Ecology and Environment ›› 2024, Vol. 33 ›› Issue (9): 1372-1383.DOI: 10.16258/j.cnki.1674-5906.2024.09.005
• Papers on Carbon Cycling and Carbon Emission Reduction • Previous Articles Next Articles
SHI Hanzhi1(), XIONG Zhenqian2, CAO Yiran1, WU Zhichao1, WEN Dian1, LI Furong1, LI Dongqin1, WANG Xu1,*(
)
Received:
2024-02-06
Online:
2024-09-18
Published:
2024-10-18
Contact:
WANG Xu
石含之1(), 熊振乾2, 曹怡然1, 吴志超1, 文典1, 李富荣1, 李冬琴1, 王旭1,*(
)
通讯作者:
王旭
作者简介:
石含之(1989年生),女,助理研究员,主要从事土壤组分互作微界面固碳机制研究。E-mail: 692874887@qq.com
基金资助:
CLC Number:
SHI Hanzhi, XIONG Zhenqian, CAO Yiran, WU Zhichao, WEN Dian, LI Furong, LI Dongqin, WANG Xu. Effect of Straw Returning to Field on Organic Carbon Fixation in Red Soil and Black Soil[J]. Ecology and Environment, 2024, 33(9): 1372-1383.
石含之, 熊振乾, 曹怡然, 吴志超, 文典, 李富荣, 李冬琴, 王旭. 外源秸秆添加对红壤及黑土有机碳固定的影响[J]. 生态环境学报, 2024, 33(9): 1372-1383.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2024.09.005
土壤类型 | 有机质质量分数/(g∙kg−1) | 阳离子交换量/(cmol∙kg−1) | pH | 砂粒质量分数/% | 粉粒质量分数/% | 粘粒质量分数/% |
---|---|---|---|---|---|---|
红壤 | 5.30±0.20 | 6.80±0.16 | 5.97±0.01 | 41.42 | 39.75 | 18.83 |
黑土 | 32.00±1.54 | 34.99±0.07 | 5.79±0.00 | 14.04 | 58.07 | 27.26 |
Table 1 Soil physiochemical properties
土壤类型 | 有机质质量分数/(g∙kg−1) | 阳离子交换量/(cmol∙kg−1) | pH | 砂粒质量分数/% | 粉粒质量分数/% | 粘粒质量分数/% |
---|---|---|---|---|---|---|
红壤 | 5.30±0.20 | 6.80±0.16 | 5.97±0.01 | 41.42 | 39.75 | 18.83 |
黑土 | 32.00±1.54 | 34.99±0.07 | 5.79±0.00 | 14.04 | 58.07 | 27.26 |
土壤类型 | 处理 | 土壤腐殖酸E4/E6值 | |||||
---|---|---|---|---|---|---|---|
4月 | 8月 | 12月 | 16月 | 20月 | 24月 | ||
红壤 | 对照 | 7.07±0.06b | 6.96±0.23b | 7.05±0.09b | 7.83±0.06b | 6.88±0.00c | 7.45±0.00b |
秸秆 | 7.70±0.08a | 7.60±0.08a | 7.84±0.06a | 8.66±0.11a | 7.50±0.15b | 7.74±0.05a | |
黑土 | 对照 | 3.44±0.01a | 3.43±0.02a | 3.44±0.01a | 3.74±0.01a | 3.70±0.01a | 3.65±0.01a |
秸秆 | 3.48±0.02a | 3.46±0.02a | 3.50±0.01a | 3.81±0.02a | 3.72±0.00a | 3.72±0.02a |
Table 2 E4/E6 of soil humic acids in different treatments
土壤类型 | 处理 | 土壤腐殖酸E4/E6值 | |||||
---|---|---|---|---|---|---|---|
4月 | 8月 | 12月 | 16月 | 20月 | 24月 | ||
红壤 | 对照 | 7.07±0.06b | 6.96±0.23b | 7.05±0.09b | 7.83±0.06b | 6.88±0.00c | 7.45±0.00b |
秸秆 | 7.70±0.08a | 7.60±0.08a | 7.84±0.06a | 8.66±0.11a | 7.50±0.15b | 7.74±0.05a | |
黑土 | 对照 | 3.44±0.01a | 3.43±0.02a | 3.44±0.01a | 3.74±0.01a | 3.70±0.01a | 3.65±0.01a |
秸秆 | 3.48±0.02a | 3.46±0.02a | 3.50±0.01a | 3.81±0.02a | 3.72±0.00a | 3.72±0.02a |
土壤类型 | 土壤性质 | pH | 有机质 | 腐殖酸 | 游离铁 | 非晶型铁 | 络合铁 | 溶解性有机碳 | 晶型铁 |
---|---|---|---|---|---|---|---|---|---|
红壤 | pH | 1 | |||||||
土壤有机质 | 0.870** | 1 | |||||||
腐殖酸 | 0.461** | 0.640** | 1 | ||||||
游离铁 | 0.538** | 0.498** | 0.095 | 1 | |||||
非晶型铁 | −0.265 | −0.454** | −0.434** | −0.195 | 1 | ||||
络合铁 | −0.447** | −0.241 | 0.031 | 0.066 | −0.397* | 1 | |||
溶解性有机碳 | 0.700** | 0.857** | 0.672** | 0.128 | −0.450** | −0.163 | 1 | ||
晶型铁 | 0.535** | 0.519** | 0.141 | 0.981** | −0.347* | 0.131 | 0.153 | 1 | |
黑土 | pH | 1 | |||||||
土壤有机质 | 0.473** | 1 | |||||||
腐殖酸 | 0.577** | 0.885** | 1 | ||||||
游离铁 | 0.391* | 0.422* | 0.629** | 1 | |||||
非晶型铁 | −0.075 | −0.458** | −0.315 | −0.225 | 1 | ||||
络合铁 | 0.082 | 0.149 | 0.220 | 0.583** | −0.692** | 1 | |||
溶解性有机碳 | 0.001 | 0.216 | −0.037 | −0.624** | −0.132 | −0.377* | 1 | ||
晶型铁 | 0.344* | 0.545** | 0.643** | 0.894** | −0.638** | 0.778** | −0.433** | 1 |
Table 3 The correlation analysis among different types of soil organic carbon and iron oxides
土壤类型 | 土壤性质 | pH | 有机质 | 腐殖酸 | 游离铁 | 非晶型铁 | 络合铁 | 溶解性有机碳 | 晶型铁 |
---|---|---|---|---|---|---|---|---|---|
红壤 | pH | 1 | |||||||
土壤有机质 | 0.870** | 1 | |||||||
腐殖酸 | 0.461** | 0.640** | 1 | ||||||
游离铁 | 0.538** | 0.498** | 0.095 | 1 | |||||
非晶型铁 | −0.265 | −0.454** | −0.434** | −0.195 | 1 | ||||
络合铁 | −0.447** | −0.241 | 0.031 | 0.066 | −0.397* | 1 | |||
溶解性有机碳 | 0.700** | 0.857** | 0.672** | 0.128 | −0.450** | −0.163 | 1 | ||
晶型铁 | 0.535** | 0.519** | 0.141 | 0.981** | −0.347* | 0.131 | 0.153 | 1 | |
黑土 | pH | 1 | |||||||
土壤有机质 | 0.473** | 1 | |||||||
腐殖酸 | 0.577** | 0.885** | 1 | ||||||
游离铁 | 0.391* | 0.422* | 0.629** | 1 | |||||
非晶型铁 | −0.075 | −0.458** | −0.315 | −0.225 | 1 | ||||
络合铁 | 0.082 | 0.149 | 0.220 | 0.583** | −0.692** | 1 | |||
溶解性有机碳 | 0.001 | 0.216 | −0.037 | −0.624** | −0.132 | −0.377* | 1 | ||
晶型铁 | 0.344* | 0.545** | 0.643** | 0.894** | −0.638** | 0.778** | −0.433** | 1 |
官能团类型 | 土壤矿物基团与不同类型有机碳位置分布的 相关系数 (r值) | ||
---|---|---|---|
红壤 | 对照-24个月 | 秸秆-24个月 | |
粘粒/脂肪碳 | 0.63 | 0.96 | 0.94 |
粘粒/芳香碳 | 0.32 | 0.78 | 0.74 |
粘粒/羧基碳 | 0.33 | 0.77 | 0.74 |
铁氧化物/脂肪碳 | 0.32 | 0.61 | 0.94 |
铁氧化物/芳香碳 | 0.26 | 0.42 | 0.87 |
铁氧化物/羧基碳 | 0.30 | 0.51 | 0.87 |
Table 4 Correlation between organic carbon and mineral functional group positional distribution (r) in Red soil
官能团类型 | 土壤矿物基团与不同类型有机碳位置分布的 相关系数 (r值) | ||
---|---|---|---|
红壤 | 对照-24个月 | 秸秆-24个月 | |
粘粒/脂肪碳 | 0.63 | 0.96 | 0.94 |
粘粒/芳香碳 | 0.32 | 0.78 | 0.74 |
粘粒/羧基碳 | 0.33 | 0.77 | 0.74 |
铁氧化物/脂肪碳 | 0.32 | 0.61 | 0.94 |
铁氧化物/芳香碳 | 0.26 | 0.42 | 0.87 |
铁氧化物/羧基碳 | 0.30 | 0.51 | 0.87 |
官能团类型 | 土壤矿物基团与不同类型有机碳位置分布的 相关系数 (r值) | ||
---|---|---|---|
黑土 | 对照-24个月 | 秸秆-24个月 | |
粘粒/脂肪碳 | 0.95 | 0.96 | 0.95 |
粘粒/芳香碳 | 0.69 | 0.54 | 0.57 |
粘粒/羧基碳 | 0.61 | 0.47 | 0.49 |
铁氧化物/脂肪碳 | 0.72 | 0.62 | 0.54 |
铁氧化物/芳香碳 | 0.53 | 0.32 | 0.36 |
铁氧化物/羧基碳 | 0.41 | 0.32 | 0.33 |
Table 5 Correlation between organic carbon and mineral functional group positional distribution (r) in Black soil
官能团类型 | 土壤矿物基团与不同类型有机碳位置分布的 相关系数 (r值) | ||
---|---|---|---|
黑土 | 对照-24个月 | 秸秆-24个月 | |
粘粒/脂肪碳 | 0.95 | 0.96 | 0.95 |
粘粒/芳香碳 | 0.69 | 0.54 | 0.57 |
粘粒/羧基碳 | 0.61 | 0.47 | 0.49 |
铁氧化物/脂肪碳 | 0.72 | 0.62 | 0.54 |
铁氧化物/芳香碳 | 0.53 | 0.32 | 0.36 |
铁氧化物/羧基碳 | 0.41 | 0.32 | 0.33 |
[1] |
ADHIKARI D, YANG Y, 2015. Selective stabilization of aliphatic organic carbon by iron oxide[J]. Scientific Reports, 5: 11214.
DOI PMID |
[2] |
ANDREAS K, CASEY B, MUAMMAR M, et al., 2021. An evolving view on biogeochemical cycling of iron[J]. Nature Reviews Microbiology, 19(6): 360-374.
DOI PMID |
[3] | BARRAL M T, ARIAS M, GUÉRIF J, 1998. Effects of iron and organic matter on the porosity and structural stability of soil aggregates[J]. Soil & Tillage Research, 46(3-4): 261-272. |
[4] | BLAGODATSKY S, BLAGODATSKAYA E, YUYUKINA T, et al., 2010. Model of apparent and real priming effects: Linking microbial activity with soil organic matter decomposition[J]. Soil Biology and Biochemistry, 42(8): 1275-1283. |
[5] | CHASSÈA W, OHNO T, 2016. Higher molecular mass organic matter molecules compete with orthophosphate for adsorption to iron (oxy) hydroxide[J]. Environmental Science & Technology, 50(14): 7461-7469. |
[6] |
CHEN C M, HALL S J, COWARD E, et al., 2020. Iron-mediated organic matter decomposition in humid soils can counteract protection[J]. Nature Communications, 11: 2255.
DOI PMID |
[7] | EUSTERHUES K, RENNERT T, KNICKER H, et al., 2011. Fractionation of organic matter due to reaction with ferrihydrite: Coprecipitation versus adsorption[J]. Environmental Science & Technology, 45(2): 527-533. |
[8] | HALL S J, BERHE A A, THOMPSON A, 2018. Order from disorder: do soil organic matter composition and turnover co-vary with iron phase crystallinity?[J]. Biogeochemistry, 140(1): 93-110. |
[9] | HAN L F, SUN K, KEILUWEIT M, et al., 2019. Mobilization of ferrihydrite-associated organic carbon during Fe reduction: Adsorption versus coprecipitation[J]. Chemical Geology, 503: 61-68. |
[10] | HECKMAN K, LAWRENCE C R, HARDEN J W, 2018. A sequential selective dissolution method to quantify storage and stability of organic carbon associated with Al and Fe hydroxide phases[J]. Geoderma, 312: 24-35. |
[11] | HUANG C C, LIU S, LI R Z, et al., 2016. Spectroscopic evidence of the improvement of reactive iron mineral content in Red soil by long-term application of swine manure[J]. PLoS One, 11(1): e0146364. |
[12] | HUANG W J, HALL S J, 2017. Elevated moisture stimulates carbon loss from mineral soils by releasing protected organic matter[J]. Nature Communications, 8(1): 1774. |
[13] | JEEWANI P H, LING L, FU Y Y, et al., 2021a. The stoichiometric C-Fe ratio regulates glucose mineralization and stabilization via microbial processes[J]. Geoderma, 383: 114769. |
[14] | JEEWANI P H, VAN ZWIETEN L, ZHU Z K, et al., 2021b. Abiotic and biotic regulation on carbon mineralization and stabilization in paddy soils along iron oxide gradients[J]. Soil Biology and Biochemistry, 160: 108312. |
[15] | JIANG Z H, LIU Y Z, YANG J P, et al., 2021. Rhizosphere priming regulates soil organic carbon and nitrogen mineralization: The significance of abiotic mechanisms[J]. Geoderma, 385: 114877. |
[16] | KAISER K, GUGGENBERGER G, HAUMAIER L, et al., 1997. Dissolved organic matter sorption on sub soils and minerals studied by 13C-NMR and DRIFT spectroscopy[J]. European Journal of Soil Science, 48(3): 301-310. |
[17] | KRAUSE L, KLUMPP E, NOFZ I, et al., 2020. Colloidal iron and organic carbon control soil aggregate formation and stability in arable luvisols[J]. Geoderma, 374: 114421. |
[18] | LEHMANN J, KLEBER M, 2015. The contentious nature of soil organic matter[J]. Nature, 528(7580): 60-68. |
[19] | LI Z P, LIU M, WU X C, et al., 2010. Effects of long-term chemical fertilization and organic amendments on dynamics of soil organic C and total N in paddy soil derived from barren land in subtropical China[J]. Soil and Tillage Research, 106(2): 268-274. |
[20] |
LIU C, LU M, CUI J, et al., 2014. Effects of straw carbon input on carbon dynamics in agricultural soils: A meta-analysis[J]. Global Change Biology, 20(5): 1366-1381.
DOI PMID |
[21] | MA W W, ZHU M X, YANG G P, et al., 2018. Iron geochemistry and organic carbon preservation by iron (oxyhydr) oxides in surface sediments of the East China Sea and the South Yellow Sea[J]. Journal of Marine Systems, 178: 62-74. |
[22] | MAYER L M, XING B S, 2001. Organic matter-surface area relationships in acid soils[J]. Soil Science Society of America Journal, 65(1): 250-258. |
[23] | MEIER M, NAMJESNIK-DEJANOVIC K, MAURICE P A, et al., 1999. Fractionation of aquatic natural organic matter upon sorption to goethite and kaolinite[J]. Chemical Geology, 157(3-4): 275-284. |
[24] | MIKUTTA R, KLEBER M, TORN M S, et al., 2006. Stabilization of soil organic matter: Association with minerals or chemical recalcitrance?[J]. Biogeochemistry, 77(1): 25-56. |
[25] | MIKUTTA R, LORENZ D, GUGGENBERGER G, et al., 2014. Properties and reactivity of Fe-organic matter associations formed by coprecipitation versus adsorption: Clues from arsenate batch adsorption[J]. Geochimica et Cosmochimica Acta, 144: 258-276. |
[26] |
SAKSCHEWSKI B, VON BLOH W, BOIT A, et al., 2016. Resilience of Amazon forests emerges from plant trait diversity[J]. Nature Climate Change, 6: 1032-1036.
DOI |
[27] | SCHMIDT M, TORN M, ABIVEN S, et al., 2011. Persistence of soil organic matter as an ecosystem property[J]. Nature, 478: 49-56. |
[28] | SCHWERTMANN U, 1966. Inhibitory effect of soil organic matter on the crystallization of amorphous ferric hydroxide[J]. Nature, 212(5062): 645-646. |
[29] | SHAHBAZ M, KUZYAKOV Y, SANAULLAH M, et al., 2017. Microbial decomposition of soil organic matter is mediated by quality and quantity of crop residues: Mechanisms and thresholds[J]. Biology and Fertility of Soils, 53(3): 287-301. |
[30] | SIX J, BOSSUYT H, DEGRYZE S, et al., 2004. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics[J]. Soil & Tillage Research, 79(1): 7-31. |
[31] | TANAKA H, KYAW K M, TOYOTA K, et al., 2006. Influence of application of rice straw, farmyard manure, and municipal biowastes on nitrogen fixation, soil microbial biomass N, and mineral N in a model paddy microcosm[J]. Biology and Fertility of Soils, 42(6): 501-505. |
[32] | TIPPING E, 1981. The adsorption of aquatic humic substances by iron oxides[J]. Geochimica et Cosmochimica Acta, 45(2): 191-199. |
[33] | TOMBÁCZ E, LIBOR Z, ILLÉS E, et al., 2004. The role of reactive surface sites and complexation by humic acids in the interaction of clay mineral and iron oxide particles[J]. Organic Geochemistry, 35(3): 257-267. |
[34] | WEN Y L, XIAO J, LIU F F, et al., 2018. Contrasting effects of inorganic and organic fertilisation regimes on shifts in Fe redox bacterial communities in Red soils[J]. Soil Biology and Biochemistry, 117: 56-67. |
[35] | XIAO J J, WANG X, ZHAO Y F, et al., 2023. Soil organic carbon stability of vegetation restoration during 11-year-old grassland succession[J]. Journal of Soils and Sediments, 23: 2344-2355. |
[36] | XU Y D, DING F, GAO X D, et al., 2019. Mineralization of plant residues and native soil carbon as affected by soil fertility and residue type[J]. Journal of Soils and Sediments, 19(3): 1407-1415. |
[37] | XUE B, HUANG L, HUANG Y N, et al., 2019. Roles of soil organic carbon and iron oxides on aggregate formation and stability in two paddy soils[J]. Soil and Tillage Research, 187: 161-171. |
[38] | YAN J F, WANG L, HU Y, et al., 2018. Plant litter composition selects different soil microbial structures and in turn drives different litter decomposition pattern and soil carbon sequestration capability[J]. Geoderma, 319: 194-203. |
[39] | YE C, HUANG W, HALL S J, et al., 2022. Association of organic carbon with reactive iron oxides driven by soil pH at the global scale[J]. Global Biogeochemical Cycles, 36(1): e2021GB007128. |
[40] | YU G H, YAKOV K, 2021. Fenton chemistry and reactive oxygen species in soil: Abiotic mechanisms of biotic processes, controls and consequences for carbon and nutrient cycling[J]. Earth Science Reviews, 214: 103525. |
[41] | ZHANG X H, XIN Y, ZHANG Z S, et al., 2022. Soil moisture and aromatic-containing compounds control soil organic carbon associated with iron oxides in permafrost wetland soils along the Yarlung Tsangbo River, Tibet[J]. Journal of Soil Science and Plant Nutrition, 22: 1315-1325. |
[42] | ZHAO Q, POULSON S R, OBRIST D, et al., 2016. Ironbound organic carbon in forest soils: Quantification and characterization[J]. Biogeosciences, 13: 4777-4788. |
[43] | 程思远, 李欢, 梅慧玲, 等, 2021. 接种蚯蚓与添加有机物料对茶园土壤结构的影响[J]. 土壤学报, 58(1): 259-268. |
CHENG S Y, LI H, MEI H L, et al., 2021. Effects of earthworms and organic materials on soil structure in tea plantation[J]. Acta Pedologica Sinica, 58(1): 259-268. | |
[44] |
段勋, 李哲, 刘淼, 等, 2022. 铁介导的土壤有机碳固持和矿化研究进展[J]. 地球科学进展, 37(2): 202-211.
DOI |
DUAN X, LI Z, LIU M, et al., 2022. Progress of the Iron-mediated soil organic carbon preservation and mineralization[J]. Advances in Earth Science, 37(2): 202-211.
DOI |
|
[45] | 胡国成, 章明奎, 2002. 氧化铁对土粒强胶结作用的矿物学证据[J]. 土壤通报, 33(1): 25-27. |
HU G C, ZHANG M K, 2002. Mineralogical evidence for strong cementation of soil particles by iron oxides[J]. Chinese Journal of Soil Science, 33(1): 25-27. | |
[46] | 鲁如坤, 1999. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社. |
LU R K, 1999. Methods for agrochemical analysis of soils[M]. Beijing: China Agricultural Science and Technology Press. | |
[47] |
石含之, 赵沛华, 黄永东, 等, 2020. 秸秆还田对土壤有机碳结构的影响[J]. 生态环境学报, 29(3): 536-542.
DOI |
SHI H Z, ZHAO P H, HUANG Y D, et al., 2020. Effect of straw mulching on soil organic carbon structure[J]. Ecology and Environmental Sciences, 29(3): 536-542. | |
[48] | 万丹, 王伯仁, 张璐, 等, 2022. 红壤铁氧化物对有机碳的固定及其对长期施肥的响应[J]. 中国生态农业学报, 30(4): 694-701. |
WAN D, WANG B R, ZHANG L, et al., 2022. Effect of long-term fertilization on the stabilization of soil organic carbon by iron oxides in Red soil[J]. Chinese Journal of Eco-Agriculture, 30(4): 694-701. | |
[49] | 汪超, 李福春, 阚尚, 等, 2015. 黑垆土有机碳在团聚体中的分配及其保护机制[J]. 土壤, 47(1): 49-54. |
WANG C, LI F C, KAN S, et al., 2015. Distribution and preservation mechanisms of organic carbon in aggregates of Heilu soil[J]. Soils, 47(1): 49-54. | |
[50] | 王磊, 应蓉蓉, 石佳奇, 等, 2017. 土壤矿物对有机质的吸附与固定机制研究进展[J]. 土壤学报, 54(4): 805-818. |
WANG L, YING R R, SHI J Q, et al., 2017. Advancement in study on adsorption of organic matter on soil minerals and its mechanism[J]. Acta Pedologica Sinica, 54(4): 805-818. | |
[51] | 张斯梅, 段增强, 顾克军, 等, 2023. 稻秸还田下减量化施氮对小麦产量、养分吸收及土壤理化性质的影响[J]. 土壤, 55(3): 537-543. |
ZHANG S M, DUAN Z Q, GU K J, et al., 2023. Effects of reduced nitrogen fertilization on wheat yield, nutrient uptake and soil physicochemical properties under rice straw returning[J]. Soils, 55(3): 537-543. | |
[52] | 张叶叶, 莫非, 韩娟, 等, 2021. 秸秆还田下土壤有机质激发效应研究进展[J]. 土壤学报, 58(6): 1381-1392. |
ZHANG Y Y, MO F, HAN J, et al., 2021. Research progress on the native soil carbon priming after straw addition[J]. Acta Pedologica Sinica, 58(6): 1381-1392. | |
[53] | 赵惠丽, 董金琎, 师江澜, 等, 2021. 秸秆还田模式对小麦-玉米轮作体系土壤有机碳固存的影响[J]. 土壤学报, 58(1): 213-224. |
ZHAO H L, DONG J J, SHI J L, et al., 2021. Effect of straw returning mode on soil organic carbon sequestration[J]. Acta Pedologica Sinica, 58(1): 213-224. |
[1] | LI Jianfu, HUANG Zhilin, HE Chengzhong, JIANG Xin, SONG Lin, LIU Jiaxin, CHEN Liding. Spatial Distribution and Key Factors Affecting Soil Organic Carbon Within the Karst Fault Basin in Eastern Yunnan, China [J]. Ecology and Environment, 2024, 33(9): 1339-1352. |
[2] | LIN Dandan, BI Huaxing, ZHAO Danyang, GUAN Ning, HAN Jindan, GUO Yanjie. Soil Organic Carbon Fractions and Carbon Pool Characteristics of Robinia pseudoacacia Forests with Different Densities in the Loess Region of Western Shanxi Province [J]. Ecology and Environment, 2024, 33(3): 379-388. |
[3] | LUO Qing, HE Qing, WU Huiqiu, KOU Liyue, FANG Xu, ZHANG Xinyu, LI Yuan, CHAI Yuting, ZHANG Ruisheng, DAI Wenju. Characteristics of Soil Organic Carbon Fractions in Liao River Estuary Wetland and Their Influencing Factors [J]. Ecology and Environment, 2024, 33(3): 333-340. |
[4] | LI Chuanfu, ZHU Taochuan, MING Yufei, YANG Yuxuan, GAO Shu, DONG Zhi, LI Yongqiang, JIAO Shuying. Effect of Organic Fertilizer and Desulphurized Gypsum on Soil Aggregates and Organic Carbon and Its Fractions Contents in the Saline-alkali Soil of the Yellow River Delta [J]. Ecology and Environment, 2023, 32(5): 878-888. |
[5] | ZHANG Lin, QI Shi, ZHOU Piao, WU Bingchen, ZHANG Dai, ZHANG Yan. Study on Influencing Factors of Soil Organic Carbon Content in Mixed Broad-leaved and Coniferous Forests Land in Beijing Mountainous Areas [J]. Ecology and Environment, 2023, 32(3): 450-458. |
[6] | QIN Jiaqi, XIAO Zhirou, MING Angang, ZHU Hao, TENG Jinqian, LIANG Zeli, TAO Yi, QIN Lin. Effect of Monoculture and Mixed Plantation with Coniferous and Broadleaved Tree Species on Soil Microbial Carbon Cycle Functional Gene Abundance [J]. Ecology and Environment, 2023, 32(10): 1719-1731. |
[7] | XIAO Guoju, LI Xiujing, GUO Zhanqiang, HU Yanbin, WANG Jing. Effects of Soil Organic Carbon on Maize Growth and Water Use at the Eastern Foot of Helan Mountain in Ningxia [J]. Ecology and Environment, 2022, 31(9): 1754-1764. |
[8] | GONG Lingxuan, WANG Lili, ZHAO Jianning, LIU Hongmei, YANG Dianlin, ZHANG Guilong. Effects of Different Cover Crop Patterns on Soil Physicochemical Properties and Organic Carbon Mineralization in Tea Gardens [J]. Ecology and Environment, 2022, 31(6): 1141-1150. |
[9] | MA Huiying, LI Xinzhu, MA Xinyu, GONG Lu. Characteristics and Driving Factors of Soil Organic Carbon Fractions under Different Vegetation Types of the mid-Northern Piedmont of the Tianshan Mountains, Xinjiang [J]. Ecology and Environment, 2022, 31(6): 1124-1131. |
[10] | DU Xue, WANG Haiyan, ZOU Jiahe, MENG Hai, ZHAO Han, CUI Xue, DONG Qiqi. Distribution Characteristics and Influencing Factors of Soil Organic Carbon in Spruce-fir broad-leaved Mixed Forest on North Slope of Changbai Mountains [J]. Ecology and Environment, 2022, 31(4): 663-669. |
[11] | HU Jingda, ZHOU Haiju, HUANG Yongzhen, YAO Xianyu, YE Shaoming, YU Sufang. A Study on Plant Species Diversity and Soil Carbon and Nitrogen in Different Cunninghamia lanceolata Stand Types [J]. Ecology and Environment, 2022, 31(3): 451-459. |
[12] | ZHU Shengbao, TANG Guangmu, ZHANG Yushu, XU Wanli, GE Chunhui, MA Haigang. Changes in Soil Aggregates Associated Organic Carbon under Long-term Irrigation and Drought Cultivation [J]. Ecology and Environment, 2022, 31(11): 2152-2160. |
[13] | WANG Hao, CHEN Yongjin, LIU Jiazhen, WAN Bo, ZHANG Li. Effects of Three Types Tamarix Shrubs Communities on Spatial Distribution of Soil Organic Carbon in the New Wetland of the Yellow River Delta [J]. Ecology and Environment, 2022, 31(1): 9-16. |
[14] | SHI Lijiang, GAO Shan, YAO Xiaojun, ZHANG Xiaolong, LI Wengang, GAO Feng. Characteristics of Soil Carbon and Nitrogen Accumulation under Different Vegetation Restoration in the Loess Hilly Region of Northwest Shanxi Province [J]. Ecology and Environment, 2021, 30(9): 1787-1796. |
[15] | HU Rui, FANG Huanying, XIAO Shengsheng, DUAN Jian, ZHANG Jie, LIU Hongguang, TANG Chongjun. Soil Carbon Sink Effect of Main Management Models in Typical Granite Erosion Area of Red Soil in South China [J]. Ecology and Environment, 2021, 30(8): 1617-1626. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn