Ecology and Environmental Sciences ›› 2025, Vol. 34 ›› Issue (11): 1715-1727.DOI: 10.16258/j.cnki.1674-5906.2025.11.005
• Papers on Carbon Cycling and Carbon Emission Reduction • Previous Articles Next Articles
KONG Xiaoyun1,2(
), ZHANG Yongkun1,*(
), LI Runjie1, LI Ying1, LIN Chengqing1,2, MA Zhanming1,2, XIN Jilin1,2, YANG Xiaoxuan1,2, DANG Yile1,2, ZHAO Jiayi1, FENG Lingzheng3, ZHOU Yan3
Received:2024-11-14
Online:2025-11-18
Published:2025-11-05
孔小云1,2(
), 张永坤1,*(
), 李润杰1, 李颖1, 林成清1,2, 马占明1,2, 辛继林1,2, 杨晓璇1,2, 党怡乐1,2, 赵家艺1, 冯玲正3, 周燕3
通讯作者:
E-mail: 作者简介:孔小云(2000年生),女(彝族),硕士研究生,主要从事土壤生态学等研究。E-mail: kongxiaoyun001@163.com
基金资助:CLC Number:
KONG Xiaoyun, ZHANG Yongkun, LI Runjie, LI Ying, LIN Chengqing, MA Zhanming, XIN Jilin, YANG Xiaoxuan, DANG Yile, ZHAO Jiayi, FENG Lingzheng, ZHOU Yan. Characteristics of Spatial Variation of Organic Carbon in Cultivated Soil Aggregates in Huangshui River Basin and Analysis of Its Driving Factors[J]. Ecology and Environmental Sciences, 2025, 34(11): 1715-1727.
孔小云, 张永坤, 李润杰, 李颖, 林成清, 马占明, 辛继林, 杨晓璇, 党怡乐, 赵家艺, 冯玲正, 周燕. 湟水河流域耕地土壤团聚体有机碳空间变异特征及其驱动因素分析[J]. 生态环境学报, 2025, 34(11): 1715-1727.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2025.11.005
| 土壤深度/cm | 变量 | 最小值 | 最大值 | 平均值 | 标准差 | 变异系数 | 偏度 | 峰度 | DT |
|---|---|---|---|---|---|---|---|---|---|
| 0‒20 | PMA/% | 22.87 | 80.17 | 49.08b | 11.74 | 23.92 | 0.24 | 0.20 | N |
| PMI/% | 9.00 | 65.01 | 36.50a | 9.90 | 27.12 | 0.07 | 0.98 | N | |
| PSC/% | 4.93 | 25.63 | 14.42c | 3.98 | 27.60 | 0.72 | 1.61 | NN | |
| SOCMA/(g∙kg−1) | 3.49 | 67.01 | 22.06a | 12.10 | 54.85 | 2.58 | 7.71 | NN | |
| SOCMI/(g∙kg−1) | 4.42 | 62.46 | 14.21c | 9.44 | 66.43 | 2.90 | 11.73 | NN | |
| SOCSC/(g∙kg−1) | 0.35 | 43.62 | 16.35b | 8.11 | 49.60 | 0.59 | 1.55 | NN | |
| SOCBulk/(g∙kg−1) | 4.97 | 40.14 | 17.80b | 6.41 | 36.01 | 1.19 | 3.31 | NN | |
| 20‒40 | PMA/% | 29.08 | 74.78 | 46.94b | 10.47 | 22.30 | 0.16 | -0.27 | N |
| PMI/% | 11.07 | 54.69 | 37.56a | 9.11 | 24.25 | -0.06 | 0.53 | N | |
| PSC/% | 8.37 | 38.12 | 15.49c | 4.66 | 30.08 | 2.46 | 11.28 | NN | |
| SOCMA/(g∙kg−1) | 4.44 | 50.20 | 17.42a | 8.12 | 46.61 | 1.69 | 5.33 | NN | |
| SOCMI/(g∙kg−1) | 4.78 | 37.01 | 13.55c | 6.28 | 46.35 | 1.70 | 3.57 | NN | |
| SOCSC/(g∙kg−1) | 2.47 | 33.24 | 16.21b | 6.57 | 40.53 | 0.55 | 0.29 | N | |
| SOCBulk/(g∙kg−1) | 3.06 | 67.01 | 16.45b | 9.64 | 58.60 | 3.30 | 16.21 | NN |
Table 1 Summary statistics of soil aggregates (SA) fractions and organic carbon (SOC) contents across the Huangshui river watershed
| 土壤深度/cm | 变量 | 最小值 | 最大值 | 平均值 | 标准差 | 变异系数 | 偏度 | 峰度 | DT |
|---|---|---|---|---|---|---|---|---|---|
| 0‒20 | PMA/% | 22.87 | 80.17 | 49.08b | 11.74 | 23.92 | 0.24 | 0.20 | N |
| PMI/% | 9.00 | 65.01 | 36.50a | 9.90 | 27.12 | 0.07 | 0.98 | N | |
| PSC/% | 4.93 | 25.63 | 14.42c | 3.98 | 27.60 | 0.72 | 1.61 | NN | |
| SOCMA/(g∙kg−1) | 3.49 | 67.01 | 22.06a | 12.10 | 54.85 | 2.58 | 7.71 | NN | |
| SOCMI/(g∙kg−1) | 4.42 | 62.46 | 14.21c | 9.44 | 66.43 | 2.90 | 11.73 | NN | |
| SOCSC/(g∙kg−1) | 0.35 | 43.62 | 16.35b | 8.11 | 49.60 | 0.59 | 1.55 | NN | |
| SOCBulk/(g∙kg−1) | 4.97 | 40.14 | 17.80b | 6.41 | 36.01 | 1.19 | 3.31 | NN | |
| 20‒40 | PMA/% | 29.08 | 74.78 | 46.94b | 10.47 | 22.30 | 0.16 | -0.27 | N |
| PMI/% | 11.07 | 54.69 | 37.56a | 9.11 | 24.25 | -0.06 | 0.53 | N | |
| PSC/% | 8.37 | 38.12 | 15.49c | 4.66 | 30.08 | 2.46 | 11.28 | NN | |
| SOCMA/(g∙kg−1) | 4.44 | 50.20 | 17.42a | 8.12 | 46.61 | 1.69 | 5.33 | NN | |
| SOCMI/(g∙kg−1) | 4.78 | 37.01 | 13.55c | 6.28 | 46.35 | 1.70 | 3.57 | NN | |
| SOCSC/(g∙kg−1) | 2.47 | 33.24 | 16.21b | 6.57 | 40.53 | 0.55 | 0.29 | N | |
| SOCBulk/(g∙kg−1) | 3.06 | 67.01 | 16.45b | 9.64 | 58.60 | 3.30 | 16.21 | NN |
| 土壤深度/cm | 变量 | 半方差 | 块金值C0 | 基台值C0+C | 变程/m | 块金系数/% | 决定系数R2 | 残差RSS | Moran’s I | |
|---|---|---|---|---|---|---|---|---|---|---|
| Value | p | |||||||||
| 0‒20 | PMA | Gaussian | 0.0001 | 0.0597 | 2780 | 1.67 | 0.954 | 0.0001 | 0.03 | 0.469 |
| PMI | Gaussian | 0.0010 | 0.5410 | 2610 | 0.18 | 0.844 | 0.0446 | 0.01 | 0.735 | |
| PSC | Gaussian | 0.0001 | 0.0408 | 1960 | 0.24 | 0.915 | 0.00002 | 0.18 | 0.009 | |
| SOCMA | Gaussian | 0.0314 | 0.3238 | 5480 | 9.70 | 0.708 | 0.028 | −0.005 | 0.918 | |
| SOCMI | Spherical | 0.0066 | 0.3052 | 12500 | 2.16 | 0.730 | 0.0009 | 0.10 | 0.125 | |
| SOCSC | Exponential | 0.0021 | 0.0316 | 7700 | 6.64 | 0.772 | 0.00003 | 0.20 | 0.003 | |
| SOCBulk | Spherical | 0.0010 | 0.7200 | 11900 | 0.14 | 0.515 | 0.0135 | 0.16 | 0.021 | |
| 20‒40 | PMA | Gaussian | 0.3500 | 0.7440 | 5940 | 47.04 | 0.600 | 0.0797 | 0.14 | 0.004 |
| PMI | Gaussian | 0.0117 | 0.1020 | 22490 | 11.47 | 0.842 | 0.00003 | 0.02 | 0.646 | |
| PSC | Gaussian | 0.0107 | 0.0266 | 5600 | 40.22 | 0.517 | 0.0001 | 0.24 | 0.001 | |
| SOCMA | Spherical | 0.0310 | 0.9630 | 12500 | 3.22 | 0.453 | 0.0431 | 0.002 | 0.850 | |
| SOCMI | Exponential | 0.0850 | 0.7540 | 7100 | 11.27 | 0.553 | 0.056 | 0.10 | 0.144 | |
| SOCSC | Spherical | 0.0170 | 0.0465 | 30000 | 36.56 | 0.783 | 0.0001 | 0.25 | 0.007 | |
| SOCBulk | Gaussian | 0.0358 | 0.3126 | 7600 | 11.45 | 0.831 | 0.0021 | 0.25 | 0.001 | |
Table 2 Geostatistical parameters of soil aggregates (SA) fractions and organic carbon (SOC) contents across the Huangshui river watershed
| 土壤深度/cm | 变量 | 半方差 | 块金值C0 | 基台值C0+C | 变程/m | 块金系数/% | 决定系数R2 | 残差RSS | Moran’s I | |
|---|---|---|---|---|---|---|---|---|---|---|
| Value | p | |||||||||
| 0‒20 | PMA | Gaussian | 0.0001 | 0.0597 | 2780 | 1.67 | 0.954 | 0.0001 | 0.03 | 0.469 |
| PMI | Gaussian | 0.0010 | 0.5410 | 2610 | 0.18 | 0.844 | 0.0446 | 0.01 | 0.735 | |
| PSC | Gaussian | 0.0001 | 0.0408 | 1960 | 0.24 | 0.915 | 0.00002 | 0.18 | 0.009 | |
| SOCMA | Gaussian | 0.0314 | 0.3238 | 5480 | 9.70 | 0.708 | 0.028 | −0.005 | 0.918 | |
| SOCMI | Spherical | 0.0066 | 0.3052 | 12500 | 2.16 | 0.730 | 0.0009 | 0.10 | 0.125 | |
| SOCSC | Exponential | 0.0021 | 0.0316 | 7700 | 6.64 | 0.772 | 0.00003 | 0.20 | 0.003 | |
| SOCBulk | Spherical | 0.0010 | 0.7200 | 11900 | 0.14 | 0.515 | 0.0135 | 0.16 | 0.021 | |
| 20‒40 | PMA | Gaussian | 0.3500 | 0.7440 | 5940 | 47.04 | 0.600 | 0.0797 | 0.14 | 0.004 |
| PMI | Gaussian | 0.0117 | 0.1020 | 22490 | 11.47 | 0.842 | 0.00003 | 0.02 | 0.646 | |
| PSC | Gaussian | 0.0107 | 0.0266 | 5600 | 40.22 | 0.517 | 0.0001 | 0.24 | 0.001 | |
| SOCMA | Spherical | 0.0310 | 0.9630 | 12500 | 3.22 | 0.453 | 0.0431 | 0.002 | 0.850 | |
| SOCMI | Exponential | 0.0850 | 0.7540 | 7100 | 11.27 | 0.553 | 0.056 | 0.10 | 0.144 | |
| SOCSC | Spherical | 0.0170 | 0.0465 | 30000 | 36.56 | 0.783 | 0.0001 | 0.25 | 0.007 | |
| SOCBulk | Gaussian | 0.0358 | 0.3126 | 7600 | 11.45 | 0.831 | 0.0021 | 0.25 | 0.001 | |
Figure 2 Spatial distribution characteristics of organic carbon content within soil aggregates and cropland organic carbon content in the Huangshui River Basin
Figure 3 Spatial distribution characteristics of organic carbon content within soil aggregates and cropland organic carbon content in the Huangshui River Basin
Figure 6 Partial least squares path model (PLS-PM) illustrating the effects of environmental variables on organic carbon content in farmland soil and within soil aggregates
| 土壤深度/cm | 变量 | 地形因素 | 植被因素 | 气候因素 | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 直接 | 间接 | 总 | 直接 | 间接 | 总 | 直接 | 间接 | 总 | ||||
| 0−20 | PMA | 0.107 | 0.400 | 0.507 | 0.030 | −0.064 | −0.034 | 0.320 | −0.074 | 0.246 | ||
| PMI | 0.205 | −0.531 | −0.326 | −0.084 | −0.096 | −0.180 | −0.281 | 0.041 | −0.240 | |||
| PSC | −0.280 | −0.307 | −0.587 | −0.151 | 0.052 | −0.099 | −0.294 | 0.080 | −0.214 | |||
| SOCMA | −0.036 | −0.150 | −0.186 | −0.076 | −0.013 | −0.063 | 0.035 | −0.011 | 0.024 | |||
| SOCMI | −0.018 | 0.617 | 0.599 | −0.232 | −0.031 | −0.263 | 0.034 | −0.024 | 0.010 | |||
| SOCSC | 0.049 | 0.521 | 0.570 | 0.321 | 0.037 | 0.358 | −0.090 | 0.037 | −0.053 | |||
| SOCBulk | 0.023 | 0.694 | 0.717 | 0.308 | −0.067 | 0.241 | −0.070 | −0.037 | −0.107 | |||
| 20−40 | PMA | 0.025 | 0.363 | 0.388 | 0.027 | 0.046 | 0.073 | 0.008 | −0.117 | −0.109 | ||
| PMI | 0.202 | −0.475 | −0.273 | −0.050 | −0.060 | −0.110 | −0.009 | 0.155 | 0.146 | |||
| PSC | −0.454 | −0.032 | −0.486 | 0.024 | −0.004 | 0.020 | 0.005 | 0.008 | 0.013 | |||
| SOCMA | 0.156 | 0.081 | 0.237 | 0.207 | −0.011 | 0.196 | −0.210 | −0.008 | −0.218 | |||
| SOCMI | 0.055 | 0.562 | 0.617 | 0.091 | 0.069 | 0.160 | 0.064 | −0.027 | 0.037 | |||
| SOCSC | 0.061 | 0.513 | 0.574 | 0.318 | 0.037 | 0.355 | −0.102 | 0.051 | −0.051 | |||
| SOCBulk | −0.032 | 0.749 | 0.717 | 0.305 | −0.063 | 0.242 | −0.030 | −0.078 | −0.108 | |||
Table 3 Total, direct, and indirect effects in the structural equation modelling
| 土壤深度/cm | 变量 | 地形因素 | 植被因素 | 气候因素 | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 直接 | 间接 | 总 | 直接 | 间接 | 总 | 直接 | 间接 | 总 | ||||
| 0−20 | PMA | 0.107 | 0.400 | 0.507 | 0.030 | −0.064 | −0.034 | 0.320 | −0.074 | 0.246 | ||
| PMI | 0.205 | −0.531 | −0.326 | −0.084 | −0.096 | −0.180 | −0.281 | 0.041 | −0.240 | |||
| PSC | −0.280 | −0.307 | −0.587 | −0.151 | 0.052 | −0.099 | −0.294 | 0.080 | −0.214 | |||
| SOCMA | −0.036 | −0.150 | −0.186 | −0.076 | −0.013 | −0.063 | 0.035 | −0.011 | 0.024 | |||
| SOCMI | −0.018 | 0.617 | 0.599 | −0.232 | −0.031 | −0.263 | 0.034 | −0.024 | 0.010 | |||
| SOCSC | 0.049 | 0.521 | 0.570 | 0.321 | 0.037 | 0.358 | −0.090 | 0.037 | −0.053 | |||
| SOCBulk | 0.023 | 0.694 | 0.717 | 0.308 | −0.067 | 0.241 | −0.070 | −0.037 | −0.107 | |||
| 20−40 | PMA | 0.025 | 0.363 | 0.388 | 0.027 | 0.046 | 0.073 | 0.008 | −0.117 | −0.109 | ||
| PMI | 0.202 | −0.475 | −0.273 | −0.050 | −0.060 | −0.110 | −0.009 | 0.155 | 0.146 | |||
| PSC | −0.454 | −0.032 | −0.486 | 0.024 | −0.004 | 0.020 | 0.005 | 0.008 | 0.013 | |||
| SOCMA | 0.156 | 0.081 | 0.237 | 0.207 | −0.011 | 0.196 | −0.210 | −0.008 | −0.218 | |||
| SOCMI | 0.055 | 0.562 | 0.617 | 0.091 | 0.069 | 0.160 | 0.064 | −0.027 | 0.037 | |||
| SOCSC | 0.061 | 0.513 | 0.574 | 0.318 | 0.037 | 0.355 | −0.102 | 0.051 | −0.051 | |||
| SOCBulk | −0.032 | 0.749 | 0.717 | 0.305 | −0.063 | 0.242 | −0.030 | −0.078 | −0.108 | |||
| [4] |
DENG L, KIM D G, PENG C H, et al., 2018. Controls of soil and aggregate-associated organic carbon variations following natural vegetation restoration on the Loess Plateau in China[J]. Land Degradation & Development, 29(11): 3974-3984.
DOI URL |
| [5] | HU J, HARTEMINK A E, DESAI A R, et al., 2023. A continental-scale estimate of soil organic carbon change at neon sites and their environmental and edaphic controls[J]. Journal of Geophysical Research: Biogeosciences, 128(5): e2022JG006981. |
| [6] |
JOZEDAEMI E, GOLCHIN A, 2024. Changes in aggregate-associated carbon and microbial respiration affected by aggregate size, soil depth, and altitude in a forest soil[J]. Catena, 234: 107567.
DOI URL |
| [7] | LI J Y, CHEN P, LI Z G, 2023. Soil aggregate-associated organic carbon mineralization and its drivingfactors in rhizosphere soil[J]. Soil Biology and Biochemistry, 186: e109182. |
| [8] |
LINSLER D, GEISSELER D, LOGES R, et al., 2013. Temporal dynamics of soil organic matter composition and aggregate distribution in permanent grassland after a single tillage event in a temperate climate[J]. Soil and Tillage Research, 126(1): 90-99.
DOI URL |
| [9] |
MARTENS D A, REEDY T E, LEWISD T, 2004. Soilorganic carbon content and composition of 130-yearcrop, pasture and forest land-use managements[J]. Global Change Biology, 10(1): 65-78.
DOI URL |
| [10] | NIELSEN D R, Th. VAN G M, BIGGAR J W, 1986. Water flow and solute transport processes in the unsaturated zone[J]. Water Resources Research, 22(9S): 89S-108S. |
| [11] | PENG X Y, HUANG Y, DUAN X W, et al., 2023. Particulate and mineral-associated organic carbon fractions reveal the roles of soil aggregates under different land-use types in a karst faulted basin of China[J]. Catena, 220(PartB): 106721. |
| [12] |
QIAO L L, ZHOU H K, WANG Z H, et al., 2023. Variations in soil aggregate stability and organic carbon stability of alpine meadow and shrubland under long-term warming[J]. Catena, 222: 106848.
DOI URL |
| [13] |
ROWTHER T W, TODD-BROWN K E O, ROWE C W, et al., 2016. Quantifying global soil carbon losses in response to warming[J]. Nature, 540(7631): 104-108.
DOI |
| [14] |
SIX J, CONANT R T, PAUL E A, et al., 2002. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils[J]. Plant and Soil, 241: 155-176.
DOI |
| [15] |
SIX J, ELLIOT E T, PAUSTAIN K, et al., 2016. Aggregation and soil organic matter accumulation in cultivated and native grassland soils[J]. Soil Science Society of America Journal, 62(5): 1367-1377.
DOI URL |
| [16] |
SUN S B, SONG Z L, CHEN B Z, et al., 2023. Current and future potential soil organic carbon stocks of vegetated coastal ecosystems and their controls in the Bohai Rim Region, China[J]. Catena, 225: 107023.
DOI URL |
| [17] | WANG B, GONG Z Q, MENG M, et al., 2022. The soil aggregates and associated organic carbon across the Greater Khingan Mountains: Spatial patterns and impacting factors[J]. Forests, 13(8): 1267. |
| [18] |
WRIGHT S F, UPADHYAYA A, 1998. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi[J]. Plant and Soil, 198(1): 97-107.
DOI |
| [19] | WEN L, LI D J, XIAO K C, et al., 2023. Dynamics of aggregate-associated organic carbon after long-term cropland conversion in a karst region, southwest China[J]. Scientific Reports, 13(1): 1773. |
| [20] |
XIN Z B, QIN Y B, YU X X, 2016. Spatial variability in soil organic carbon and its influencing factors in a hilly watershed of the Loess Plateau, China[J]. Catena, 137: 660-669.
DOI URL |
| [21] |
ZHANG J, TANG X L, HE X H, et al., 2015. Glomalin-related soil protein responses to elevated CO2 and nitrogen addition in a subtropical forest: Potential consequences for soil carbon accumulation[J]. Soil Biology and Biochemistry, 83: 142-149.
DOI URL |
| [1] |
CAMBARDELLA C A, ELLIOTT E T, 1992. Particulate soil organic-matter changes across a grassland cultivation sequence[J]. Soil Science Society of America Journal, 56(3): 777-783.
DOI URL |
| [2] |
CAMBARDELLA C A, MOORMAN T B, NOVAK J M, et al., 1994. Field-scale variability of soil properties in Central Iowa soils[J]. Soil Science Society of America Journal, 58(5): 1501-1511.
DOI URL |
| [3] |
CHAOLOT V, BOUAHOM B, VALENTIN C, 2010. Soil organic carbon stocks in Laos: spatial variations and controlling factors[J]. Global Change Biology, 16(4): 1380-1393.
DOI URL |
| [22] |
ZHANG P P, WANG Y Q, XU L, et al., 2021. Factors controlling spatial variation in soil aggregate stability in a semi-humid watershed[J]. Soil and Tillage Research, 214: 105187.
DOI URL |
| [23] | 代子俊, 2018. 近30年湟水流域土壤养分时空变异及影响因素[D]. 西宁: 青海师范大学. |
| DAI Z J, 2018. Spatial and temporal variability of soil nutrients and influencing factors in Huangshui watershed in the last 30 years[D]. Xining: Qinghai Normal University. | |
| [24] | 刘尊方, 雷浩川, 雷蕾, 等, 2022. 湟水流域土壤有机质和速效磷空间布局分析[J]. 科学技术与工程, 22(34): 15095-15102. |
| LIU Z F, LEI H C, LEI L, et al., 2022. Spatial layout analysis of soil organic matter and quick-acting phosphorus in Huangshui Basin[J]. Science and Technology and Engineering, 22(34): 15095-15102. | |
| [25] | 刘亚龙, 王萍, 汪景宽, 等, 2023. 土壤团聚体的形成和稳定机制: 研究进展与展望[J]. 土壤学报, 60(3): 627-643. |
| LIU Y L, WANG P, WANG J K, et al., 2023. Formation and stabilization mechanisms of soil aggregates: Research advances and prospects[J]. Acta Pedologica Sinica, 60(3): 627-643. | |
| [26] | 鲁如坤, 2000. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社: 106-107. |
| LU R K, 2000. Methods of agrochemical analysis of soils[M]. Beijing: China Agricultural Science and Technology Press: 106-107. | |
| [27] | 林成清, 李润杰, 盛海彦, 等, 2025. 湟水流域耕地表层土壤有机碳空间分布及其驱动因素分析[J]. 西南农业学报, 38(1): 135-144. |
| LIN C Q, LI R J, SHENG H Y, et al., 2025. Spatial distribution of soil organic carbon in the surface layer of arable land in Huangshui Basin and analysis of its driving factors[J]. Southwest Journal of Agriculture, 38(1): 135-144. | |
| [28] | 马东方, 袁再健, 吴新亮, 等, 2020. 华南花岗岩侵蚀区不同植被类型坡面土壤有机碳分布和团聚体稳定性[J]. 水土保持学报, 34(5): 137-144. |
| MA D F, YUAN Z J, WU X L, et al., 2020. Distribution of soil organic carbon and stability of clusters on slopes with different vegetation types in a granitic erosion zone in south China[J]. Journal of Soil and Water Conservation, 34(5): 137-144. | |
| [29] |
宋文婕, 梁誉正, 陶贞, 等, 2023. 微生物介导的土壤有机碳动态研究进展[J]. 地球科学进展, 38(12): 1213-1223.
DOI |
| SONG W J, LIANG Y C, TAO Z, et al., 2023. Progress in microbially mediated soil organic carbon dynamics[J]. Advances in Earth Sciences, 38(12): 1213-1223. | |
| [30] | 吴林甲, 祁琛, 闫秋艳, 等, 2023. 耕作方式对旱地麦田土壤团聚体及其碳氮组分分布的影响[J]. 干旱地区农业研究, 41(2): 193-200, 220. |
| WU L J, QI C, YAN Q Y, et al., 2023. Effects of tillage practices on soil aggregates and their carbon and nitrogen fractions distribution in dryland wheat fields[J]. Agricultural Research in Arid Regions, 41(2): 193-200, 220. | |
| [31] | 王兴, 钟泽坤, 张欣怡, 等, 2020. 长期撂荒恢复土壤团聚体组成与有机碳分布关系[J]. 环境科学, 41(5): 2416-2424. |
| WANG X, ZHONG Z K, ZHANG X Y, et al., 2020. Relationship between soil aggregate composition and organic carbon distribution in long-term abandonment and restoration[J]. Environmental Science, 41(5): 2416-2424. | |
| [32] | 徐佩, 王玉宽, 邓玉林, 等, 2007. 岷江流域不同土地利用方式下紫色土有机碳储量特征[J]. 应用与环境生物学报, 13(2): 205-208. |
| XU P, WANG Y K, DENG Y L, et al., 2007. Characteristics of organic carbon storage in purple soils under different land use modes in Minjiang River Basin[J]. Journal of Applied and Environmental Biology, 13(2): 205-208. | |
| [33] | 杨璐, 刘小芳, 巨佳敏, 等, 2024. 黄土坡面种植柠条对土壤团聚体稳定性和可蚀性的影响[J]. 水土保持通报, 44(3): 46-55. |
| YANG L, LIU X F, JU J M, et al., 2024. Effects of planting lemons on soil aggregate stability and erodibility on loess slopes[J]. Soil and Water Conservation Bulletin, 44(3): 46-55. | |
| [34] | 叶露萍, 2020. 黄土高原土壤团聚体-水-植被的时空变异分析[D]. 杨凌: 中国科学院教育部水土保持与生态环境研究中心. |
| YE L P, 2020. Analysis of spatial and temporal variability of soil aggregates-water-vegetation in the Loess Plateau[D]. Yangling: Soil and Water Conservation and Ecological Environment Research Centre, Ministry of Education, Chinese Academy of Sciences. | |
| [35] | 于雯霏, 王佩佩, 刘俊娥, 等, 2023. 黄土高原典型植被根系对土壤团聚体及其有机碳组分的影响[J]. 水土保持学报, 37(6): 246-254. |
| YU W F, WANG P P, LIU J E, et al., 2023. Effects of typical vegetation root systems on soil aggregates and their organic carbon fractions in the Loess Plateau[J]. Journal of Soil and Water Conservation, 37(6): 246-254. | |
| [36] | 张旭冉, 张卫青, 等, 2020. 土壤团聚体研究进展[J]. 北方园艺, 44(21): 131-137. |
| ZHANG X R, ZHANG W Q, et al., 2020. Progress of soil agglomerate research[J]. Northern Horticulture, 44(21): 131-137. | |
| [37] |
赵金花, 张丛志, 张佳宝, 等, 2015. 农田生态系统中土壤有机碳与团聚体相互作用机制的研究进展[J]. 中国农学通报, 31(35): 152-157.
DOI |
| ZHAO J H, ZHANG C Z, ZHANG J B, et al., 2015. Research progress on the interaction mechanism between soil organic carbon and clusters in agroecosystems[J]. Chinese Agronomy Bulletin, 31(35): 152-157. | |
| [38] |
朱锟恒, 段良霞, 李元辰, 等, 2021. 土壤团聚体有机碳研究进展[J]. 中国农学通报, 37(21): 86-90.
DOI |
| ZHU K H, DUAN L X, LI Y C, et al., 2021. Progress of organic carbon research in soil aggregates[J]. Chinese Agronomy Bulletin, 37(21): 86-90. | |
| [39] | 邹萌萌, 周卫红, 张静静, 等, 2019. 我国东部地区农田土壤重金属污染概况[J]. 中国农业科技导报, 21(1): 117-124. |
| ZOU M M, ZHOU W H, ZHANG J J, et al., 2019. Overview of heavy metal contamination in farmland soils in the eastern region of China[J]. China Agricultural Science and Technology Guide, 21(1): 117-124. | |
| [40] | 周家昊, 褚军杰, 孙万春, 等, 2023. 有机碳对土壤团聚体形成的影响研究进展[J]. 河南农业科学, 52(11): 10-20. |
| ZHOU J H, CHU J J, SUN W C, et al., 2023. Progress of research on the effect of organic carbon on soil aggregate formation[J]. Henan Agricultural Science, 52(11): 10-20. |
| [1] | ZHANG Yidong, YANG Xunan, CHEN Yanjiao, WANG Tao, XU Meiying. Advances in the Application of FT-IR Spectroscopy for Analyzing Organic Carbon in Aquatic Sediments [J]. Ecology and Environmental Sciences, 2025, 34(9): 1483-1494. |
| [2] | LIU Qing, GONG Yushun, WANG Wei, FANG Xiantao, WU Jinshui, SHEN Jianlin. Spatio-temporal Characteristics of Soil Organic Carbon and Its Components in Typical tea Gardens in Hunan Province, China [J]. Ecology and Environmental Sciences, 2025, 34(9): 1386-1397. |
| [3] | GUO Jiawen, LIU Kai, LIU Gaoyuan, GAO Xinxin, YANG Kun, PAN Bo. Effects of Exogenous Cane Leaf Additives in Different Forms on Properties of Red Soil and Sugarcane Growth Yunnan [J]. Ecology and Environmental Sciences, 2025, 34(7): 1100-1110. |
| [4] | HAO Xiaoyan, DONG Chao, XUE Yang, HAN Liping. Symbiotic Effects and Influencing Factors of Energy Supply and Ecological Security in Energy Endowment Advantageous Areas [J]. Ecology and Environmental Sciences, 2025, 34(6): 974-985. |
| [5] | CHEN Jieru, YE Changsheng, WEI Wei, CAI Xin, WANG Lili. Analysis of “Production-Living-Ecological Space” Coupling Coordination and Influencing Factors in County Areas of Poyang Lake City Cluster [J]. Ecology and Environmental Sciences, 2025, 34(5): 807-818. |
| [6] | GUO Mingbin, GONG Jianzhou, WANG Lijuan, WANG Shikuan. Analysis of the Natural Dominant Factors Driving NO2 Concentration Changes in the Guangdong-Hong Kong-Macao Greater Bay Area from 2019 to 2023 [J]. Ecology and Environmental Sciences, 2025, 34(4): 534-547. |
| [7] | HE Youwen, HAN Yafeng, WANG Xugang, SUN Lirong, XING Jiangbing, CAO Shengyuan. Differences in Drivers of Agricultural Wetland Soils Carbon Emissions under Contrasting Light Conditions [J]. Ecology and Environmental Sciences, 2025, 34(3): 391-400. |
| [8] | SHEN Jialong, WU Lihong, LI Linshuang, ZHOU Yuanfang, YANG Xiaomin. Effects of Land Uses on Soil Organic Carbon Fractions and Their Carbon Sequestration in a Typical Karst Small Mountain Watershed [J]. Ecology and Environmental Sciences, 2025, 34(3): 358-367. |
| [9] | XIA Yining, LIU Peng’ao, HE Kerun, TIAN Chaohui, ZENG Liting, HOU Kelun. Spatiotemporal Dynamics and Scenario Simulations of Ecosystem Carbon Storage Based on Land Use Changes in the Changsha-Zhuzhou-Xiangtan Metropolitan Area [J]. Ecology and Environmental Sciences, 2025, 34(11): 1661-1674. |
| [10] | LI Jianfu, HUANG Zhilin, HE Chengzhong, JIANG Xin, SONG Lin, LIU Jiaxin, CHEN Liding. Spatial Distribution and Key Factors Affecting Soil Organic Carbon Within the Karst Fault Basin in Eastern Yunnan, China [J]. Ecology and Environmental Sciences, 2024, 33(9): 1339-1352. |
| [11] | SHI Hanzhi, XIONG Zhenqian, CAO Yiran, WU Zhichao, WEN Dian, LI Furong, LI Dongqin, WANG Xu. Effect of Straw Returning to Field on Organic Carbon Fixation in Red Soil and Black Soil [J]. Ecology and Environmental Sciences, 2024, 33(9): 1372-1383. |
| [12] | LI Yanlin, CHEN Yangyang, YANG Shuangrong, LIU Jumei. Study on the Effects of Organic Acids in Plant Root Exudates on Soil Organic Carbon and Nitrogen Mineralization [J]. Ecology and Environmental Sciences, 2024, 33(9): 1362-1371. |
| [13] | ZHANG Weichen, WANG Xingqi, WANG Bojie. Spatiotemporal Pattern and Influencing Factors of the Ecosystem Services in the Tabu River Basin [J]. Ecology and Environmental Sciences, 2024, 33(7): 1142-1152. |
| [14] | LI Cheng, CHENG Zhipeng, LIU Yujin, YAO Yiming, LI Chunlei. Research on Ecological Risks and Its Control Policies of Per- and Polyfluoroalkyl Substances [J]. Ecology and Environmental Sciences, 2024, 33(6): 980-996. |
| [15] | LIN Dandan, BI Huaxing, ZHAO Danyang, GUAN Ning, HAN Jindan, GUO Yanjie. Soil Organic Carbon Fractions and Carbon Pool Characteristics of Robinia pseudoacacia Forests with Different Densities in the Loess Region of Western Shanxi Province [J]. Ecology and Environmental Sciences, 2024, 33(3): 379-388. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn