Ecology and Environment ›› 2024, Vol. 33 ›› Issue (3): 428-438.DOI: 10.16258/j.cnki.1674-5906.2024.03.011
• Research Article [Environmental Sciences] • Previous Articles Next Articles
YAN Xingrui1,2(), GONG Ping2,*(
), WANG Xiaoping2,4, SHANG Lihai3, LI Yinong2, MAO Feijian2, NIU Xuerui2,4, ZHANG Bo1
Received:
2023-11-20
Online:
2024-03-18
Published:
2024-05-08
Contact:
GONG Ping
闫兴蕊1,2(), 龚平2,*(
), 王小萍2,4, 商立海3, 李一农2, 毛飞剑2, 牛学锐2,4, 张勃1
通讯作者:
龚平
作者简介:
闫兴蕊(2000年生),女,硕士研究生,研究方向为环境污染与生态风险评价。E-mail: yanxingrui2000@163.com
基金资助:
CLC Number:
YAN Xingrui, GONG Ping, WANG Xiaoping, SHANG Lihai, LI Yinong, MAO Feijian, NIU Xuerui, ZHANG Bo. Organochlorine Pollutants in Soils and Grasses in the Three-River Headwater Region: Distributions, Sources, and Ecological Risks[J]. Ecology and Environment, 2024, 33(3): 428-438.
闫兴蕊, 龚平, 王小萍, 商立海, 李一农, 毛飞剑, 牛学锐, 张勃. 三江源地区土壤和牧草中的有机氯污染物:分布、来源和生态风险[J]. 生态环境学报, 2024, 33(3): 428-438.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2024.03.011
化合物 | 亨利系数 (Pa∙m3∙mol−1, 298 K) | 蒸汽压/ Pa | 水中溶 解度 (g∙m−3, 298 K) | 辛醇-空气分配系数(logKoa, 298 K) | 辛醇-水分分配系数(logKow, 298 K) |
---|---|---|---|---|---|
α-HCH | 0.55 | 3×10−3 | 1.51 | 7.46 | 3.81 |
β-HCH | 0.036 | 4×10−5 | 0.102 | 8.64 | 3.8 |
γ-HCH | 0.24 | 7.1×10−3 | 7.27 | 7.75 | 3.78 |
p, p′-DDE | 4.2 | 3.4×10−3 | 0.251 | 9.7 | 5.95 |
o, p′DDT | 5.6 | 3.1×10−3 | 8.51×10−2 | 9.45 | − |
p, p′-DDT | 1.1 | 4.8×10−4 | 0.149 | 9.73 | 6.16 |
HCB | 65 | 9.4×10−2 | 4×10−5 | 7.38 | − |
Table 1 The physicochemical properties of the target OCPs in this study
化合物 | 亨利系数 (Pa∙m3∙mol−1, 298 K) | 蒸汽压/ Pa | 水中溶 解度 (g∙m−3, 298 K) | 辛醇-空气分配系数(logKoa, 298 K) | 辛醇-水分分配系数(logKow, 298 K) |
---|---|---|---|---|---|
α-HCH | 0.55 | 3×10−3 | 1.51 | 7.46 | 3.81 |
β-HCH | 0.036 | 4×10−5 | 0.102 | 8.64 | 3.8 |
γ-HCH | 0.24 | 7.1×10−3 | 7.27 | 7.75 | 3.78 |
p, p′-DDE | 4.2 | 3.4×10−3 | 0.251 | 9.7 | 5.95 |
o, p′DDT | 5.6 | 3.1×10−3 | 8.51×10−2 | 9.45 | − |
p, p′-DDT | 1.1 | 4.8×10−4 | 0.149 | 9.73 | 6.16 |
HCB | 65 | 9.4×10−2 | 4×10−5 | 7.38 | − |
样品类型 | 研究区 | 海拔/m | 采样时间 | w/(pg∙g−1) | 参考文献 | |||
---|---|---|---|---|---|---|---|---|
DDTs | HCHs | HCB | PCBs | |||||
土壤 | 三江源 | 3556‒5296 | 2018 | 3003±4981 (BDL‒2.32×104) | 7.05±21.3 (BDL‒132) | 88.2±62.8 (8.79‒307) | 1.89±4.13 (BDL‒24.6) | 本研究 |
纳木措 | 1920‒5226 | 2013 | 13‒7.7×103 | 64‒847 | 24‒564 | 64‒847 | Wang et al., | |
若尔盖草原 | 1740‒3552 | 2011 | 290‒5.72×103 | 430‒1.06×104 | 230‒2.6×103 | 220‒2.31×103 | Gai et al., | |
珠峰地区 | 4700‒5600 | 2005 | 385-6.1×103 | Wang et al., | ||||
意大利 阿尔卑斯山 | 245‒2600 | 2003 | 2200±3100 (180-1.1×104) | 510±620 (<10-1.88×103) | 240±240 (<20-930) | 1380±450 (610-8.9×103) | Tremolada et al., | |
秘鲁安第斯山 | 3710‒4790 | 2004 | 510±510 (20-1.65×103) | <10 | 20±30 (<20-70) | 80±140 (<10-440) | Tremolada et al., | |
牧草 | 三江源 | 3556‒5296 | 2018 | 3539±6437 (BDL‒2.44×104) | 42.4±147 (BDL‒776) | 545±437 (20.9‒1.6×103) | 41.9±75.3 (BDL‒356) | 本研究 |
纳木措 | 1920‒5226 | 2013 | 233±150 (BDL‒684) | 114±83 (10‒409) | 95±50 (4‒227) | 25±24 (BDL‒172) | Wang et al., | |
若尔盖草原 | 3200‒3600 | 2011 | 2860±1010 (1.6×103‒6×103) | 1380±450 (820‒2.45×103) | 720±220 (400‒1.01×103) | 1180±360 (710‒2.04×103) | Pan et al., | |
珠峰地区 | 4700‒5600 | 2005 | 1.08×103‒7×103 | 386‒8.03×103 | 16‒1.25×103 | Wang et al., | ||
加拿大北部 | 2015‒2016 | 5.8‒13.1 | 57‒218 | BDL‒515 | 277‒680 | Cabrerizo et al., |
Table 2 Levels of OCPs in soils and grass in this study and other alpine regions pg?g?1
样品类型 | 研究区 | 海拔/m | 采样时间 | w/(pg∙g−1) | 参考文献 | |||
---|---|---|---|---|---|---|---|---|
DDTs | HCHs | HCB | PCBs | |||||
土壤 | 三江源 | 3556‒5296 | 2018 | 3003±4981 (BDL‒2.32×104) | 7.05±21.3 (BDL‒132) | 88.2±62.8 (8.79‒307) | 1.89±4.13 (BDL‒24.6) | 本研究 |
纳木措 | 1920‒5226 | 2013 | 13‒7.7×103 | 64‒847 | 24‒564 | 64‒847 | Wang et al., | |
若尔盖草原 | 1740‒3552 | 2011 | 290‒5.72×103 | 430‒1.06×104 | 230‒2.6×103 | 220‒2.31×103 | Gai et al., | |
珠峰地区 | 4700‒5600 | 2005 | 385-6.1×103 | Wang et al., | ||||
意大利 阿尔卑斯山 | 245‒2600 | 2003 | 2200±3100 (180-1.1×104) | 510±620 (<10-1.88×103) | 240±240 (<20-930) | 1380±450 (610-8.9×103) | Tremolada et al., | |
秘鲁安第斯山 | 3710‒4790 | 2004 | 510±510 (20-1.65×103) | <10 | 20±30 (<20-70) | 80±140 (<10-440) | Tremolada et al., | |
牧草 | 三江源 | 3556‒5296 | 2018 | 3539±6437 (BDL‒2.44×104) | 42.4±147 (BDL‒776) | 545±437 (20.9‒1.6×103) | 41.9±75.3 (BDL‒356) | 本研究 |
纳木措 | 1920‒5226 | 2013 | 233±150 (BDL‒684) | 114±83 (10‒409) | 95±50 (4‒227) | 25±24 (BDL‒172) | Wang et al., | |
若尔盖草原 | 3200‒3600 | 2011 | 2860±1010 (1.6×103‒6×103) | 1380±450 (820‒2.45×103) | 720±220 (400‒1.01×103) | 1180±360 (710‒2.04×103) | Pan et al., | |
珠峰地区 | 4700‒5600 | 2005 | 1.08×103‒7×103 | 386‒8.03×103 | 16‒1.25×103 | Wang et al., | ||
加拿大北部 | 2015‒2016 | 5.8‒13.1 | 57‒218 | BDL‒515 | 277‒680 | Cabrerizo et al., |
变量组合 | 参数 | DDTs | HCHs | HCB | PCBs |
---|---|---|---|---|---|
土壤含量×经度 | r2 | 0.12**2) | |||
斜率 | 861 | ||||
土壤含量×纬度 | r2 | 0.11** | |||
斜率 | −2104 | ||||
牧草含量×经度 | r2 | 0.31** | 0.12* | 0.2** | |
斜率 | 56.5 | 75.6 | 16.8 | ||
土壤含量×土壤TOC | r2 | 0.27** | |||
斜率 | 12.1 | ||||
土壤含量×1/T | r2 | 0.24** | |||
斜率 | −9×107 | ||||
土壤含量×降水量 | r2 | 0.14** | |||
斜率 | 7.66 | ||||
牧草含量×降水量 | r2 | 0.19* 1) | 0.39** | ||
斜率 | 12.5 | 0.472 | |||
土壤含量×海拔 | r2 | 0.07* | |||
斜率 | −3.97 | ||||
牧草含量×海拔 | r2 | 0.55** | |||
斜率 | −0.632 |
Table 3 Linear relationships between OCP concentrations in soil/grass and environmental factors
变量组合 | 参数 | DDTs | HCHs | HCB | PCBs |
---|---|---|---|---|---|
土壤含量×经度 | r2 | 0.12**2) | |||
斜率 | 861 | ||||
土壤含量×纬度 | r2 | 0.11** | |||
斜率 | −2104 | ||||
牧草含量×经度 | r2 | 0.31** | 0.12* | 0.2** | |
斜率 | 56.5 | 75.6 | 16.8 | ||
土壤含量×土壤TOC | r2 | 0.27** | |||
斜率 | 12.1 | ||||
土壤含量×1/T | r2 | 0.24** | |||
斜率 | −9×107 | ||||
土壤含量×降水量 | r2 | 0.14** | |||
斜率 | 7.66 | ||||
牧草含量×降水量 | r2 | 0.19* 1) | 0.39** | ||
斜率 | 12.5 | 0.472 | |||
土壤含量×海拔 | r2 | 0.07* | |||
斜率 | −3.97 | ||||
牧草含量×海拔 | r2 | 0.55** | |||
斜率 | −0.632 |
污染物 | 标准值/(ng∙g−1) | 三江源东部 | 三江源中部 | 三江源西部 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ERL | ERM | I类*1) | II类 | III类 | I类 | II类 | III类 | I类 | II类 | III类 | ||||
p, p′-DDE | 2.2 | 27 | 100 | 0 | 0 | 100 | 0 | 0 | 100 | 0 | 0 | |||
DDTs | 1.58 | 46.1 | 33 | 67 | 0 | 77 | 23 | 0 | 88 | 12 | 0 | |||
污染物 | 环境质量标准/(ng∙g−1) | Ihq | Ihq | Ihq | ||||||||||
DDTs | 100 | 0.002‒0.23 | ND** 2)‒0.13 | ND‒0.02 | ||||||||||
HCHs | 100 | ND‒2.7×10−4 | ND‒4.2×10−5 | 1.3×10−5‒1.8×10−4 | ||||||||||
PCBs | 131‒2.79×104 | ND‒2.8×10−6 | ND‒6.3×10−6 | ND‒5.3×10−5 |
Table 4 Ecological risk assessment of OCPs in the TRHR
污染物 | 标准值/(ng∙g−1) | 三江源东部 | 三江源中部 | 三江源西部 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ERL | ERM | I类*1) | II类 | III类 | I类 | II类 | III类 | I类 | II类 | III类 | ||||
p, p′-DDE | 2.2 | 27 | 100 | 0 | 0 | 100 | 0 | 0 | 100 | 0 | 0 | |||
DDTs | 1.58 | 46.1 | 33 | 67 | 0 | 77 | 23 | 0 | 88 | 12 | 0 | |||
污染物 | 环境质量标准/(ng∙g−1) | Ihq | Ihq | Ihq | ||||||||||
DDTs | 100 | 0.002‒0.23 | ND** 2)‒0.13 | ND‒0.02 | ||||||||||
HCHs | 100 | ND‒2.7×10−4 | ND‒4.2×10−5 | 1.3×10−5‒1.8×10−4 | ||||||||||
PCBs | 131‒2.79×104 | ND‒2.8×10−6 | ND‒6.3×10−6 | ND‒5.3×10−5 |
[1] |
BARBER J L, SWEETMAN A J, WIJK D V, et al., 2005. Hexachlorobenzene in the global environment: Emissions, levels, distribution, trends and processes[J]. Science of The Total Environment, 349(1-3): 1-44.
PMID |
[2] | BECKER S, HALSALL C J, TYCH W, et al., 2012. Changing sources and environmental factors reduce the rates of decline of organochlorine pesticides in the Arctic atmosphere[J]. Atmospheric Chemistry and Physics, 12(9): 4033-4044. |
[3] |
BRAUNE B M, OUTRIDGE P M, FISK A T, et al., 2005. Persistent organic pollutants and mercury in marine biota of the Canadian Arctic: An overview of spatial and temporal trends[J]. Science of the Total Environment, 351-352: 4-56.
PMID |
[4] |
CABRERIZO A, MUIR D C G, SILVA A O D, et al., 2018. Legacy and emerging persistent organic pollutants (POPs) in terrestrial compartments in the High Arctic: sorption and secondary sources[J]. Environmental science & technology, 52(24): 14187-14197.
DOI URL |
[5] | Canadian Council of Ministers of the Environment, 1999. Canadian soil quality guidelines for the protection of environmental and human health: ISBN 1-896997-34-1[S]. |
[6] |
CHEN D Z, LIU W J, LIU X D, et al., 2008. Cold-trapping of persistent organic pollutants in mountain soils of Western Sichuan, China[J]. Environmental Science & Technology, 42(24): 9086-9091.
DOI URL |
[7] |
GAI N, PAN J, TANG H, et al., 2014. Organochlorine pesticides and polychlorinated biphenyls in surface soils from Ruoergai high altitude prairie, east edge of Qinghai-Tibet Plateau[J]. Science of the Total Environment, 478: 90-97.
DOI URL |
[8] |
GONG P, WANG X P, LI S H, et al., 2014. Atmospheric transport and accumulation of organochlorine compounds on the southern slopes of the Himalayas, Nepal[J]. Environmental Pollution, 192: 44-51.
DOI PMID |
[9] |
GONG P, WANG X P, POKHREL B, et al., 2019. Trans-Himalayan transport of organochlorine compounds: three-year observations and model-based flux estimation[J]. Environmental Science & Technology, 53(12): 6773-6783.
DOI URL |
[10] |
GONG P, WANG X P, SHENG J J, et al., 2010. Variations of organochlorine pesticides and polychlorinated biphenyls in atmosphere of the Tibetan Plateau: role of the monsoon system[J]. Atmospheric Environment, 44(21-22): 2518-2523.
DOI URL |
[11] |
GONG P, WANG X P, XUE Y G, et al., 2023. Foliar uptake of persistent organic pollutants at alpine treeline[J]. Journal of Hazardous Materials, 453: 131388.
DOI URL |
[12] |
GONG P, WANG X P, XUE Y G, et al., 2015. Influence of atmospheric circulation on the long-range transport of organochlorine pesticides to the western Tibetan Plateau[J]. Atmospheric Research, 166: 157-164.
DOI URL |
[13] |
KANG S C, ZHANG Q G, QIAN Y, et al., 2019. Linking atmospheric pollution to cryospheric change in the Third Pole region: current progress and future prospects[J]. National Science Review, 6(4): 796-809.
DOI URL |
[14] |
LI J, LIN T, QI S H, et al, 2008. Evidence of local emission of organochlorine pesticides in the Tibetan plateau[J]. Atmospheric Environment, 42(32): 7397-7404.
DOI URL |
[15] |
LONG E R, MACDONALD D D, SMITH S L, et al., 1995. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments[J]. Environmental Manage, 19(1): 81-97.
DOI URL |
[16] |
MICHELETTI C, CRITTO A, MARCOMINI A, 2007. Assessment of ecological risk from bioaccumulation of PCDD/Fs and dioxin-like PCBs in a coastal lagoon[J]. Environment International, 33(1): 45-55.
PMID |
[17] |
MUNOZ-ARNANZ J, JIMENEZ B, 2011. New DDT inputs after 30 years of prohibition in Spain. A case study in agricultural soils from south-western Spain[J]. Environmental Pollution, 159(12): 3640-3646.
DOI URL |
[18] |
PAN J, GAI N, TANG H, et al., 2014. Organochlorine pesticides and polychlorinated biphenyls in grass, yak muscle, liver, and milk in Ruoergai high altitude prairie, the eastern edge of Qinghai-Tibet Plateau[J]. Science of the Total Environment, 491-492: 131-137.
DOI URL |
[19] |
QIU X H, ZHU T, JING L, et al, 2004. Organochlorine pesticides in the air around the Taihu Lake, China[J]. Environmental Science & Technology, 38(5): 1368-1374.
DOI URL |
[20] |
REN J, WANG X P, GONG P, et al., 2019, Characterization of Tibetan soil as a source or sink of atmospheric persistent organic pollutants: seasonal shift and impact of global warming[J]. Environmental Science & Technology, 53(7): 3589-3598.
DOI URL |
[21] | REN J, WANG X P, WANG C F, et al., 2017a. Biomagnification of persistent organic pollutants along a high-altitude aquatic food chain in the Tibetan Plateau: Processes and mechanisms[J]. Environmental Pollution, 220(Part A): 636-643. |
[22] | REN J, WANG X P, WANG C F, et al., 2017b. Atmospheric processes of organic pollutants over a remote lake on the central Tibetan Plateau: implications for regional cycling[J]. Atmospheric Chemistry and Physics, 17(2): 1401-1415. |
[23] |
SHENG J J, WANG X P, GONG P, et al., 2013. Monsoon-driven transport of organochlorine pesticides and polychlorinated biphenyls to the Tibetan Plateau: Three year atmospheric monitoring study[J]. Environmental Science & Technology, 47(7): 3199-3208.
DOI URL |
[24] |
TREMOLADA P, VILLA S, BAZZARIN P, et al., 2008. POPs in mountain soils from the Alps and Andes: suggestions for a ‘Precipitation Effect’ on altitudinal gradients[J]. Water Air and Soil Pollution, 188(1-4): 93-109.
DOI URL |
[25] |
WANG C F, WANG X P, YUAN X H, et al., 2015. Organochlorine pesticides and polychlorinated biphenyls in air, grass and yak butter from Namco in the central Tibetan Plateau[J]. Environmental Pollution, 201: 50-57.
DOI PMID |
[26] |
WANG X P, GONG P, WANG C F, et al., 2016a. A review of current knowledge and future respects regarding persistent organic pollutants over the Tibetan Plateau[J]. Science of The Total Environment, 573: 139-154.
DOI URL |
[27] |
WANG X P, GONG P, YAO T D, et al., 2010. Passive air sampling of organochlorine pesticides, polychlorinated biphenyls, and polybrominated diphenyl ethers across the Tibetan Plateau[J]. Environmental Science & Technology, 44(8): 2988-2993.
DOI URL |
[28] | WANG X P, REN J, GONG P, et al., 2016b. Spatial distribution of the persistent organic pollutants across the Tibetan Plateau and its linkage with the climate systems: a 5-year air monitoring study[J]. Atmospheric Chemistry & Physics, 16(11): 6901-6911. |
[29] |
WANG X P, SHENG J J, GONG P, et al., 2012. Persistent organic pollutants in the Tibetan surface soil: Spatial distribution, air-soil exchange and implications for global cycling[J]. Environmental Pollution, 170: 145-151.
DOI URL |
[30] |
WANG X P, YAO T D, CONG Z Y, et al., 2007. Distribution of persistent organic pollutants in soil and grasses around Mt. Qomolangma, China[J]. Archives of Environmental Contamination and Toxicology, 52(2): 153-162.
PMID |
[31] |
WANIA F, HAUGEN G E, YING D, er al., 1998. Temperature dependence of atmospheric concentrations of semivolatile organic compounds[J]. Environmental Science and Technology, 32(8): 1013-1021.
DOI URL |
[32] |
XIAO H, SHEN L, SU Y S, et al., 2012. Atmospheric concentrations of halogenated flame retardants at two remote locations: the Canadian high Arctic and the Tibetan Plateau[J]. Environmental Pollution, 161: 154-161.
DOI PMID |
[33] | 龚平, 王小萍, 盛久江, 等, 2013. 运用相对组成探针技术研究青藏高原POPs大气传输与来源[J]. 环境科学研究, 26(4): 350-356. |
GONG P, WANG X P, SHENG J J, et al., 2013. Sources and atmospheric transport of POPs in the Tibetan Plateau using relative composition probe[J]. Research of Environmental Sciences, 26(4): 350-356. | |
[34] | 贺福全, 陈懂懂, 李奇, 等, 2020. 三江源高寒草地牧草营养时空分布[J]. 生态学报, 40(18): 6304-6313. |
HE F Q, CHEN D D, LI Q, et al., 2020. Temporal and spatial distribution of herbage nutrition in alpine grassland of Sanjiangyuan[J]. Acta Ecologica Sinica, 40(18): 6304-6313. | |
[35] | 刘敏超, 李迪强, 温琰茂, 2005. 论三江源自然保护区生物多样性保护[J]. 干旱区资源与环境, 19(4): 49-53. |
LIU M C, LI D Q, WEN Y M, 2005. The protection of biological diversity in the Sanjiangyuan nature reserve[J]. Journal of Arid Land Resources and Environment, 19(4): 49-53. | |
[36] | 谢婷, 张淑娟, 杨瑞强, 2014. 青藏高原湖泊流域土壤与牧草中多环芳烃和有机氯农药的污染特征与来源解析[J]. 环境科学, 35(7): 2680-2690. |
XIE T, ZHANG S J, YANG R Q, 2014. Contamination levels and source analysis of polycyclic aromatic hydrocarbons and organochlorine pesticides in soils and grasses from lake catchments in the Tibetan Plateau[J]. Environmental Science, 35(7): 2680-2690. | |
[37] | 张伟玲, 张干, 祁士华, 等, 2003. 西藏错鄂湖和羊卓雍湖水体及沉积物中有机氯农药的初步研究[J]. 地球化学, 32(4): 363-367. |
ZHANG W L, ZHANG G, QI S H, et al., 2003. A preliminary study of organochlorine pesticides in water and sediments from two Tibetan lakes[J]. Geochimica, 32(4): 363-367.
DOI URL |
|
[38] | 中国国家环境保护总局, 2018. 土壤环境质量-农用地土壤污染风险管控标准 (试行):GB 15618—2018 [S]. 北京: 中国环境出版集团. |
PRC State Environmental Protection Administration, 2018. Soil environmental quality-Risk control standard for soil contamination of agricultural land (Trial):GB 15618—2018 [S]. Beijing: China Environmental Publishing Group. |
[1] | CHEN Hongzhan, OU Hui, YE Sihua, ZHANG Qianhua, ZHOU Shujie, MAI Lei. Spatial-temporal Distribution and Ecological Risk Assessment of Microplastics in the Guangzhou Section of the Pearl River [J]. Ecology and Environment, 2023, 32(9): 1663-1672. |
[2] | XIONG Zhaoyang, ZHANG Qingsong, LI Jiaxiu, DU Ziyin. Degradation and Nutrient Change Characteristics of Yak and Tibetan Sheep Dung under the Effects of Freezing and Thawing in Alpine Grassland of Northern Tibetan Plateau [J]. Ecology and Environment, 2023, 32(9): 1606-1614. |
[3] | CHEN Dongdong, HUO Lili, ZHAO Liang, CHEN Xin, SHU Min, HE Fuquan, ZHANG Yukun, ZHANG Li, LI Qi. Contribution of Water and Heat Factors to Spatial Variability of Soil Microbial Biomass Carbon and Nitrogen in Qinghai Alpine Grassland: Based on Enhanced Regression Tree Model [J]. Ecology and Environment, 2023, 32(7): 1207-1217. |
[4] | LI Huimei, LI Rongjie, YAN Xusheng, WU Feifei, GAO Zebing, TAN Yongzhong. The Ecological Function Zoning of Qinghai Lake Basin Based on Ecological Risk Assessment [J]. Ecology and Environment, 2023, 32(7): 1185-1195. |
[5] | HUANG Yingmei, ZHONG Songxiong, ZHU Yiwen, WANG Xiangqin, LI Fangbai. Effects and Mechanism of Element Sulfur Inhibiting Methylmercury Accumulation in Rice Plants [J]. Ecology and Environment, 2023, 32(6): 1115-1122. |
[6] | HU Xibang, GUAN Xiaotong, XIE Zixia, ZHANG Xiuyu. Pollution Status and Ecological Risk Assessment of Diethylhexyl Phthalate in Agricultural Soil [J]. Ecology and Environment, 2023, 32(12): 2083-2093. |
[7] | CHEN Minyi, SONG Qingmei, YE Quanyun, YOU Xuerui, WU Yingxin. Spatial Distribution Characteristics of Heavy Metals in a Brownfield Site of Metal Manufacture in Southern China [J]. Ecology and Environment, 2023, 32(12): 2228-2235. |
[8] | HUANG Shicong, CHEN Like, ZHANG Zhengjie, CHEN Kehua, CHEN Chengyu, ZENG Qiaoyun. Toxicity Thresholds of Tetracycline to Varieties of Vegetables and Its Species Sensitivity Distributions [J]. Ecology and Environment, 2023, 32(11): 1988-1995. |
[9] | HAN Qian, ZHANG Yujiao, LAI Chengyue, YANG Luyao, MENG Xu. Pollution Characteristics and Ecological Risk Assessment of Tetracycline and Quinolone Antibiotics in Rivers of Chengdu [J]. Ecology and Environment, 2023, 32(11): 1922-1932. |
[10] | LIU An, WU Hao, HE Beibei. Toxic Effects of Nanoplastics on Terrestrial Environment: A Review [J]. Ecology and Environment, 2023, 32(11): 2030-2040. |
[11] | TONG Yindong, HUANG Lanlan, YANG Ning, ZHANG Yiyan, LI Zipeng, SHAO Bo. Distribution Characteristics and Potential Environmental Risk Analysis of Microcystins in Global Water Bodies [J]. Ecology and Environment, 2023, 32(1): 129-138. |
[12] | LI Xiuhua, ZHAO Ling, TENG Ying, LUO Yongming, HUANG Biao, LIU Chong, LIU Benle, ZHAO Qiguo. Characteristics, Spatial Distribution and Risk Assessment of Combined Mercury and Cadmium Pollution in Farmland Soils Surrounding Mercury Mining Areas in Guizhou [J]. Ecology and Environment, 2022, 31(8): 1629-1636. |
[13] | JI Bingjing, LIU Yi, WU Yang, GAO Shutao, ZENG Xiangying, YU Zhiqiang. Occurrence, Source and Potential Ecological Risk of Parent and Oxygenated Polycyclic Aromatic Hydrocarbons in Sediments of Yangtze River Estuary and Adjacent East China Sea [J]. Ecology and Environment, 2022, 31(7): 1400-1408. |
[14] | ZHU Li'an, ZHANG Huihua, CHENG Jiong, LI Ting, LIN ZI, LI Junjie. Potential Ecological Risk Pattern Analysis of Heavy Metals in Soil of Forestry Land in The Pearl River Delta [J]. Ecology and Environment, 2022, 31(6): 1253-1262. |
[15] | PENG Hongli, TAN Haixia, WANG Ying, WEI Jianmei, FENG Yang. The Discrepancy of Heavy Metals Morphological Distribution in Soil and Its Associated Ecological Risk Evaluation under Different Planting Patterns [J]. Ecology and Environment, 2022, 31(6): 1235-1243. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn