Ecology and Environmental Sciences ›› 2025, Vol. 34 ›› Issue (11): 1661-1674.DOI: 10.16258/j.cnki.1674-5906.2025.11.001
• Papers on Carbon Cycling and Carbon Emission Reduction • Next Articles
XIA Yining1,2(
), LIU Peng’ao1,2,*(
), HE Kerun1,2, TIAN Chaohui1,2, ZENG Liting1,2, HOU Kelun1,2
Received:2025-03-25
Online:2025-11-18
Published:2025-11-05
夏依宁1,2(
), 刘鹏翱1,2,*(
), 何柯润1,2, 田朝晖1,2, 曾丽婷1,2, 侯珂伦1,2
通讯作者:
E-mail: 作者简介:夏依宁(1981年生),男,博士研究生,主要研究方向为国土空间规划与管理。E-mail: 13445352@qq.com
基金资助:CLC Number:
XIA Yining, LIU Peng’ao, HE Kerun, TIAN Chaohui, ZENG Liting, HOU Kelun. Spatiotemporal Dynamics and Scenario Simulations of Ecosystem Carbon Storage Based on Land Use Changes in the Changsha-Zhuzhou-Xiangtan Metropolitan Area[J]. Ecology and Environmental Sciences, 2025, 34(11): 1661-1674.
夏依宁, 刘鹏翱, 何柯润, 田朝晖, 曾丽婷, 侯珂伦. 基于土地利用的长株潭都市圈碳储量时空格局与情景模拟[J]. 生态环境学报, 2025, 34(11): 1661-1674.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2025.11.001
| 国土空间一级分类 | 国土空间 二级分类 | 编码 | 土地利用覆被类型 |
|---|---|---|---|
| 城镇空间 | 城镇生活空间 | 1 | 城镇建设用地 |
| 城镇生产空间 | 2 | 工矿用地和交通建设用地 | |
| 农业空间 | 乡村生活空间 | 3 | 农村居民点用地 |
| 农业生产空间 | 4 | 水田、旱地 | |
| 生态空间 | 林地生态空间 | 5 | 有林地、灌木林地、 疏林地、其他林地 |
| 草地生态空间 | 6 | 高覆盖度草地、中覆盖度草地、低覆盖度草地 | |
| 水域生态空间 | 7 | 河渠、湖泊、水库、 坑塘、滩地、湿地 | |
| 其他生态空间 | 8 | 沙地、盐碱地、沼泽地、 裸土地、裸岩石砾地 |
Table 1 Connection table of land spatial classification and land use cover types
| 国土空间一级分类 | 国土空间 二级分类 | 编码 | 土地利用覆被类型 |
|---|---|---|---|
| 城镇空间 | 城镇生活空间 | 1 | 城镇建设用地 |
| 城镇生产空间 | 2 | 工矿用地和交通建设用地 | |
| 农业空间 | 乡村生活空间 | 3 | 农村居民点用地 |
| 农业生产空间 | 4 | 水田、旱地 | |
| 生态空间 | 林地生态空间 | 5 | 有林地、灌木林地、 疏林地、其他林地 |
| 草地生态空间 | 6 | 高覆盖度草地、中覆盖度草地、低覆盖度草地 | |
| 水域生态空间 | 7 | 河渠、湖泊、水库、 坑塘、滩地、湿地 | |
| 其他生态空间 | 8 | 沙地、盐碱地、沼泽地、 裸土地、裸岩石砾地 |
| 数据类型 | 数据名称 | 数据来源 |
|---|---|---|
| 土地利用 | 1990、2000、2010、2020年土地覆被数据 | 中国资源环境科学与数据 平台,GIS重分类 |
| 自然要素 | 高程 | 中国资源环境科学 与数据平台 |
| 土壤类型 | ||
| 坡度 | 基于高程数据计算 | |
| 地形起伏度 | ||
| 年平均温度 | 国家青藏高原科学数据中心 | |
| 年平均降水 | ||
| NDVI | 中国资源环境科学与数据平台 | |
| 生境质量 | 基于InVEST模型计算 | |
| 社会经济 | 地均GDP | 中国资源环境科学与数据平台 |
| 人口密度 | ||
| 夜间灯光指数 | ||
| 至一级道路距离 | 中国资源环境科学与数据 平台,GIS计算欧氏距离 | |
| 至二级道路距离 | ||
| 至三级道路距离 | ||
| 至铁路距离 | ||
| 至河流距离 | ||
| 距省市县政府驻地距离 |
Table 2 Data source and explanation
| 数据类型 | 数据名称 | 数据来源 |
|---|---|---|
| 土地利用 | 1990、2000、2010、2020年土地覆被数据 | 中国资源环境科学与数据 平台,GIS重分类 |
| 自然要素 | 高程 | 中国资源环境科学 与数据平台 |
| 土壤类型 | ||
| 坡度 | 基于高程数据计算 | |
| 地形起伏度 | ||
| 年平均温度 | 国家青藏高原科学数据中心 | |
| 年平均降水 | ||
| NDVI | 中国资源环境科学与数据平台 | |
| 生境质量 | 基于InVEST模型计算 | |
| 社会经济 | 地均GDP | 中国资源环境科学与数据平台 |
| 人口密度 | ||
| 夜间灯光指数 | ||
| 至一级道路距离 | 中国资源环境科学与数据 平台,GIS计算欧氏距离 | |
| 至二级道路距离 | ||
| 至三级道路距离 | ||
| 至铁路距离 | ||
| 至河流距离 | ||
| 距省市县政府驻地距离 |
| 空间类型 | 碳密度/(t∙hm−2) | |||
|---|---|---|---|---|
| 地上生物量 | 地下生物量 | 土壤 | 枯死有机质 | |
| 城镇生活空间 | 0.84 | 1.63 | 35.5 | 0 |
| 城镇生产空间 | 0.91 | 1.38 | 30.7 | 0 |
| 乡村生活空间 | 2.4 | 1.46 | 42.5 | 0 |
| 农业生产空间 | 2.06 | 0.31 | 62.9 | 0 |
| 林地生态空间 | 36.1 | 15.7 | 116 | 1.29 |
| 草地生态空间 | 4.7 | 9.83 | 62.9 | 1.33 |
| 水域生态空间 | 0 | 0 | 11.2 | 0 |
| 其他生态空间 | 0.63 | 1.56 | 33.3 | 1.13 |
Table 3 Carbon density of different land spatial classification in the Changsha-Zhuzhou-Xiangtan metropolitan area
| 空间类型 | 碳密度/(t∙hm−2) | |||
|---|---|---|---|---|
| 地上生物量 | 地下生物量 | 土壤 | 枯死有机质 | |
| 城镇生活空间 | 0.84 | 1.63 | 35.5 | 0 |
| 城镇生产空间 | 0.91 | 1.38 | 30.7 | 0 |
| 乡村生活空间 | 2.4 | 1.46 | 42.5 | 0 |
| 农业生产空间 | 2.06 | 0.31 | 62.9 | 0 |
| 林地生态空间 | 36.1 | 15.7 | 116 | 1.29 |
| 草地生态空间 | 4.7 | 9.83 | 62.9 | 1.33 |
| 水域生态空间 | 0 | 0 | 11.2 | 0 |
| 其他生态空间 | 0.63 | 1.56 | 33.3 | 1.13 |
| 判别依据 | 类型 |
|---|---|
| q(x1∩x2)<Min[q(x1), q(x2)] | 非线性减弱 |
| Min[q(x1), q(x2)]<q(x1∩x2)<Max[q(x1), q(x2)] | 单因子非线性减弱 |
| q(x1∩x2)>Max[q(x1), q(x2)] | 双因子增强 |
| q(x1∩x2)=q(x1)+q(x2) | 独立 |
| q(x1∩x2)>q(x1)+q(x2) | 非线性增强 |
Table 4 Interaction probe type
| 判别依据 | 类型 |
|---|---|
| q(x1∩x2)<Min[q(x1), q(x2)] | 非线性减弱 |
| Min[q(x1), q(x2)]<q(x1∩x2)<Max[q(x1), q(x2)] | 单因子非线性减弱 |
| q(x1∩x2)>Max[q(x1), q(x2)] | 双因子增强 |
| q(x1∩x2)=q(x1)+q(x2) | 独立 |
| q(x1∩x2)>q(x1)+q(x2) | 非线性增强 |
| 空间类型 | 自然增长情景、生态-发展协调情景、严格保护情景 | |||||||
|---|---|---|---|---|---|---|---|---|
| a | b | c | d | e | f | g | h | |
| a | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| b | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| c | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
| d | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 |
| e | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 |
| f | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| g | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 |
| h | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Table 5 Transfer matrix setting
| 空间类型 | 自然增长情景、生态-发展协调情景、严格保护情景 | |||||||
|---|---|---|---|---|---|---|---|---|
| a | b | c | d | e | f | g | h | |
| a | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| b | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| c | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
| d | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 |
| e | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 |
| f | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| g | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 |
| h | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 空间类型 | 生态-发展协调情景 | 严格保护情景 | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| a | b | c | d | e | f | g | h | a | b | c | d | e | f | g | h | |||
| a/% | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | ||
| b/% | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | ||
| c/% | - | - | - | - | +20 | +20 | +20 | +20 | - | - | - | - | +30 | +30 | +30 | +30 | ||
| d/% | - | - | −20 | - | +20 | +20 | +20 | +20 | - | - | −30 | - | +30 | +30 | +30 | +30 | ||
| e/% | - | - | −20 | −20 | - | −30 | −20 | −30 | - | - | −30 | −30 | - | −40 | −30 | −40 | ||
| f/% | - | - | −20 | −20 | +30 | - | - | −30 | - | - | −30 | −30 | +40 | - | - | −40 | ||
| g/% | - | - | −20 | −20 | - | - | - | - | - | - | −30 | −30 | - | - | - | - | ||
| h/% | - | - | −20 | −20 | +30 | +30 | - | - | - | - | −30 | −30 | +40 | +40 | - | - | ||
Table 6 Transfer probability of land demand in each scenario
| 空间类型 | 生态-发展协调情景 | 严格保护情景 | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| a | b | c | d | e | f | g | h | a | b | c | d | e | f | g | h | |||
| a/% | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | ||
| b/% | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | ||
| c/% | - | - | - | - | +20 | +20 | +20 | +20 | - | - | - | - | +30 | +30 | +30 | +30 | ||
| d/% | - | - | −20 | - | +20 | +20 | +20 | +20 | - | - | −30 | - | +30 | +30 | +30 | +30 | ||
| e/% | - | - | −20 | −20 | - | −30 | −20 | −30 | - | - | −30 | −30 | - | −40 | −30 | −40 | ||
| f/% | - | - | −20 | −20 | +30 | - | - | −30 | - | - | −30 | −30 | +40 | - | - | −40 | ||
| g/% | - | - | −20 | −20 | - | - | - | - | - | - | −30 | −30 | - | - | - | - | ||
| h/% | - | - | −20 | −20 | +30 | +30 | - | - | - | - | −30 | −30 | +40 | +40 | - | - | ||
| 国土空间格局 | 年份 | ||||
|---|---|---|---|---|---|
| 1990 | 2000 | 2010 | 2020 | ||
| 城镇生活空间 | 碳储量/t | 0.857 | 0.961 | 2.163 | 2.303 |
| 占比/% | 0.355 | 0.399 | 0.912 | 0.984 | |
| 城镇生产空间 | 碳储量/t | 0.072 | 0.199 | 0.762 | 1.997 |
| 占比/% | 0.030 | 0.083 | 0.321 | 0.853 | |
| 乡村生活空间 | 碳储量/t | 0.943 | 0.988 | 0.968 | 0.978 |
| 占比/% | 0.391 | 0.410 | 0.408 | 0.418 | |
| 农业生产空间 | 碳储量/t | 40.932 | 40.566 | 38.666 | 37.112 |
| 占比/% | 16.963 | 16.846 | 16.308 | 15.862 | |
| 林地生态空间 | 碳储量/t | 196.716 | 196.287 | 192.727 | 189.777 |
| 占比/% | 81.523 | 81.511 | 81.285 | 81.112 | |
| 草地生态空间 | 碳储量/t | 1.315 | 1.336 | 1.302 | 1.297 |
| 占比/% | 0.545 | 0.555 | 0.549 | 0.555 | |
| 水域生态空间 | 碳储量/t | 0.456 | 0.460 | 0.480 | 0.481 |
| 占比/% | 0.189 | 0.191 | 0.202 | 0.205 | |
| 其他生态空间 | 碳储量/t | 0.011 | 0.010 | 0.030 | 0.026 |
| 占比/% | 0.005 | 0.004 | 0.013 | 0.011 | |
| 总计 | 241.302 | 240.807 | 237.098 | 233.971 | |
Table 7 Analysis of land transfer matrix in the Changsha-Zhuzhou-Xiangtan metropolitan area from 1990 to 2020
| 国土空间格局 | 年份 | ||||
|---|---|---|---|---|---|
| 1990 | 2000 | 2010 | 2020 | ||
| 城镇生活空间 | 碳储量/t | 0.857 | 0.961 | 2.163 | 2.303 |
| 占比/% | 0.355 | 0.399 | 0.912 | 0.984 | |
| 城镇生产空间 | 碳储量/t | 0.072 | 0.199 | 0.762 | 1.997 |
| 占比/% | 0.030 | 0.083 | 0.321 | 0.853 | |
| 乡村生活空间 | 碳储量/t | 0.943 | 0.988 | 0.968 | 0.978 |
| 占比/% | 0.391 | 0.410 | 0.408 | 0.418 | |
| 农业生产空间 | 碳储量/t | 40.932 | 40.566 | 38.666 | 37.112 |
| 占比/% | 16.963 | 16.846 | 16.308 | 15.862 | |
| 林地生态空间 | 碳储量/t | 196.716 | 196.287 | 192.727 | 189.777 |
| 占比/% | 81.523 | 81.511 | 81.285 | 81.112 | |
| 草地生态空间 | 碳储量/t | 1.315 | 1.336 | 1.302 | 1.297 |
| 占比/% | 0.545 | 0.555 | 0.549 | 0.555 | |
| 水域生态空间 | 碳储量/t | 0.456 | 0.460 | 0.480 | 0.481 |
| 占比/% | 0.189 | 0.191 | 0.202 | 0.205 | |
| 其他生态空间 | 碳储量/t | 0.011 | 0.010 | 0.030 | 0.026 |
| 占比/% | 0.005 | 0.004 | 0.013 | 0.011 | |
| 总计 | 241.302 | 240.807 | 237.098 | 233.971 | |
| 1990年 | 2020年 | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| 城镇生活 空间/km2 | 城镇生产 空间/km2 | 乡村生活 空间/km2 | 农业生产 空间/km2 | 林地生态 空间/km2 | 草地生态 空间/km2 | 水域生态 空间/km2 | 其他生态 空间/km2 | 变化幅度/ km2 | 动态度/ % | |
| 城镇生活空间 | 211.671 | 1.715 | 0.568 | 5.716 | 4.461 | 0.018 | 0.000 | 0.000 | 380.86 | 6.28 |
| 城镇生产空间 | 8.019 | 9.004 | 0.872 | 0.666 | 2.799 | 0.010 | 0.503 | 0.000 | 583.42 | 9.64 |
| 乡村生活空间 | 17.157 | 4.378 | 153.780 | 19.328 | 7.214 | 0.032 | 1.472 | 0.003 | 7.51 | 0.36 |
| 农业生产空间 | 215.279 | 289.028 | 36.267 | 5353.469 | 312.260 | 3.704 | 60.425 | 0.746 | 585.22 | −1.03 |
| 林地生态空间 | 136.051 | 292.514 | 18.006 | 280.971 | 10870.629 | 12.045 | 19.723 | 3.655 | 410.30 | −0.37 |
| 草地生态空间 | 0.594 | 1.551 | 0.041 | 1.828 | 13.852 | 148.439 | 0.590 | 0.006 | 2.17 | −0.13 |
| 水域生态空间 | 17.676 | 7.090 | 1.335 | 23.891 | 12.022 | 0.488 | 344.248 | 0.342 | 22.01 | 0.51 |
| 其他生态空间 | 0.184 | 0.000 | 0.000 | 0.001 | 0.168 | 0.000 | 0.505 | 2.233 | 3.89 | 5.58 |
Table 8 Analysis of land transfer matrix in the Changsha-Zhuzhou-Xiangtan metropolitan area from 1990 to 2020
| 1990年 | 2020年 | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| 城镇生活 空间/km2 | 城镇生产 空间/km2 | 乡村生活 空间/km2 | 农业生产 空间/km2 | 林地生态 空间/km2 | 草地生态 空间/km2 | 水域生态 空间/km2 | 其他生态 空间/km2 | 变化幅度/ km2 | 动态度/ % | |
| 城镇生活空间 | 211.671 | 1.715 | 0.568 | 5.716 | 4.461 | 0.018 | 0.000 | 0.000 | 380.86 | 6.28 |
| 城镇生产空间 | 8.019 | 9.004 | 0.872 | 0.666 | 2.799 | 0.010 | 0.503 | 0.000 | 583.42 | 9.64 |
| 乡村生活空间 | 17.157 | 4.378 | 153.780 | 19.328 | 7.214 | 0.032 | 1.472 | 0.003 | 7.51 | 0.36 |
| 农业生产空间 | 215.279 | 289.028 | 36.267 | 5353.469 | 312.260 | 3.704 | 60.425 | 0.746 | 585.22 | −1.03 |
| 林地生态空间 | 136.051 | 292.514 | 18.006 | 280.971 | 10870.629 | 12.045 | 19.723 | 3.655 | 410.30 | −0.37 |
| 草地生态空间 | 0.594 | 1.551 | 0.041 | 1.828 | 13.852 | 148.439 | 0.590 | 0.006 | 2.17 | −0.13 |
| 水域生态空间 | 17.676 | 7.090 | 1.335 | 23.891 | 12.022 | 0.488 | 344.248 | 0.342 | 22.01 | 0.51 |
| 其他生态空间 | 0.184 | 0.000 | 0.000 | 0.001 | 0.168 | 0.000 | 0.505 | 2.233 | 3.89 | 5.58 |
Figure 3 Trends in carbon stock changes in the Changsha-Zhuzhou-Xiangtan metropolitan area from 1990 to 2000, 2000 to 2010, 2010 to 2020, and 1990 to 2020
| 单因子探测 | q值 | |||||||
|---|---|---|---|---|---|---|---|---|
| 1990年 | 排序 | 2000年 | 排序 | 2010年 | 排序 | 2020年 | 排序 | |
| 高程(X1) | 0.047 | 6 | 0.049 | 6 | 0.037 | 8 | 0.034 | 8 |
| 坡度(X2) | 0.038 | 7 | 0.033 | 8 | 0.020 | 9 | 0.013 | 9 |
| 地形起伏度(X3) | 0.037 | 8 | 0.031 | 9 | 0.019 | 10 | 0.012 | 10 |
| 年平均气温(X4) | 0.026 | 9 | 0.047 | 7 | 0.041 | 7 | 0.046 | 6 |
| 年平均降水量(X5) | 0.026 | 10 | 0.030 | 10 | 0.046 | 6 | 0.046 | 7 |
| NDVI(X6) | 0.217 | 4 | 0.307 | 2 | 0.325 | 2 | 0.250 | 4 |
| 生境质量(X7) | 0.854 | 1 | 0.796 | 1 | 0.808 | 1 | 0.812 | 1 |
| 地均GDP(X8) | 0.262 | 3 | 0.260 | 4 | 0.246 | 4 | 0.295 | 3 |
| 人口密度(X9) | 0.180 | 5 | 0.117 | 5 | 0.091 | 5 | 0.079 | 5 |
| 夜间灯光指数(X10) | 0.319 | 2 | 0.284 | 3 | 0.257 | 3 | 0.304 | 2 |
Table 9 Detection results of carbon storage and its driving factors in the Changsha-Zhuzhou-Xiangtan metropolitan area from 1990 to 2020
| 单因子探测 | q值 | |||||||
|---|---|---|---|---|---|---|---|---|
| 1990年 | 排序 | 2000年 | 排序 | 2010年 | 排序 | 2020年 | 排序 | |
| 高程(X1) | 0.047 | 6 | 0.049 | 6 | 0.037 | 8 | 0.034 | 8 |
| 坡度(X2) | 0.038 | 7 | 0.033 | 8 | 0.020 | 9 | 0.013 | 9 |
| 地形起伏度(X3) | 0.037 | 8 | 0.031 | 9 | 0.019 | 10 | 0.012 | 10 |
| 年平均气温(X4) | 0.026 | 9 | 0.047 | 7 | 0.041 | 7 | 0.046 | 6 |
| 年平均降水量(X5) | 0.026 | 10 | 0.030 | 10 | 0.046 | 6 | 0.046 | 7 |
| NDVI(X6) | 0.217 | 4 | 0.307 | 2 | 0.325 | 2 | 0.250 | 4 |
| 生境质量(X7) | 0.854 | 1 | 0.796 | 1 | 0.808 | 1 | 0.812 | 1 |
| 地均GDP(X8) | 0.262 | 3 | 0.260 | 4 | 0.246 | 4 | 0.295 | 3 |
| 人口密度(X9) | 0.180 | 5 | 0.117 | 5 | 0.091 | 5 | 0.079 | 5 |
| 夜间灯光指数(X10) | 0.319 | 2 | 0.284 | 3 | 0.257 | 3 | 0.304 | 2 |
| 模拟情景 | 自然增长情景 | 生态-发展协调情景 | 严格保护情景 | |||||
|---|---|---|---|---|---|---|---|---|
| 面积/ km2 | 占比/ % | 面积/ km2 | 占比/ % | 面积/ km2 | 占比/ % | |||
| 城镇生活空间 | 1189.23 | 6.28 | 1185.19 | 6.26 | 1186.06 | 6.26 | ||
| 城镇生产空间 | 750.84 | 3.97 | 754.87 | 3.99 | 754.00 | 3.98 | ||
| 乡村生活空间 | 227.40 | 1.2 | 219.50 | 1.16 | 221.21 | 1.17 | ||
| 农业生产空间 | 5267.38 | 27.82 | 5131.52 | 27.10 | 5160.82 | 27.26 | ||
| 林地生态空间 | 10880.52 | 57.47 | 11039.28 | 58.31 | 11005.04 | 58.13 | ||
| 草地生态空间 | 159.91 | 0.84 | 156.31 | 0.83 | 157.09 | 0.83 | ||
| 水域生态空间 | 447.66 | 2.36 | 438.09 | 2.31 | 440.15 | 2.32 | ||
| 其他生态空间 | 10.29 | 0.05 | 8.46 | 0.04 | 8.86 | 0.05 | ||
| 总计 | 18933.23 | 100.00 | 18933.23 | 100.00 | 18933.23 | 100.00 | ||
Table 10 Land and space zoning structure of the Changsha-Zhuzhou-Xiangtan metropolitan area under three simulation scenarios in 2035
| 模拟情景 | 自然增长情景 | 生态-发展协调情景 | 严格保护情景 | |||||
|---|---|---|---|---|---|---|---|---|
| 面积/ km2 | 占比/ % | 面积/ km2 | 占比/ % | 面积/ km2 | 占比/ % | |||
| 城镇生活空间 | 1189.23 | 6.28 | 1185.19 | 6.26 | 1186.06 | 6.26 | ||
| 城镇生产空间 | 750.84 | 3.97 | 754.87 | 3.99 | 754.00 | 3.98 | ||
| 乡村生活空间 | 227.40 | 1.2 | 219.50 | 1.16 | 221.21 | 1.17 | ||
| 农业生产空间 | 5267.38 | 27.82 | 5131.52 | 27.10 | 5160.82 | 27.26 | ||
| 林地生态空间 | 10880.52 | 57.47 | 11039.28 | 58.31 | 11005.04 | 58.13 | ||
| 草地生态空间 | 159.91 | 0.84 | 156.31 | 0.83 | 157.09 | 0.83 | ||
| 水域生态空间 | 447.66 | 2.36 | 438.09 | 2.31 | 440.15 | 2.32 | ||
| 其他生态空间 | 10.29 | 0.05 | 8.46 | 0.04 | 8.86 | 0.05 | ||
| 总计 | 18933.23 | 100.00 | 18933.23 | 100.00 | 18933.23 | 100.00 | ||
| 模拟情景 | 自然发展情景 | 生态-发展协调情景 | 严格保护情景 | |||||
|---|---|---|---|---|---|---|---|---|
| 碳储量/ 106 t | 占比/ % | 碳储量/ 106 t | 占比/ % | 碳储量/ 106 t | 占比/ % | |||
| 城镇生活空间 | 4.0172 | 1.76 | 4.0039 | 1.72 | 4.0067 | 1.73 | ||
| 城镇生产空间 | 2.4770 | 1.09 | 2.4903 | 1.07 | 2.4874 | 1.07 | ||
| 乡村生活空间 | 1.0542 | 0.46 | 1.0176 | 0.44 | 1.0255 | 0.44 | ||
| 农业生产空间 | 34.2443 | 15.01 | 33.4928 | 14.43 | 33.6841 | 14.52 | ||
| 林地生态空间 | 184.5957 | 80.90 | 189.4658 | 81.60 | 189.0377 | 81.52 | ||
| 草地生态空间 | 1.2594 | 0.55 | 1.2311 | 0.53 | 1.2372 | 0.53 | ||
| 水域生态空间 | 0.4812 | 0.21 | 0.4513 | 0.19 | 0.4526 | 0.20 | ||
| 其他生态空间 | 0.0377 | 0.02 | 0.0310 | 0.01 | 0.0324 | 0.01 | ||
| 总计 | 228.17 | 100 | 232.18 | 100 | 231.96 | 100 | ||
Table 11 Carbon reserves in the Changsha-Zhuzhou-Xiangtan metropolitan area under three simulation scenarios in 2035
| 模拟情景 | 自然发展情景 | 生态-发展协调情景 | 严格保护情景 | |||||
|---|---|---|---|---|---|---|---|---|
| 碳储量/ 106 t | 占比/ % | 碳储量/ 106 t | 占比/ % | 碳储量/ 106 t | 占比/ % | |||
| 城镇生活空间 | 4.0172 | 1.76 | 4.0039 | 1.72 | 4.0067 | 1.73 | ||
| 城镇生产空间 | 2.4770 | 1.09 | 2.4903 | 1.07 | 2.4874 | 1.07 | ||
| 乡村生活空间 | 1.0542 | 0.46 | 1.0176 | 0.44 | 1.0255 | 0.44 | ||
| 农业生产空间 | 34.2443 | 15.01 | 33.4928 | 14.43 | 33.6841 | 14.52 | ||
| 林地生态空间 | 184.5957 | 80.90 | 189.4658 | 81.60 | 189.0377 | 81.52 | ||
| 草地生态空间 | 1.2594 | 0.55 | 1.2311 | 0.53 | 1.2372 | 0.53 | ||
| 水域生态空间 | 0.4812 | 0.21 | 0.4513 | 0.19 | 0.4526 | 0.20 | ||
| 其他生态空间 | 0.0377 | 0.02 | 0.0310 | 0.01 | 0.0324 | 0.01 | ||
| 总计 | 228.17 | 100 | 232.18 | 100 | 231.96 | 100 | ||
| [1] |
LIU J G, DIETZ T, CARPENTER S R, et al., 2007. Complexity of coupled human and natural systems[J]. Science, 317(5844): 1513-1516.
DOI PMID |
| [2] | LIANG Y J, LIU L J, HUANG J J, 2017. Integrating the SD-CLUE-S and InVEST models into assessment of oasis carbon storage in northwestern China[J]. PLoS ONE, 12(2): e0172494. |
| [3] | LI Z Z, CHENG X Q, HAN H R, 2020. Future impacts of land use change on ecosystem services under different scenarios in the ecological conservation area, Beijing, China[J]. Forests, 11(5): 584. |
| [4] | LIANG X, GUO S, HUANG C Y, et al., 2021. Modeling the subpixel land-use dynamics and its influence on urban heat islands: Impacts of factors and scale, and population exposure risk[J]. Computers, Environment and Urban Systems, 107: 105417. |
| [5] |
NOGUEIRA E M, YANAI A M, DE VASCONCELOS S S, et al., 2018. Carbon stocks and losses to deforestation in protected areas in Brazilian Amazonia[J]. Regional Environmental Change, 18(1): 261-270.
DOI URL |
| [6] |
NIE X, LU B, CHEN Z P, et al., 2020. Increase or decrease? Integrating the CLUMondo and InVEST models to assess the impact of the implementation of the Major Function Oriented Zone[J]. Ecological Indicators, 118: 106708.
DOI URL |
| [7] | SHI M J, WU H Q, FAN X, et al., 2021. Trade-offs and synergies of multiple ecosystem services for different land use scenarios in the Yili River Valley, China[J]. Sustainability, 13(3): 1577. |
| [8] | SUN W Y, LIU X Z, 2024. Spatio-temporal evolution and multi-scenario prediction of ecosystem carbon storage in Chang-Zhu-Tan Urban Agglomeration based on the FLUS-InVEST model[J]. Sustainability, 16(16): 7025. |
| [9] |
ZHU L Y, SONG R X, SUN S, et al., 2022. Land use/land cover change and its impact on ecosystem carbon storage in coastal areas of China from 1980 to 2050[J]. Ecological Indicators, 142: 109178.
DOI URL |
| [10] |
方创琳, 周成虎, 顾朝林, 等, 2016. 特大城市群地区城镇化与生态环境交互耦合效应解析的理论框架及技术路径[J]. 地理学报, 71(4): 531-550.
DOI |
| FANG C L, ZHOU C H, GU C L, et al., 2016. Theoretical framework and technical path for analyzing the interactive coupling effect of urbanization and ecological environment in mega city regions[J]. Acta Geographica Sinica, 71(4): 531-550. | |
| [11] |
方莹, 王静, 黄隆杨, 等, 2020. 基于生态安全格局的国土空间生态保护修复关键区域诊断与识别——以烟台市为例[J]. 自然资源学报, 35(1): 190-203.
DOI |
|
FANG Y, WANG J, HUANG L Y, et al., 2020. Identification of critical areas for ecological protection and restoration in national land space based on ecological security pattern: A case study of Yantai City[J]. Journal of Natural Resources, 35(1): 190-203.
DOI |
|
| [12] | 郭晓敏, 揣小伟, 张梅, 等, 2019. 扬子江城市群土地利用时空变化及其对陆地生态系统碳储量的影响[J]. 长江流域资源与环境, 28(2): 269-280. |
| GUO X M, CHUAN X W, ZHANG M, et al., 2019. Spatiotemporal changes of land use in the Yangtze River Urban Agglomeration and their impact on carbon storage of terrestrial ecosystems[J]. Resources and Environment in the Yangtze River Basin, 28(2): 269-280. | |
| [13] | 黄艳, 刘晓曼, 袁静芳, 等, 2024. 2000-2020年华北干旱半干旱区碳储量变化特征影响因素[J]. 环境科学研究, 37(4): 849-861. |
| HUANG Y, LIU X M, YUAN J F, et al., 2024. Impact factors of carbon storage change characteristics in the arid and semiarid areas of north China from 2000 to 2020[J]. Research of Environmental Sciences, 37(4): 849-861. | |
| [14] | 黄韬, 刘素红, 2024. 基于 PLUS-InVEST模型的福建省土地利用变化与碳储量评估[J]. 水土保持学报, 38(2): 246-257. |
|
HUANG T, LIU S H, 2024. Evaluation of land use change and carbon storage in Fujian Province based on PLUS-InVEST model[J]. Journal of Soil and Water Conservation, 38(2): 246-257.
DOI URL |
|
| [15] | 侯雅迪, 文东新, 王忠诚, 等, 2024. 基于PLUS-InVEST模型的洞庭湖流域碳储量时空演变及多情景预测[J/OL]. 环境科学, 1-19. https://doi.org/10.13227/j.hjkx.202410174. |
| HOU Y D, WEN D X, WANG Z C, et al., 2024. Spatio-temporal evolution and multi scenario prediction of carbon storage in Dongting Lake Basin Based on plus invest model[J/OL]. Environmental Science5,1-19. https://doi.org/10.13227/j.hjkx.202410174. | |
| [16] |
寇志翔, 姚永慧, 胡宇凡, 2020. 基于地理探测器的中国亚热带北界探讨[J]. 地理研究, 39(12): 2821-2832.
DOI |
| KOU Z X, YAO Y H, HU Y F, 2020. Discussion on the northern boundary of China’s subtropical zone based on geographical detectors[J]. Geographical Research, 39(12): 2821-2832. | |
| [17] | 刘晓娟, 黎夏, 梁迅, 等, 2019. 基于FLUS-InVEST模型的中国未来土地利用变化及其对碳储量影响的模拟[J]. 热带地理, 39(3): 397-409. |
| LIU X J, LI X, LIANG X, et al., 2019. Simulation of future land use change and its impact on carbon storage in China based on FLUS-InVEST model[J]. Tropical Geography, 39(3): 397-409. | |
| [18] | 刘洋, 张军, 周冬梅, 等, 2021. 基于InVEST模型的疏勒河流域碳储量时空变化研究[J]. 生态学报, 41(10): 4052-4065. |
| LIU Y, ZHANG J, ZHOU D M, et al., 2021. Spatiotemporal variation of carbon storage in the Shule River Basin based on InVEST model[J]. Acta Ecologica Sinica, 41(10): 4052-4065. | |
| [19] | 林彤, 杨木壮, 吴大放, 等, 2022. 基于InVEST-PLUS模型的碳储量空间关联性及预测——以广东省为例[J]. 中国环境科学, 42(10): 4827-4839. |
| LIN T, YANG M Z, WU D F, et al., 2022. Spatial correlation and prediction of carbon storage based on InVEST-PLUS model: A case study of Guangdong Province[J]. China Environmental Science, 42(10): 4827-4839. | |
| [20] |
罗光浴, 王志远, 2024. 洞庭湖生态经济区国土空间格局演变的碳储量效应及驱动因素研究[J]. 生态环境学报, 33(11): 1672-1685.
DOI |
| LUO G Y, WANG Z Y, 2024. Research on the carbon storage effect and driving factors of the evolution of territorial space pattern in Dongting Lake ecological and economic zone[J]. Ecology and Environmental Sciences, 33(11): 1672-1685. | |
| [21] | 刘贤赵, 王一笛, 肖海, 等, 2025. 长株潭都市圈碳盈亏时空变化及其驱动因素[J]. 生态学报, 45(2): 1-16. |
| LIU X Z, WANG Y D, XIAO H, et al., 2025. Spatiotemporal variation and driving factors of carbon surplus and deficit in the Changsha-Zhuzhou-Tan Urban Circle[J]. Acta Ecologica Sinica, 45(2): 1-16. | |
| [22] | 马良, 金陶陶, 文一惠, 等, 2015. InVEST模型研究进展[J]. 生态经济, 31(10): 126-131, 179. |
| MA L, JIN T T, WEN Y H, et al., 2015. Research progress of invest model[J]. Ecological Economy, 31(10): 126-131, 179. | |
| [23] | 糜毅, 李涛, 吴博, 等, 2023. 基于优化模拟的长株潭3+5城市群碳储量时空演变与预测[J]. 环境工程技术学报, 13(5): 1740-1751. |
| MI Y, LI T, WU B, et al., 2023. Spatiotemporal evolution and prediction of carbon storage in the Changsha-Zhuzhou-Tan 3+5 Urban Agglomeration based on optimized simulation[J]. Journal of Environmental Engineering Technology, 13(5): 1740-1751. | |
| [24] | 史名杰, 武红旗, 贾宏涛, 等, 2021. 基于MCE-CA-Markov和InVEST模型的伊犁谷地碳储量时空演变及预测[J]. 农业资源与环境学报, 38(6): 1010-1019. |
| SHI M J, WU H Q, JIA H T, et al., 2021. Spatiotemporal evolution and prediction of carbon storage in the Yili Valley based on MCE-CA-Markov and InVEST models[J]. Journal of Agricultural Resources and Environment, 38(6): 1010-1019. | |
| [25] | 唐志雄, 宁荣荣, 王德, 等, 2024. 黄河三角洲滨海湿地碳储量及其对未来多情景的响应[J]. 生态学报, 44(8): 3280-3292. |
| TANG Z X, NING R R, WANG D, et al., 2024. Carbon stocks in coastal wetlands of the Yellow River Delta and their response to future multi-scenarios[J]. Acta Ecologica Sinica, 44(8): 3280-3292. | |
| [26] |
王思远, 刘纪远, 张增祥, 等, 2001. 中国土地利用时空特征分析[J]. 地理学报, 56(6): 631-639.
DOI |
|
WANG S Y, LIU J Y, ZHANG Z X, et al., 2001. Analysis of spatio temporal characteristics of land use in China[J]. Acta Geographica Sinica, 56(6): 631-639.
DOI |
|
| [27] |
王劲峰, 徐成东, 2017. 地理探测器: 原理与展望[J]. 地理学报, 72(1): 116-134.
DOI |
| WANG J F, XU C D, 2017. Geodetector: Principle and prospect[J]. Journal of Geography, 72(1): 116-134. | |
| [28] |
王超越, 郭先华, 郭莉, 等, 2022. 基于FLUS-InVEST的西北地区土地利用变化及其对碳储量的影响——以呼包鄂榆城市群为例[J]. 生态环境学报, 31(8): 1667-1679.
DOI |
| WANG C Y, GUO X H, GUO L, et al., 2022. Land use change and its impact on carbon storage in northwest China based on FLUS-Invest: A case study of Hu-Bao-Er-Yu urban agglomeration[J]. Journal of Ecology and Environment, 31(8): 1667-1679. | |
| [29] |
王成武, 罗俊杰, 唐鸿湖, 2023. 基于InVEST模型的太行山沿线地区生态系统碳储量时空分异驱动力分析[J]. 生态环境学报, 32(2): 215-225.
DOI |
| WANG C W, LUO J J, TANG H H, 2023. Analysis of driving forces of spatiotemporal differentiation of ecosystem carbon storage in the Taihang Mountain Area based on InVEST model[J]. Journal of Ecology and Environment, 32(2): 215-225. | |
| [30] | 王春晓, 邓孟婷, 汪雪飞, 等, 2024. 基于PLUS-InVEST模型的碳储量时空演变与预测模拟[J]. 中国园林, 40(6): 70-76. |
| WANG C X, DENG M T, WANG X F, et al., 2024. Spatiotemporal evolution and prediction simulation of carbon storage based on PLUS-InVEST model[J]. Chinese Gardening, 40(6): 70-76. | |
| [31] | 夏全升, 洪欣, 桂翔, 等, 2023. 基于InVEST模型的芜湖市固碳能力及影响因子研究[J]. 水土保持通报, 43(5): 385-394. |
| XIA Q S, HONG X, GUI X, et al., 2023. A study on carbon fixation capacity and its influencing factors based on InVEST model at Wuhu City[J]. Bulletin of Soil and Water Conservation, 43(5): 385-394. | |
| [32] | 尹稚, 袁弘, 卢庆强, 等, 2019. 中国都市圈发展报告2018[M]. 北京: 清华大学出版社. |
| YIN Z, YUAN H, LU Q Q, et al., 2019. China metropolitan circle development report 2018[M]. Beijing: Tsinghua University Press. | |
| [33] | 杨洁, 谢保鹏, 张德罡, 2021. 基于InVEST和CA-Markov模型的黄河流域碳储量时空变化研究[J]. 中国生态农业学报(中英文), 29(6): 1018-1029. |
| YANG J, XIE B P, ZHANG D G, 2021. Spatio-temporal evolution of carbon stocks in the Yellow River Basin based on InVEST and CA-Markov models[J]. Chinese Journal of Eco-Agriculture, 29(6): 1018-1029. | |
| [34] | 杨顺法, 昝梅, 袁瑞联, 等, 2025. 基于PLUS与InVEST模型的新疆碳储量变化及预测[J]. 环境科学, 46(1): 378-387. |
| YANG S F, ZAN M, YUAN R L, et al., 2025. Prediction of carbon storage change in Xinjiang based on PLUS and InVEST models[J]. Environmental Science, 46(1): 378-387. | |
| [35] | 中国宏观经济研究院国土开发与地区经济研究所课题组, 高国力, 刘保奎, 等, 2020. 我国城镇化空间形态的演变特征与趋势研判[J]. 改革 (9): 128-138. |
| Research Group of Territorial Development and Regional Economy National Institute for Macroeconomic Research of China, GAO G L, LIU B Q, et al., 2020. Evolutionary characteristics and trend judgment of urbanization spatial form in China[J]. Reform (9): 128-138. | |
| [36] | 张燕, 师学义, 唐倩, 2021. 不同土地利用情景下汾河上游地区碳储量评估[J]. 生态学报, 41(1): 360-373. |
| ZHANG Y, SHI X Y, TANG Q, 2021. Carbon storage assessment in the upper Fen River Area under different land use scenarios[J]. Acta Ecologica Sinica, 41(1): 360-373. | |
| [37] | 张斌, 李璐, 夏秋月, 等, 2022. “三线” 约束下土地利用变化及其对碳储量的影响——以武汉城市圈为例[J]. 生态学报, 42(6): 2265-2280. |
| ZHANG B, LI L, XIA Q Y, et al., 2022. Land use change and its impact on carbon storage under the constraints of “three lines”: A case study of Wuhan City circle[J]. Acta Ecologica Sinica, 42(6): 2265-2280. | |
| [38] | 张龙江, 陈国平, 林伊琳, 等, 2024. 基于MOP-PLUS-InVEST模型的碳储量多情景模拟及驱动机制分析[J]. 农业工程学报, 40(22): 223-233. |
| ZHANG L J, CHEN G P, LIN Y L, et al., 2024. Simulating multiple scenarios of carbon stocks for driving mechanisms using MOP-PLUS-InVest model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 40(22): 223-233. | |
| [39] | 周文强, 韩宇, 王金龙, 等, 2024. 洞庭湖流域碳储量的时空异质性及驱动力分析[J]. 中国环境科学, 44(4): 1851-1862. |
| ZHOU W Q, HAN Y, WANG J L, et al., 2024. Spatiotemporal heterogeneity and driving forces of carbon storage in the Dongting Lake Basin[J]. China Environmental Science, 44(4): 1851-1862. |
| [1] | WEN Yujing, LI Ni. Spatiotemporal Differentiation and Zoning of Carbon Storage in Hilly Areas Based on Topographic Gradients: Take Chang-Zhu-Tan Urban Agglomeration As an Example [J]. Ecology and Environmental Sciences, 2025, 34(9): 1373-1385. |
| [2] | LIANG Qiuyan, SONG Mingjie, ZHANG Dou, LI Shicheng. Prediction of Land Use in Kunming in 2030 and 2050 Incorporating Ecological Security Pattern [J]. Ecology and Environmental Sciences, 2025, 34(9): 1463-1472. |
| [3] | HAO Xiaoyan, DONG Chao, XUE Yang, HAN Liping. Symbiotic Effects and Influencing Factors of Energy Supply and Ecological Security in Energy Endowment Advantageous Areas [J]. Ecology and Environmental Sciences, 2025, 34(6): 974-985. |
| [4] | CHEN Jieru, YE Changsheng, WEI Wei, CAI Xin, WANG Lili. Analysis of “Production-Living-Ecological Space” Coupling Coordination and Influencing Factors in County Areas of Poyang Lake City Cluster [J]. Ecology and Environmental Sciences, 2025, 34(5): 807-818. |
| [5] | ZHAO Zhixuan, WEI Fangfei, WU Haotian, WANG Yining, WANG Pengzhe. The Response of Ecological Service Value to Land Use Change in Lancang-Mekong River Basin [J]. Ecology and Environmental Sciences, 2025, 34(5): 688-698. |
| [6] | GUO Mingbin, GONG Jianzhou, WANG Lijuan, WANG Shikuan. Analysis of the Natural Dominant Factors Driving NO2 Concentration Changes in the Guangdong-Hong Kong-Macao Greater Bay Area from 2019 to 2023 [J]. Ecology and Environmental Sciences, 2025, 34(4): 534-547. |
| [7] | LI Man, WU Dongli, HE Hao, YU Huijie, ZHAO Lin, LIU Cong, HU Zhenghua, LI Qi. Spatio-temporal Evolution and Driving Factors of Carbon Storage in the Yellow River Basin from 1990 to 2020 [J]. Ecology and Environmental Sciences, 2025, 34(3): 333-344. |
| [8] | YE Junhong, LIU Zhenhuan, LIU Ziyu. Scenarios Simulation of Territorial Space Ecological Restoration Zoning in the Pearl River Delta Urban Agglomeration Area [J]. Ecology and Environmental Sciences, 2025, 34(1): 4-12. |
| [9] | TANG Jianting, YUAN Jie, CHEN Zongyan, LI Xiaoyan, SUN Ziting. Study on Land Use Change and Carbon Stock on the South Slope of Qilian Mountains [J]. Ecology and Environmental Sciences, 2024, 33(9): 1353-1361. |
| [10] | AO Yong, ZHANG Long, WANG Xiaofeng, WU Yanyun, TANG Bingqian, ZHANG Yiheng. Carbon Accounting and Evolution Pattern Analysis of Land Use Changes in Shaanxi Province from the “Nature-Society” Perspective [J]. Ecology and Environmental Sciences, 2024, 33(8): 1306-1317. |
| [11] | ZHANG Weichen, WANG Xingqi, WANG Bojie. Spatiotemporal Pattern and Influencing Factors of the Ecosystem Services in the Tabu River Basin [J]. Ecology and Environmental Sciences, 2024, 33(7): 1142-1152. |
| [12] | LI Cheng, CHENG Zhipeng, LIU Yujin, YAO Yiming, LI Chunlei. Research on Ecological Risks and Its Control Policies of Per- and Polyfluoroalkyl Substances [J]. Ecology and Environmental Sciences, 2024, 33(6): 980-996. |
| [13] | LI Hui, DENG Jiawei, LI Yaxin, MU Yingqi. Impacts of Climate and Land Use Change on Runoff in Typical Basin of Northern Foothills of Qinling Mountains: Case Study of Bahe River Basin [J]. Ecology and Environmental Sciences, 2024, 33(5): 802-811. |
| [14] | LUO Xiaoling, LIU Jun, WANG Qi, LIU Tongxu, LIANG Yaojie, XIE Zhiyi, WANG Zhongwei, CHEN Duohong. Temporal and Spatial Changes in pH and Organic Matter and Their Influencing Factors in Soils with Various Land Use Types in Guangdong Province since 2016 [J]. Ecology and Environmental Sciences, 2024, 33(12): 1849-1861. |
| [15] | LUO Guangyu, WANG Zhiyuan. Research on the Carbon Storage Effect and Driving Factors of the Evolution of Territorial Space Pattern in Dongting Lake Ecological and Economic Zone [J]. Ecology and Environmental Sciences, 2024, 33(11): 1672-1685. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn