II)
样品 | 温度/ K | Langmuir | Freundlich | |||||
---|---|---|---|---|---|---|---|---|
qm/ (mg·g-1) | KL/ (L·mg-1) | r2 | KF/ (L·g-1) | n | r2 | |||
Mont | 293 | 0.97 | 0.069 | 0.980 | 0.167 | 0.362 | 0.988 | |
303 | 1.18 | 0.112 | 0.996 | 0.278 | 0.305 | 0.939 | ||
313 | 1.56 | 0.088 | 0.995 | 0.314 | 0.336 | 0.956 | ||
323 | 2.05 | 0.071 | 0.997 | 0.351 | 0.363 | 0.952 | ||
Fe-Mont | 293 | 37.7 | 0.003 | 0.990 | 0.806 | 0.516 | 0.983 | |
303 | 42.7 | 0.003 | 0.996 | 1.422 | 0.465 | 0.970 | ||
313 | 58.1 | 0.003 | 0.992 | 1.230 | 0.511 | 0.972 | ||
323 | 61.6 | 0.004 | 0.998 | 2.021 | 0.468 | 0.963 | ||
SH-Fe-Mont | 293 | 38.8 | 0.003 | 0.992 | 1.088 | 0.484 | 0.986 | |
303 | 55.3 | 0.003 | 0.991 | 1.297 | 0.505 | 0.971 | ||
313 | 58.2 | 0.004 | 0.993 | 2.017 | 0.460 | 0.956 | ||
323 | 68.5 | 0.004 | 0.992 | 2.239 | 0.468 | 0.947 |
钝化剂 | 温度/K | pH | 时间/h | qe/(mg·g-1) | 参考文献 |
---|---|---|---|---|---|
巯基改性海泡石 | 298 | 8.0 | 24 | 8.87 | 符云聪等, |
十二烷基二甲基 甜菜碱改性蛭石 | 298 | 5.5 | 4 | 19.72 | Yang et al., |
巯基改性凹凸棒石 | 298 | 6.5 | 2 | 22.71 | Fu et al., |
羟基铁柱撑蒙脱石 | 298 | 5.0 | - | 25.7 | Wu et al., |
生物炭负载 纳米级零价铁 | 298 | 5.5 | 2 | 33.8 | Yang et al., |
两性表面活性剂 活化蒙脱土 | 303 | 5.0 | - | 41.73 | Liu et al., |
石墨烯类生物炭 负载纳米零价铁 | 298 | 7.0 | 2 | 46.4 | Liu et al., |
Table 4 Comparison of other reported passivators on Cd(II) adsorption capacity
钝化剂 | 温度/K | pH | 时间/h | qe/(mg·g-1) | 参考文献 |
---|---|---|---|---|---|
巯基改性海泡石 | 298 | 8.0 | 24 | 8.87 | 符云聪等, |
十二烷基二甲基 甜菜碱改性蛭石 | 298 | 5.5 | 4 | 19.72 | Yang et al., |
巯基改性凹凸棒石 | 298 | 6.5 | 2 | 22.71 | Fu et al., |
羟基铁柱撑蒙脱石 | 298 | 5.0 | - | 25.7 | Wu et al., |
生物炭负载 纳米级零价铁 | 298 | 5.5 | 2 | 33.8 | Yang et al., |
两性表面活性剂 活化蒙脱土 | 303 | 5.0 | - | 41.73 | Liu et al., |
石墨烯类生物炭 负载纳米零价铁 | 298 | 7.0 | 2 | 46.4 | Liu et al., |
样品 | 浓度/ (mg·L-1) | 伪一级动力学 | 伪二级动力学 | |||||
---|---|---|---|---|---|---|---|---|
qe/(mg·g-1) | k1 | r2 | qe/(mg·g-1) | k2 | r2 | |||
Mont | 20 | 0.72 | 0.092 | 0.958 | 0.79 | 0.171 | 0.988 | |
50 | 0.92 | 0.092 | 0.965 | 1.03 | 0.129 | 0.992 | ||
100 | 1.03 | 0.092 | 0.940 | 1.15 | 0.118 | 0.981 | ||
Fe-Mont | 20 | 3.19 | 0.221 | 0.984 | 3.36 | 0.125 | 0.998 | |
50 | 7.27 | 0.252 | 0.983 | 7.64 | 0.066 | 0.999 | ||
100 | 8.94 | 0.236 | 0.977 | 9.45 | 0.046 | 0.997 | ||
SH-Fe-Mont | 20 | 3.94 | 0.185 | 0.982 | 4.18 | 0.082 | 0.996 | |
50 | 9.96 | 0.548 | 0.998 | 10.1 | 0.238 | 0.999 | ||
100 | 12.9 | 0.298 | 0.984 | 13.4 | 0.047 | 0.998 |
Table 5 Adsorption kinetic parameters of different passivators on Cd(II)
样品 | 浓度/ (mg·L-1) | 伪一级动力学 | 伪二级动力学 | |||||
---|---|---|---|---|---|---|---|---|
qe/(mg·g-1) | k1 | r2 | qe/(mg·g-1) | k2 | r2 | |||
Mont | 20 | 0.72 | 0.092 | 0.958 | 0.79 | 0.171 | 0.988 | |
50 | 0.92 | 0.092 | 0.965 | 1.03 | 0.129 | 0.992 | ||
100 | 1.03 | 0.092 | 0.940 | 1.15 | 0.118 | 0.981 | ||
Fe-Mont | 20 | 3.19 | 0.221 | 0.984 | 3.36 | 0.125 | 0.998 | |
50 | 7.27 | 0.252 | 0.983 | 7.64 | 0.066 | 0.999 | ||
100 | 8.94 | 0.236 | 0.977 | 9.45 | 0.046 | 0.997 | ||
SH-Fe-Mont | 20 | 3.94 | 0.185 | 0.982 | 4.18 | 0.082 | 0.996 | |
50 | 9.96 | 0.548 | 0.998 | 10.1 | 0.238 | 0.999 | ||
100 | 12.9 | 0.298 | 0.984 | 13.4 | 0.047 | 0.998 |
[1] |
CHEN D M, CHEN J, LUAN X L, et al., 2011. Characterization of anion-cationic surfactants modified montmorillonite and its application for the removal of methyl orange[J]. Chemical Engineering Journal, 171(3): 1150-1158.
DOI URL |
[2] |
CHEN M, XU P, ZENG G M, et al., 2015. Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: Applications, microbes and future research needs[J]. Biotechnology Advances, 33(6): 745-755.
DOI URL |
[3] |
CHEN Y N, LIU Y H, LI Y P, et al., 2020. Functional wastepaper-montmorillonite composite aerogel for Cd2+ adsorption[J]. Environmental Science and Pollution Research, 27: 38644-38653.
DOI |
[4] |
CHOUDARY B M, SHOBHA RANI S, NARENDER N, 1993. Asymmetric oxidation of sulfides to sulfoxides by chiral titanium pillared montmorillonite catalyst[J]. Catalysis Letters, 19: 299-307.
DOI URL |
[5] |
CUI H, QIAN Y, LI Q, et al., 2012. Adsorption of aqueous Hg (II) by a polyaniline/attapulgite composite[J]. Chemical Engineering Journal, 211-212: 216-223.
DOI URL |
[6] |
DO NASCIMENTO F H, DE SOUZA COSTA D M, MASINI J C, 2016. Evaluation of thiol-modified vermiculite for removal of Hg (II) from aqueous solutions[J]. Applied Clay Science, 124-125: 227-235.
DOI URL |
[7] |
DU H H, CHEN W L, CAI P, et al., 2016. Cd (II) sorption on montmorillonite-humic acid-bacteria composites[J]. Scientific Reports, 6(1): 19499.
DOI |
[8] |
ELSHERBINY A S, EL-HEFNAWY M E, GEMEAY A H, 2018. Adsorption efficiency of polyaspartate-montmorillonite composite towards the removal of Pb (II) and Cd (II) from aqueous solution[J]. Journal of Polymers and the Environment, 26: 411-422.
DOI URL |
[9] | FANG X, BAO P F, XU C Y, et al., 2000. Preparation and hot stability pillared montmorillonite by Fe-Al, Cr-Al hydroxyl[J]. Geology of Zhejiang, 16(2): 66-70. |
[10] |
FU C, ZHU X P, DONG X, et al., 2021. Study of adsorption property and mechanism of lead (II) and cadmium (II) onto sulfhydryl modified attapulgite[J]. Arabian Journal of Chemistry, 14(2): 102960.
DOI URL |
[11] |
GIRI D D, JHA J M, TIWARI A K, et al., 2021. Java plum and amaltash seed biomass based bio-adsorbents for synthetic wastewater treatment[J]. Environmental Pollution, 280: 116890.
DOI URL |
[12] |
GUIMARÃES A DE M F, CIMINELLI V S T, VASCONCELOS W L, 2009. Smectite organofunctionalized with thiol groups for adsorption of heavy metal ions[J]. Applied Clay Science, 42(3-4): 410-414.
DOI URL |
[13] |
HADJLTAIEF H B, SDIRI A, LTAIEF W, et al., 2018. Efficient removal of cadmium and 2-chlorophenol in aqueous systems by natural clay: Adsorption and photo-Fenton degradation processes[J]. Comptes Rendus Chimie, 21(3-4): 253-262.
DOI URL |
[14] | HAN J, XU Y M, LIANG X F, et al., 2014. Sorption stability and mechanism exploration of palygorskite as immobilization agent for Cd in polluted soil[J]. Water, Air, & Soil Pollution, 225(10): 1-13. |
[15] |
HUA R, LI Z K, 2014. Sulfhydryl functionalized hydrogel with magnetism: Synthesis, characterization, and adsorption behavior study for heavy metal removal[J]. Chemical Engineering Journal, 249: 189-200.
DOI URL |
[16] | HUSIN N F D C, HARUN F W, JUMAL J, et al., 2015. Preparation and Physicochemical Properties of Metal Complexes Immobilized on Montmorillonite K10 (MMT K10)[J]. Journal of Industrial Engineering Research, 1(5): 8-13. |
[17] |
KAHKHA M R R, KAYKHAII M, KAHKHA B R, et al., 2020. Simultaneous removal of heavy metals from wastewater using modified sodium montmorillonite nanoclay[J]. Analytical Sciences, 36(9): 1039-1043.
DOI PMID |
[18] |
LAN J R, ZHANG S S, DONG Y Q, et al., 2021. Stabilization and passivation of multiple heavy metals in soil facilitating by pinecone-based biochar: Mechanisms and microbial community evolution[J]. Journal of Hazardous Materials, 420: 126588.
DOI URL |
[19] |
LI S Z, WU P X, 2010. Characterization of sodium dodecyl sulfate modified iron pillared montmorillonite and its application for the removal of aqueous Cu (II) and Co (II)[J]. Journal of Hazardous Materials, 173(1-3): 62-70.
DOI URL |
[20] |
LIANG X F, LI N, HE L Z, et al., 2019. Inhibition of Cd accumulation in winter wheat (Triticum aestivum L.) grown in alkaline soil using mercapto-modified attapulgite[J]. Science of the Total Environment, 688: 818-826.
DOI URL |
[21] |
LIANG X F, QIN X, HUANG Q Q, et al., 2017. Mercapto functionalized sepiolite: A novel and efficient immobilization agent for cadmium polluted soil[J]. RSC Advances, 7(63): 39955-39961.
DOI URL |
[22] |
LIU C M, WU P X, ZHU Y J, et al., 2016. Simultaneous adsorption of Cd2+ and BPA on amphoteric surfactant activated montmorillonite[J]. Chemosphere, 144: 1026-1032.
DOI URL |
[23] |
LIU K, LI F B, CUI J H, et al., 2020. Simultaneous removal of Cd(II) and As(III) by graphene-like biochar-supported zero-valent iron from irrigation waters under aerobic conditions: Synergistic effects and mechanisms[J]. Journal of Hazardous Materials, 395: 122623.
DOI URL |
[24] |
LOMBI E, HAMON R E, MCGRATH S P, et al., 2003. Lability of Cd, Cu, and Zn in polluted soils treated with lime, beringite, and red mud and identification of a non-labile colloidal fraction of metals using isotopic techniques[J]. Environmental Science & Technology, 37(5): 979-984.
DOI URL |
[25] |
MIAO Y H, PENG W J, CAO Y J, et al., 2021. Facile preparation of sulfhydryl modified montmorillonite nanosheets hydrogel and its enhancement for Pb (II) adsorption[J]. Chemosphere, 280, 130727.
DOI URL |
[26] |
MITTAL A, AHMAD R, HASAN I, 2016. Biosorption of Pb2+, Ni2+ and Cu2+ ions from aqueous solutions by L-cystein-modified montmorillonite-immobilized alginate nanocomposite[J]. Desalination and Water Treatment, 57(38): 17790-17807.
DOI URL |
[27] |
ORDINARTSEV D, PECHISHCHEVA N, ESTEMIROVA S K, et al., 2022. Removal of Cr(VI) from wastewater by modified montmorillonite in combination with zero-valent iron[J]. Hydrometallurgy, 208: 105813.
DOI URL |
[28] |
PAN X H, FU L X, WANG H, et al., 2021. Synthesis of novel sulfydryl-functionalized chelating adsorbent and its application for selective adsorption of Ag(I) under high acid[J]. Separation and Purification Technology, 271: 118778.
DOI URL |
[29] |
QU C C, MA M K, CHEN W L, et al., 2018. Modeling of Cd adsorption to goethite-bacteria composites[J]. Chemosphere, 193: 943-950.
DOI PMID |
[30] |
TAN J Q, LI Y T, XIA L, et al., 2022. Enhancement of Cd(II) Adsorption on Microalgae-Montmorillonite Composite[J]. Arabian Journal for Science and Engineering, 47(6): 6715-6727.
DOI |
[31] |
TESSIER A, CAMPBELL P G, BISSON M, 1979. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 51(7): 844-851.
DOI URL |
[32] |
TRAN L, WU P X, ZHU Y J, et al., 2015. Comparative study of Hg (II) adsorption by thiol-and hydroxyl-containing bifunctional montmorillonite and vermiculite[J]. Applied Surface Science, 356: 91-101.
DOI URL |
[33] |
WANG L W, LI X R, TSANG D C, et al., 2020. Green remediation of Cd and Hg contaminated soil using humic acid modified montmorillonite: Immobilization performance under accelerated ageing conditions[J]. Journal of Hazardous Materials, 387: 122005.
DOI URL |
[34] |
WANG Y, HE T R, YIN D L, et al., 2020. Modified clay mineral: A method for the remediation of the mercury-polluted paddy soil[J]. Ecotoxicology and Environmental Safety, 204: 111121.
DOI URL |
[35] | WANG Z L, CHEN Y F, ZHANG L Y, et al., 2020. Step-scheme CdS/TiO2 nanocomposite hollow microsphere with enhanced photocatalytic CO2 reduction activity[J]. Journal of Materials Science & Technology, 56: 143-150. |
[36] |
WU P X, WU W M, LI S Z, et al., 2009. Removal of Cd2+ from aqueous solution by adsorption using Fe-montmorillonite[J]. Journal of Hazardous Materials, 169(1-3): 824-830.
DOI URL |
[37] |
WU P X, ZHANG Q, DAI Y P, et al., 2011. Adsorption of Cu(II), Cd(II) and Cr(III) ions from aqueous solutions on humic acid modified Ca-montmorillonite[J]. Geoderma, 164(3-4): 215-219.
DOI URL |
[38] |
XIE S, WANG L, XU Y M, et al., 2020. Performance and mechanisms of immobilization remediation for Cd contaminated water and soil by hydroxy ferric combined acid-base modified sepiolite (HyFe/ABsep)[J]. Science of the Total Environment, 740: 140009.
DOI URL |
[39] |
YANG S S, HUANG Z Y, Li C Q, et al., 2020. Individual and simultaneous adsorption of tetracycline and cadmium by dodecyl dimethyl betaine modified vermiculite[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 602(11): 125171.
DOI URL |
[40] |
YANG D, WANG L, LI Z T, et al., 2020. Simultaneous adsorption of Cd(II) and As(III) by a novel biochar-supported nanoscale zero-valent iron in aqueous systems[J]. Science of the Total Environment 708: 134823.
DOI URL |
[41] |
ZENG H H, WANG L, ZHANG D, et al., 2019. Amido-functionalized carboxymethyl chitosan/montmorillonite composite for highly efficient and cost-effective mercury removal from aqueous solution[J]. Journal of Colloid and Interface Science, 554: 479-487.
DOI PMID |
[42] |
ZHAO S, FENG C H, HUANG X N, et al., 2012. Role of uniform pore structure and high positive charges in the arsenate adsorption performance of Al13-modified montmorillonite[J]. Journal of Hazardous Materials, 203-204: 317-325.
DOI PMID |
[43] |
ZHU S, XIA M Z, CHU Y T, et al., 2019. Adsorption and desorption of Pb(II) on l-lysine modified montmorillonite and the simulation of interlayer structure[J]. Applied Clay Science, 169: 40-47.
DOI URL |
[44] |
ZOTIADIS V, ARGYRAKI A, THEOLOGOU E, 2012. Pilot-scale application of attapulgitic clay for stabilization of toxic elements in contaminated soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 138(5): 633-637.
DOI URL |
[45] | 曹心德, 魏晓欣, 代革联, 等, 2011. 土壤重金属复合污染及其化学钝化修复技术研究进展[J]. 环境工程学报, 5(7): 1441-1453. |
CAO X D, WEI X X, DAI G L, et al., 2011. Combined pollution of multiple heavy metals and their chemical immobilization in contaminated soils: A review[J]. Chinese Journal of Environmental Engineering, 5(7): 1441-1453. | |
[46] | 杜全洪, 张延明, 邢旭鹏, 等, 2022. 钝化石灰的研发与应用[J]. 河北冶金 (9): 43-46. |
DU Q H, ZHANG Y M, XING X P, et al., 2022. Development and application of passivated lime[J]. Hebei Metallurgy (9): 43-46. | |
[47] | 方旋, 鲍佩芳, 徐传云, 等, 2000. 羟基Fe-Al, Cr-Al柱撑蒙脱石的制备及热稳定性研究[J]. 浙江地质, 16(2): 66-70. |
FANG X, BAO P F, XU C Y, et al., 2000. Preparation and hot stability pillared montmorillonite by Fe-Al, Cr-Al hydroxyl[J]. Geology of Zhejiang, 16(2): 66-70. | |
[48] | 符云聪, 赵瑰施, 张义, 等, 2018. 巯基改性海泡石的制备及其吸附除镉性能[J]. 净水技术, 37(8): 72-77. |
FU Y C, ZHAO G S, ZHANG Y, et al., 2018. Preparation of sulphydryl modified sepiolite and adsorption property for cadmium removal[J]. Water Purification Technology, 37(8): 72-77. | |
[49] | 郝红英, 何孟常, 林春野, 2007. 采用XPS研究镉在蒙脱石表面的吸附机理[J]. 环境化学, 26(6): 798-800. |
HAO H Y, HE M C, LIN C Y, 2007. An xps study of the adsorption m echan ism of cadm ium on montm or illonite[J]. Environmental Chemistry, 26(6): 798-800. | |
[50] | 李丽, 刘中, 宁阳, 等, 2017. 不同类型粘土矿物对镉吸附与解吸行为的研究[J]. 山西农业大学学报: 自然科学版, 37(1): 60-66. |
LI L, LIU Z, NING Y, et al., 2017. Study on cadmium adsorption-desorption behavior of different clay minerals[J]. Journal of Shanxi Agricultural University (Natural Science Edition), 37(1): 60-66. | |
[51] | 李平, 王兴祥, 郎漫, 等, 2012. 改良剂对Cu、Cd污染土壤重金属形态转化的影响[J]. 中国环境科学, 32(7): 1241-1249. |
LI P, WANG X X, LANG M, et al., 2012. Effects of amendments on the fraction transform of heavy metals in soil contaminated by copper and cadmium[J]. China Environmental Science, 32(7): 1241-1249. | |
[52] | 梁亚琴, 张淑萍, 李慧, 等, 2018. 改性蒙脱土去除水中重金属离子研究新进展[J]. 化工进展, 37(8): 3179-3187. |
LIANG Y Q, ZHANG S P, LI H, et al., 2018. Progress in development of modified montmorillonite for adsorption of heavy metal ions[J]. Chemical Industry and Engineering Progress, 37(8): 3179-3187. | |
[53] | 孙长顺, 金奇庭, 秦莉红, 等, 2007. EDTA络合铜在无机柱撑膨润土上的吸附研究[J]. 环境工程学报, 1(9): 131-135. |
SUN C S, JIN Q T, QIN L H, et al., 2007. Study on adsorption of Cu(Ⅱ) onto pillared bentonites in the presence of EDTA[J]. Chinese Journal of Environmental Engineering, 1(9): 131-135. | |
[54] | 陶玲, 仝云龙, 余方可, 等, 2022. 碱改性凹凸棒石对土壤中镉化学形态及环境风险的影响[J]. 岩矿测试, 41(1): 109-119. |
TAO L, TONG Y L, YU F K, et al., 2022. Chemical speciation and environmental risk of Cd in soil stabilized with alkali-modified attapulgite[J]. Rock and Mineral Analysis, 41(1): 109-119. | |
[55] | 王乐杭, 俞栋, 王玉婷, 等, 2021. 重金属污染土壤修复技术及其修复实践[J]. 资源节约与环保 (4): 46-47. |
WANG L H, YU D, WANG Y T, et al., 2021. Remediation technology of heavy metal contaminated Soil and its remediation practice[J]. Resources Economization & Environmental Protection (4): 46-47. | |
[56] | 王学锋, 尚菲, 马鑫, 等, 2013a. pH和腐植酸对Cd, Cr在土壤中形态分布的影响[J]. 河南师范大学学报: 自然科学版, 41(5): 101-105. |
WANG X F, SHANG F, MA X, et al., 2013a. Effects of pH and humic acid on the form distribution of cadmium, chromium in the soil[J]. Journal of Henan Normal University (Natural Science Edition), 41(5): 101-105. | |
[57] | 王学锋, 尚菲, 马鑫, 等, 2013b. pH和腐植酸对镉、镍、锌在土壤中的形态分布及其生物活性的影响[J]. 科学技术与工程, 13(27): 8082-8086. |
WANG X F, SHANG F, MA X, et al., 2013b. pH and humic acid effect on the form distribution of cadmium, nickel, zinc in the soil and biological activity[J]. Science Technology and Engineering, 13(27): 8082-8086. | |
[58] | 辛勤, 罗孟飞, 2009. 现代催化研究方法[M]. 北京: 科学出版社. |
XIN Q, LUO M F, 2009. Modern Catalysis Research Methods[M]. Beijing: Science Press. | |
[59] | 杨建斌, 2006. 羟基铁柱撑膨润土的制备及对EDTA-Cu的吸附特性研究[D]. 西安: 西安建筑科技大学. |
YANG J B, 2006. The hydroxyl iron pole supports the bentonite the preparation and to the EDTA-Cu adsorption characteristic researcl[D]. Xi’an: Xi’an University of Architecture and Technology. | |
[60] | 张功领, 刘长风, 张晓宇, 等, 2018. 土壤中重金属形态研究[J]. 吉林农业 (23): 87-88. |
ZHANG G L, LIU C F, ZHANG X Y, et al., 2018. Study on the forms of heavy metals in soil[J]. Agriculture of Jilin (23): 87-88. | |
[61] | 张欣, 范仲学, 郭笃发, 等, 2011. 3种微生物制剂对轻度镉污染土壤中菠菜生长的影响[J]. 天津农业科学, 17(1): 81-83. |
ZHANG X, FAN Z X, GUO D F, et al., 2011. Effects of microorganisms on the growth of spinach under Cd stress[J]. Tianjin Agricultural Sciences, 17(1): 81-83. | |
[62] | 赵保林, 那平, 刘剑锋, 2006. 改性蒙脱土的研究进展[J]. 化学工业与工程, 23(5): 453-457. |
ZHAO B L, NA P, LIU J F, 2006. Progress in modification of montmorillonites[J]. Chemical Industry and Engineering, 23(5): 453-457. | |
[63] | 赵秋香, 黄晓纯, 李媛媛, 等, 2014. 蒙脱石-OR-SH复合体修复剂对重金属污染土壤中Cd的钝化效果[J]. 环境化学, 33(11): 1871-1877. |
ZHAO Q X, HUANG X C, LI Y Y, et al., 2014. A smectite-OR-SH compound for reducing cadmium uptake by pakchoi in contaminated soils[J]. Environmental Chemistry, 33(11): 1871-1877. | |
[64] | 中华人民共和国环境保护部和国土资源部, 2014. 全国土壤污染状况调查公报[R]. 北京: 中华人民共和国环境保护部和国土资源部. |
Ministry of Environmental Protection of the People's Republic of China MEP, Ministry of Land and Resources of China MLR, 2014. National Soil Pollution Investigation Bulletin[R]. Beijing: MEP, MLR. |
[1] | WANG Lihua, WANG Lei, XU Duanping, XUE Yang. Adsorption Characteristics of Copper and Cadmium on Coal Colloid [J]. Ecology and Environment, 2023, 32(7): 1293-1300. |
[2] | LI Zhenguo, HAO Xingyu, HE Tianlian, JING Rui, RONG Cheng, GU Chengzhen, ZHENG Xinyu. Study on the Alleviating Effect of Bamboo Vinegar on Cadmium Toxicity of Perilla frutescens (L.) Britt. [J]. Ecology and Environment, 2023, 32(7): 1313-1324. |
[3] | ZHAO Liangxia, GAO Kun, HUANG Tingting, GAO Ye, JU Tangdan, JIANG Qiuyang, JIN Heng, XIONG Lei, TANG Zailin, GAO Canhong. The Cadmium Accumulation Characteristics of Maize Inbred Lines with High/Low Grain Cadmium Accumulation at Different Growth Stages [J]. Ecology and Environment, 2023, 32(4): 766-775. |
[4] | YANG Yaodong, CHEN Yumei, TU Pengfei, ZENG Qingru. Phytoremediation Potential of Economic Crop Rotation Patterns for Cadmium-polluted Farmland [J]. Ecology and Environment, 2023, 32(3): 627-634. |
[5] | XU Min, XU Chao, YU Guanghui, YIN Lichu, ZHANG Quan, ZHU Hanhua, ZHU Qihong, ZHANG Yangzhu, HUANG Daoyou. Effects of Groundwater Level and Long-term Straw Return on Soil Cadmium Availability and Cadmium Concentration in Rice [J]. Ecology and Environment, 2023, 32(1): 150-157. |
[6] | CUI Yuanyuan, ZHANG Zhengyun, LIU Peng, ZHANG Yunchun, ZHANG Qiaoying. Morphological Characteristics and Fractal Dimension of Brassia chinensis Root System under Cadmium and Polyethylene Microplastic Stress [J]. Ecology and Environment, 2023, 32(1): 158-165. |
[7] | LI Xiaohui, AI Xianbin, LI Liang, WANG Xiyang, XIN Zaijun, SUN Xiaoyan. Study on Passivation Effects of New Modified Rice Husk Biochar Materials on Cadmium Contaminated Soil [J]. Ecology and Environment, 2022, 31(9): 1901-1908. |
[8] | LI Xiuhua, ZHAO Ling, TENG Ying, LUO Yongming, HUANG Biao, LIU Chong, LIU Benle, ZHAO Qiguo. Characteristics, Spatial Distribution and Risk Assessment of Combined Mercury and Cadmium Pollution in Farmland Soils Surrounding Mercury Mining Areas in Guizhou [J]. Ecology and Environment, 2022, 31(8): 1629-1636. |
[9] | FANG Xianbao, ZHANG Zhijun, LAI Yangqing, YE Mai, DIAO Zenghui. Remediation of Heavy Metals Cr and Cd in Soil by A Novel Sludge-derived Biochar [J]. Ecology and Environment, 2022, 31(8): 1647-1656. |
[10] | ZHAO Chaofan, ZHOU Dandan, SUN Jiancai, QIAN Kunpeng, LI Fangfang. The Effect of Soluble Components on the Adsorption of Cadmium on Biochar [J]. Ecology and Environment, 2022, 31(4): 814-823. |
[11] | WEN Dian, ZHAO Peihua, CHEN Chuguo, LI Furong, DU Ruiying, HUANG Yongdong, LI Lei, WANG Fuhua. Study on Safety Threshold of Soil Cadmium in the Vegetable Producing Areas of the Pearl River Delta [J]. Ecology and Environment, 2022, 31(3): 603-609. |
[12] | SHI Hanzhi, JIANG Qi, LIU Fan, WEN Dian, HUANG Yongdong, DENG Tenghaobo, WANG Xu, XU Aiping, LI Furong, WU Zhichao, LI Meixia, PENG Jinfen, DU Ruiying. Effects of Returning Rice Stubble to Field on Cadmium Accumulation in Soil and Rice [J]. Ecology and Environment, 2022, 31(2): 363-369. |
[13] | SHANG GUAN Yuxian, YIN Hongliang, XU Yi, ZHONG Hongmei, HE Mingjiang, QIN Yusheng, GUO Song, YU Hua. Effects of Different Passivators on Cadmium Absorption in Rice and Wheat Grains [J]. Ecology and Environment, 2022, 31(2): 370-379. |
[14] | QIN Qin, DUAN Haiqin, SONG Ke, SUN Lijuan, SUN Yafei, ZHOU Bin, XUE Yong. Effect of Conventional Fertilization on the Adsorption-desorption Characteristics and Chemical forms of Cadmium in Soil Water-stable Aggregates [J]. Ecology and Environment, 2022, 31(12): 2403-2413. |
[15] | WU De, PENG Ou, LIU Yuling, ZHANG Puxin, YIN Xuefei, HUANG Xinming, TIE Boqing. Effects of Chelating Agents and Thier Combinations on Remediation of Two Cadmium Contaminated Soils by Sedum plumbizincicola [J]. Ecology and Environment, 2022, 31(12): 2414-2421. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn