Ecology and Environment ›› 2024, Vol. 33 ›› Issue (10): 1506-1515.DOI: 10.16258/j.cnki.1674-5906.2024.10.002
• Papers on Carbon Cycling and Carbon Emission Reduction • Previous Articles Next Articles
LI Rui1(), WANG Shaojun1,*(
), LAN Mengjie1, LUO Shuang1, XIA Jiahui1, YANG Shengqiu1, XIE Lingling1, XIAO Bo2, GUO Xiaofei2, WANG Zhengjun1, GUO Zhipeng1
Received:
2024-07-06
Online:
2024-10-18
Published:
2024-11-15
Contact:
WANG Shaojun
李瑞1(), 王邵军1,*(
), 兰梦杰1, 罗双1, 夏佳慧1, 杨胜秋1, 解玲玲1, 肖博2, 郭晓飞2, 王郑钧1, 郭志鹏1
通讯作者:
王邵军
作者简介:
李瑞(1999年生),女,硕士研究生,研究方向为土壤生态学。E-mail: mzby2022@163.com
基金资助:
CLC Number:
LI Rui, WANG Shaojun, LAN Mengjie, LUO Shuang, XIA Jiahui, YANG Shengqiu, XIE Lingling, XIAO Bo, GUO Xiaofei, WANG Zhengjun, GUO Zhipeng. Response of Soil Carbon Mineral Rate in Rocky Desertification to Arbuscular Mycorrhizal Fungi Inoculation[J]. Ecology and Environment, 2024, 33(10): 1506-1515.
李瑞, 王邵军, 兰梦杰, 罗双, 夏佳慧, 杨胜秋, 解玲玲, 肖博, 郭晓飞, 王郑钧, 郭志鹏. 石漠化土壤碳矿速率对丛枝菌根真菌接种的响应[J]. 生态环境学报, 2024, 33(10): 1506-1515.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2024.10.002
处理 | df | 均方 | F | p |
---|---|---|---|---|
不同接种 | 3 | 186.89 | 232.39 | 0.004 |
不同月份 | 3 | 221.41 | 275.31 | 0.001 |
不同土层 | 1 | 90.592 | 112.65 | 0.003 |
不同接种×月份 | 9 | 17.768 | 22.094 | 0.002 |
不同接种×土层 | 3 | 4.867 | 6.052 | 0.006 |
不同月份×土层 | 3 | 105.95 | 131.75 | 0.004 |
不同接种×月份×土层 | 9 | 5.221 | 6.492 | 0.008 |
Table 1 Variance analysis for the effects of inoculation treatments, soil layers and months on carbon mineralization rate
处理 | df | 均方 | F | p |
---|---|---|---|---|
不同接种 | 3 | 186.89 | 232.39 | 0.004 |
不同月份 | 3 | 221.41 | 275.31 | 0.001 |
不同土层 | 1 | 90.592 | 112.65 | 0.003 |
不同接种×月份 | 9 | 17.768 | 22.094 | 0.002 |
不同接种×土层 | 3 | 4.867 | 6.052 | 0.006 |
不同月份×土层 | 3 | 105.95 | 131.75 | 0.004 |
不同接种×月份×土层 | 9 | 5.221 | 6.492 | 0.008 |
处理 | 0‒5 cm | 5‒10 cm | |||||
---|---|---|---|---|---|---|---|
回归方程 | R | p | 回归方程 | R | p | ||
CE | y=0.051x2+3.667x+2.130 | 0.972 | 0.010 | y=7.550x2+0.230x+4.190 | 0.893 | 0.010 | |
RI | y=2.555x2−6.912x+12.306 | 0.845 | 0.027 | y=4.012x2−3.487x+7.857 | 0.884 | 0.002 | |
FM | y=0.052x2+5.295x+0.772 | 0.824 | 0.002 | y=3.123x2−0.600x+5.032 | 0.799 | 0.010 | |
CK | y = −8.075x2+15.745x+2.366 | 0.745 | 0.009 | y= −3.460x2+10.145x+0.813 | 0.560 | 0.035 |
Table 2 Relationship of soil carbon mineralization rate with microbial biomass carbon under AM inoculation treatments
处理 | 0‒5 cm | 5‒10 cm | |||||
---|---|---|---|---|---|---|---|
回归方程 | R | p | 回归方程 | R | p | ||
CE | y=0.051x2+3.667x+2.130 | 0.972 | 0.010 | y=7.550x2+0.230x+4.190 | 0.893 | 0.010 | |
RI | y=2.555x2−6.912x+12.306 | 0.845 | 0.027 | y=4.012x2−3.487x+7.857 | 0.884 | 0.002 | |
FM | y=0.052x2+5.295x+0.772 | 0.824 | 0.002 | y=3.123x2−0.600x+5.032 | 0.799 | 0.010 | |
CK | y = −8.075x2+15.745x+2.366 | 0.745 | 0.009 | y= −3.460x2+10.145x+0.813 | 0.560 | 0.035 |
处理 | 0‒5 cm | 5‒10 cm | |||||
---|---|---|---|---|---|---|---|
回归方程 | R | p | 回归方程 | R | p | ||
CE | y= −0.002x2+0.617x−21.433 | 0.923 | 0.001 | y=0.002x2−0.007x+7.059 | 0.828 | 0.022 | |
RI | y= −0.001x2+0.370x−8.281 | 0.809 | 0.007 | y= −0.020x2+2.895x−89.177 | 0.806 | 0.004 | |
FM | y=0.013x2−0.699x+9.917 | 0.702 | 0.012 | y=0.001x2+0.389x−12.240 | 0.800 | 0.003 | |
CK | y=0.012x2−0.595x+7.195 | 0.687 | 0.030 | y=0.005x2−0.070x−0.635 | 0.665 | 0.040 |
Table 3 Relationship of soil carbon mineralization rate with microbial biomass nitrogen under AM inoculation treatments
处理 | 0‒5 cm | 5‒10 cm | |||||
---|---|---|---|---|---|---|---|
回归方程 | R | p | 回归方程 | R | p | ||
CE | y= −0.002x2+0.617x−21.433 | 0.923 | 0.001 | y=0.002x2−0.007x+7.059 | 0.828 | 0.022 | |
RI | y= −0.001x2+0.370x−8.281 | 0.809 | 0.007 | y= −0.020x2+2.895x−89.177 | 0.806 | 0.004 | |
FM | y=0.013x2−0.699x+9.917 | 0.702 | 0.012 | y=0.001x2+0.389x−12.240 | 0.800 | 0.003 | |
CK | y=0.012x2−0.595x+7.195 | 0.687 | 0.030 | y=0.005x2−0.070x−0.635 | 0.665 | 0.040 |
指标 | 不同接种处理 | |||
---|---|---|---|---|
CE | RI | FM | CK | |
pH | 7.42±0.09b | 7.61±0.04ab | 7.68±0.03ab | 7.72±0.01a |
wTOC/(g∙kg−1) | 17.43±0.03a | 16.94±0.49ab | 15.93±0.13b | 13.74±0.14c |
wROC/(g∙kg−1) | 7.36±0.59a | 6.44±0.10ab | 5.83±0.03b | 4.01±0.26c |
wMBC/(g∙kg−1) | 2.19±0.08a | 1.71±0.52b | 1.47±0.19b | 0.98±0.10c |
wTN/(g∙kg−1) | 3.83±0.21a | 2.91±0.07b | 2.73±0.04b | 1.96±0.05c |
wHN/(mg∙kg−1) | 76.15±0.42a | 59.44±3.28b | 51.95±0.89b | 35.72±1.82c |
wNN/(mg∙kg−1) | 10.36±0.10a | 8.93±0.38b | 8.06±0.20b | 3.76±0.46c |
wAN/(mg∙kg−1) | 6.08±0.41a | 5.15±0.07b | 4.53±0.40b | 2.96±0.47c |
wMBN/(mg∙kg−1) | 61.74±0.48a | 60.40±0.05a | 56.34±0.73b | 49.64±0.30c |
wTP/(g∙kg−1) | 1.75±0.05a | 1.68±0.01a | 1.47±0.06b | 1.13±0.04c |
wAP/(mg∙kg−1) | 57.96±2.18a | 52.20±1.22b | 35.75±0.81c | 33.82±0.56c |
wSW/(%) | 11.91±0.81a | 9.69±1.07ab | 7.14±0.26bc | 4.77±0.11c |
wBD/(g∙cm−3) | 1.50±0.08b | 1.61±0.02ab | 1.51±0.01b | 1.69±0.01a |
wRC/(%) | 91.22±4.14a | 75.21±3.41b | 56.43±2.82c | 35.32±1.90d |
wHLD/(m∙g−1) | 3.96±0.62a | 2.85±0.40b | 2.34±0.31c | 1.84±0.11d |
Table 4 Changes in root colonization, hyphal length density, and soil properties under AM inoculation treatments
指标 | 不同接种处理 | |||
---|---|---|---|---|
CE | RI | FM | CK | |
pH | 7.42±0.09b | 7.61±0.04ab | 7.68±0.03ab | 7.72±0.01a |
wTOC/(g∙kg−1) | 17.43±0.03a | 16.94±0.49ab | 15.93±0.13b | 13.74±0.14c |
wROC/(g∙kg−1) | 7.36±0.59a | 6.44±0.10ab | 5.83±0.03b | 4.01±0.26c |
wMBC/(g∙kg−1) | 2.19±0.08a | 1.71±0.52b | 1.47±0.19b | 0.98±0.10c |
wTN/(g∙kg−1) | 3.83±0.21a | 2.91±0.07b | 2.73±0.04b | 1.96±0.05c |
wHN/(mg∙kg−1) | 76.15±0.42a | 59.44±3.28b | 51.95±0.89b | 35.72±1.82c |
wNN/(mg∙kg−1) | 10.36±0.10a | 8.93±0.38b | 8.06±0.20b | 3.76±0.46c |
wAN/(mg∙kg−1) | 6.08±0.41a | 5.15±0.07b | 4.53±0.40b | 2.96±0.47c |
wMBN/(mg∙kg−1) | 61.74±0.48a | 60.40±0.05a | 56.34±0.73b | 49.64±0.30c |
wTP/(g∙kg−1) | 1.75±0.05a | 1.68±0.01a | 1.47±0.06b | 1.13±0.04c |
wAP/(mg∙kg−1) | 57.96±2.18a | 52.20±1.22b | 35.75±0.81c | 33.82±0.56c |
wSW/(%) | 11.91±0.81a | 9.69±1.07ab | 7.14±0.26bc | 4.77±0.11c |
wBD/(g∙cm−3) | 1.50±0.08b | 1.61±0.02ab | 1.51±0.01b | 1.69±0.01a |
wRC/(%) | 91.22±4.14a | 75.21±3.41b | 56.43±2.82c | 35.32±1.90d |
wHLD/(m∙g−1) | 3.96±0.62a | 2.85±0.40b | 2.34±0.31c | 1.84±0.11d |
[1] | ALMALIKI S, EBREESUM H, 2020. Changes in soil carbon mineralization, soil microbes, roots density and soil structure following the application of the arbuscular mycorrhizal fungi and green algae in the arid saline soil[J]. Rhizosphere, 14: 2452-2198. |
[2] |
BARBARA D, S A P, HENK D, et al., 2010. Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2[J]. Proceedings of the National Academy of Sciences of the United States of America, 107(24):10938-10942.
DOI PMID |
[3] | BARNARD R L, OSBORNE C A, FIRESTONE M K, 2013. Responses of soil bacterial and fungal communities to extreme desiccation and rewetting[J]. The Isme Journal, 7(11): 2229-2241. |
[4] | CONTIN M, CORCIMARU S, NOBILI D M, et al., 2000. Temperature changes and the ATP concentration of the soil microbial biomass[J]. Soil Biology and Biochemistry, 32(8): 1219-1225. |
[5] | CAMENZIND T, RILLIG M C, 2013. Extraradical arbuscular mycorrhizal fungal hyphae in an organic tropical montane forest soil[J]. Soil Biology and Biochemistry, 64: 96-102. |
[6] |
CHEN R R, SENBAYRAM M, BLAGODATSKY S, et al., 2014. Soil C and N availability determine the priming effect: Microbial N mining and stoichiometric decomposition theories[J]. Global Change Biology, 20(7): 2356-2367.
DOI PMID |
[7] |
CHAO L, WULF A, JOHANNES L, et al., 2019. Quantitative assessment of microbial necromass contribution to soil organic matter[J]. Global Change Biology, 25(11): 3578-3590.
DOI PMID |
[8] | FROST S M, STAH D D, WILLIANMS S E, 2001. Long-term reestablishment of arbuscular mycorrhizal disturbed semiarid surface mine soil[J]. Arid Land Research and Management, 15(1): 3-12. |
[9] | GRELET G A, DAVID J, ERIC P, et al., 2009. Reciprocal carbon and nitrogen transfer between an ericaceous dwarf shrub and fungi isolated from Piceirhiza bicolorata ectomycorrhizas[J]. The New Phytologist, 182(2): 359-366. |
[10] | HEINZE S, RAUPP J, JOERGENSEN G R, 2010. Effects of fertilizer and spatial heterogeneity in soil pH on microbial biomass indices in a long-term field trial of organic agriculture[J]. Plant and Soil, 328(1-2): 203-215. |
[11] | HAWKES C V, KIVLIN S N, ROCCA J D, et al., 2011. Fungal community responses to precipitation[J]. Global Change Biology, 17(4): 1637-1645. |
[12] | JOHANNERS R, ERLAND B, BROOKES P C, et al., 2010. Soil bacterial and fungal communities across a pH gradient in an arable soil[J]. The Isme Journal, 4(10): 1340-1351. |
[13] | JUAREZ S, NUNAN N, DUDAY A C, et al., 2013. Soil carbon mineralisation responses to alterations of microbial diversity and soil structure[J]. Biology and Fertility of Soils: Cooperating Journal of the International Society of Soil Science, 49(7): 939-948. |
[14] | KLIRONOMOS N J, 2003. Variation in plant response to native and exotic arbuscular mycorrhizal fungi[J]. Ecology, 84(9): 2292-2301. |
[15] | LINN D M, DORAN J W, 1984. Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils[J]. Soil Science Society of America Journal, 48(6): 1267-1272. |
[16] |
LIANG C, DAS K C, MCCLENDON R W, 2003. The influence of temperature and moisture contents regimes on the aerobic microbial activity of a biosolids composting blend[J]. Bioresource Technology, 86(2): 131-137.
PMID |
[17] | POLL C, INGWERSEN J, STEMMER M, et al., 2006. Mechanisms of solute transport affect small-scale abundance and function of soil microorganisms in the detritusphere[J]. European Journal of Soil Science, 57(4): 583-595. |
[18] | PIETRI A J, BROOKES P, 2009. Substrate inputs and pH as factors controlling microbial biomass, activity and community structure in an arable soil[J]. Soil Biology and Biochemistry, 41(7): 1396-1405. |
[19] |
PHILLIPS R P, BRZOSTEK E, MIDGLEY M G, 2013. The mycorrhizal-associated nutrient economy: A new framework for predicting carbon-nutrient couplings in temperate forests[J]. New Phytologist, 199(1): 41-51.
DOI PMID |
[20] | REN C J, CHEN J, LU X J, et al., 2017. Responses of soil total microbial biomass and community compositions to rainfall reductions[J]. Soil Biology and Biochemistry, 116: 4-10. |
[21] | SIX J, BOSSUYT H, DEGRYZE S, et al., 2004. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics[J]. Soil and Tillage Research, 79(1): 7-31. |
[22] | SINGH R, BEHL R, JAIN P, et al., 2007. Performance and gene effects for root characters and micronutrient uptake in wheat inoculated with arbuscular mycorrhizal fungi and[J]. Acta Agronomica Hungarica, 55(3): 325-330. |
[23] | SPONSELLER A R, 2007. Precipitation pulses and soil CO2 flux in a sonoran desert ecosystem[J]. Global Change Biology, 13(2): 426-436. |
[24] | SMITH E J, READ D, 2009. Mycorrhizal symbiosis (third Edition)[J]. Soil Science Society of America Journal, 73(2): 694. |
[25] |
STEFANO M, SCHIMEL P J, AMILCARE P, 2012. Responses of soil microbial communities to water stress: Results from a meta-analysis[J]. Ecology, 93(4): 930-938.
DOI PMID |
[26] | TEOMAN G, DILEK G, 2021. Changes in carbon stocks of soil and forest floor in black pine plantations in turkey[J]. Journal of Forestry Research, 32(1): 339-347. |
[27] | WANG C, MORRISSEY E M, MAU R L, et al., 2021. The temperature sensitivity of soil: Microbial biodiversity, growth, and carbon mineralization[J]. The Isme Journal, 15(9): 2738-2747. |
[28] | 安丽芸, 2019. 微生物多样性及外加碳源对土壤碳矿化的影响[D]. 太原: 山西大学: 29-37. |
AN L Y, 2019. The effect of microbial diversity and carbon sources on soil mineralization[D]. Taiyuan: Shanxi University: 29-37. | |
[29] | 曹乾斌, 王邵军, 任玉连, 等, 2019. 蚂蚁筑巢对西双版纳热带森林土壤碳矿化动态的影响[J]. 应用生态学报, 30(12): 4231-4239. |
CAO Q B, WANG S J, REN Y L, et al., 2019. Effects of ant colonization on spatiotemporal variation of organic carbon mineralization in Xishuangbanna tropical forest soils[J]. Chinese Journal of Applied Ecology, 30(12): 4231-4239. | |
[30] | 陈果, 刘岳燕, 姚槐应, 等, 2006. 一种测定淹水土壤中微生物生物量碳的方法: 液氯熏蒸浸提-水浴法[J]. 土壤学报, 43(6): 981-988. |
CHEN G, LIU Y Y, YAO H Y, et al., 2006. A method for measuring microbial biomass C in waterlogged soil: Chlorineo form fumigation extraction- water bath method[J]. Acta Pedologica Sinica, 43(6): 981-988. | |
[31] | 楚海燕, 2019. 中亚热带森林转换对土壤团聚体中微生物群落结构及酶活性的影响[D]. 福州: 福建师范大学: 32-47. |
CHU H Y, 2019. Effects of forest conversion on microbial community structure and enzyme activities in soil aggregates in mid-subtropical China[D]. Fuzhou: Fujian Normal University: 32-47. | |
[32] | 段灏, 王磊, 曹湛波, 2016. 接种丛植菌根真菌对湿生植物氮磷吸收能力的影响[J]. 工业微生物, 46(6): 1-6. |
DUAN H, WANG L, CAO Z B, 2016. Effects of arbuscular mycorrhizal fungi on absorption of nitrogen and phosphorous in aquatic plants[J]. Industrial Microbiology, 46(6): 1-6. | |
[33] | 董星丰, 2023. 大兴安岭多年冻土区土壤碳矿化及微生物机制研究[D]. 哈尔滨: 哈尔滨师范大学: 50-114. |
DONG X F, 2023. Soil carbon mineralization and microbial mechanism in permafrost region of Great Hing’an Mountains[D]. Harbin: Harbin Normal University:50-114. | |
[34] |
鄂晓伟, 田野, 李晓凤, 等, 2019. 亚热带北缘次生阔叶林土壤性状和菌根真菌多样性随坡位的变化[J]. 生态环境学报, 28(4): 676-685.
DOI |
E X W, TIAN Y, LI X F, et al., 2019. Effects of slope position on soil properties and mycorrhiza fungi diversity in secondary broad-leaved forest in north rim of subtropical zone[J]. Ecology and Environmental Sciences, 28(4): 676-685. | |
[35] | 黄辉, 陈光水, 谢锦升, 等, 2008. 土壤微生物生物量碳及其影响因子研究进展[J]. 湖北林业科技 (4): 34-41. |
HUANG H, CHEN G S, XIE J S, et al., 2008. Advances on soil microbial biomass carbon and its effect factor[J]. Hubei Forestry Science and Technology (4): 34-41. | |
[36] | 焦盼盼, 2023. 水分变化对黄土高原典型土壤有机碳矿化影响的微生物作用机制[D]. 北京: 中国科学院大学(中国科学院教育部水土保持与生态环境研究中心): 82-117. |
JIAO P P, 2023. Mechanisms of microbial effects of water change on organic carbon mineralization of typical soil on the Loess Plateau[D]. Beijing: University of Chinese Academy of Sciences (Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education):82-117. | |
[37] | 金文豪, 邵帅, 陈俊辉, 等, 2021. 不同类型菌根对土壤碳循环的影响差异研究进展[J]. 浙江农林大学学报, 38(5): 953-962. |
JIN W H, SHAO S, CHEN J H, et al., 2021. Research progress in the impact of different mycorrhizal types on soil carbon cycling[J]. Journal of Zhejiang Agriculture and Forestry University, 38(5): 953-962. | |
[38] | 康成芳, 宫渊波, 车明轩, 等, 2020. 川西高寒山地灌丛草甸不同海拔土壤有机碳矿化的季节动态[J]. 生态学报, 40(4): 1367-1375. |
KANG C F, GONG Y B, CHE M X, et al., 2020. Seasonal dynamics of soil organic carbon mineralization for alpine shrub meadow at different elevations, wester Sichuan[J]. Acta Ecologica Sinica, 40(4): 1367-1375. | |
[39] | 李晶晶, 2021. 氮添加对人工油松林土壤碳氮矿化过程及其微生物调控机制的影响[D]. 咸阳: 西北农林科技大学: 20-91. |
LI J J, 2021. Effects of nitrogen addition on soil carbon and nitrogen mineralization and microbial regulation mechanism in a Pinus tabulaeformis forest[D]. Xianyang: Northwest Agriculture and Forestry University: 20-91. | |
[40] |
李秀清, 李晓红, 2019. 鄱阳湖湿地不同植物群落土壤养分及微生物多样性研究[J]. 生态环境学报, 28(2): 385-394.
DOI |
LI X Q, LI X H, 2019. Variation of soil nutrients and microbial community diversity in the wetland of Poyang Lake[J]. Ecology and Environmental Sciences, 28(2): 385-394. | |
[41] | 刘方园, 2023. 氮添加和温度变化对土壤碳氮矿化及酶活性的影响研究[D]. 西安: 西安理工大学: 39-51. |
LIU F Y, 2023. Effects of nitrogen addition and temperature changes on soil carbon and nitrogen mineralization and enzyme activity[D]. Xi’an: Xi’an University of Technology: 39-51. | |
[42] | 鲁如坤, 2000. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社: 166-185. |
LU R K, 2000. Methods for agricultural chemical analysis of soil[M]. Beijing: China Agricultural Science and Technology Press: 166-185. | |
[43] | 荣慧, 房焕, 张中彬, 等, 2022. 团聚体大小分布对孔隙结构和土壤有机碳矿化的影响[J]. 土壤学报, 59(2): 476-485. |
RONG H, FANG H, ZHANG Z B, et al., 2022. Effects of aggregate size distribution on soil pore structure and soil organic carbon mineralization[J]. Acta Pedologica Sinica, 59(2): 476-485. | |
[44] | 史学军, 潘剑君, 陈锦盈, 等, 2009. 不同类型凋落物对土壤有机碳矿化的影响[J]. 环境科学, 30(6): 1832-1837. |
SHI X J, PAN J J, CHEN J Y, et al., 2009. Effects of different types of litters on soil organic carbon mineralization[J]. Environmental Science, 30(6): 1832-1837. | |
[45] | 宋歌, 孙波, 教剑英, 2007. 测定土壤硝态氮的紫外分光光度法与其他方法的比较[J]. 土壤学报, 44(2): 288-293. |
SONG G, SUN B, JIAO J Y, 2007. Comparison between UV spectrophotometry and other methods for determining soil nitrate nitrogen[J]. Acta Pedologica Sinica, 44(2): 288-293. | |
[46] | 孙吉庆, 刘润进, 李敏, 2012. 丛枝菌根真菌提高植物抗逆性的效应及其机制研究进展[J]. 植物生理学报, 48(9): 845-852. |
SUN J Q, LIU R J, LI M, 2012. Advances in the study of increasing plant stress resistance and mechanisms by arbuscular mycorrhizal fungi[J]. Plant Physiology Journal, 48(9): 845-852. | |
[47] |
王邵军, 2020. “植物-土壤”相互反馈的关键生态学问题: 格局、过程与机制[J]. 南京林业大学学报(自然科学版), 44(2): 1-9.
DOI |
WANG S J, 2020. Key ecological issues in plant-soil feedback: Pattern, process and mechanism[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 44(2): 1-9. | |
[48] | 王邵军, 李霁航, 陆梅, 等, 2019. “AM真菌-根系-土壤” 耦合作用机制研究进展[J]. 中南林业科技大学学报, 39(12): 1-9. |
WANG S J, LI J H, LU M, et al., 2019. Advance on the mechanism of coupling interactions among AM fungi, roots and soils[J]. Journal of Central South University of Forestry and Technology, 39(12): 1-9. | |
[49] |
王邵军, 左倩倩, 曹乾斌, 等, 2022. 云南寻甸石漠化土壤易氧化碳对丛枝菌根真菌共生的响应[J]. 南京林业大学学报(自然科学版), 46(1): 7-14.
DOI |
WANG S J, ZUO Q Q, CAO Q B, et al., 2022. Response of readily oxidized carbon to arbuscular mycorrhizal (AM) fungi inoculations in rocky desert soil, Xundian, Yunnan Province[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 46(1): 7-14. | |
[50] | 王星, 孙沙沙, 王桂红, 等, 2018. 土壤水溶性有机碳的高锰酸钾氧化比色法测定研究[J]. 江苏农业科学, 46(16): 246-249. |
WANG X, SUN S S, WANG G H, et al., 2018. Study on the determination of water-soluble organic carbon in soil by potassium permanganate oxidation colorimetric method[J]. Jangsu Agricultural Sciences, 46(16): 246-249. | |
[51] | 汪欣, 向兆, 李策, 等, 2020. 全自动凯氏定氮仪测定土壤全氮含量方法的优化探索[J]. 山东农业大学学报(自然科学版), 51(3): 438-440, 446. |
WANG X, XIANG Z, LI C, et al., 2020. Optimization of the method for determination of total nitrogen in soil by automatic kjeldahl apparatus[J]. Journal of Shandong Agricultural University (Natural Science Edition), 51(3): 438-440, 446. | |
[52] | 肖孔操, 2015. 土壤不同初始pH条件下外源植物物料碳氮矿化与碱度释放特征研究[D]. 杭州: 浙江大学: 34-45. |
XIAO K C, 2015. Carbon and nitrogen mineralization and alkalinity release following application of plant materials to acid soils differing in initial pH[D]. Hangzhou: Zhejiang University: 34-45. | |
[53] | 解玲玲, 王邵军, 肖博, 等, 2023. 土壤碳库积累与分配对热带森林恢复的响应[J]. 生态学报, 43(23): 9877-9890. |
XIE L L, WANG S J, XIAO B, et al., 2023. Responses of soil carbon component accumulation and allocation to tropical forest restoration[J]. Acta Ecologica Sinica, 43(23): 9877-9890. | |
[54] | 许华, 何明珠, 唐亮, 等, 2020. 荒漠土壤微生物量碳、氮变化对降水的响应[J]. 生态学报, 40(4): 1295-1304. |
XU H, HE M Z, TANG L, et al., 2020. Response of changes of microbial biomass carbon and nitrogen to precipitation in desert soil[J]. Acta Ecologica Sinica, 40(4): 1295-1304. | |
[55] | 许淼平, 任成杰, 张伟, 等, 2018. 土壤微生物生物量碳氮磷与土壤酶化学计量对气候变化的响应机制[J]. 应用生态学报, 29(7): 2445-2454. |
XU M P, REN C J, ZHANG W, et al., 2018. Responses mechanism of C꞉N꞉P stoichiometry of soil microbial biomass and soil enzymes to climate change[J]. Chinese Journal of Applied Ecology, 29(7): 2445-2454. | |
[56] | 许展颖, 陈小梅, 张雪莹, 等, 2023. 短期降水控制对鼎湖山南亚热带季风林土壤有机碳及官能团碳组分的影响[J]. 生态科学, 42(5): 223-230. |
XU Z Y, CHEN X M, ZHANG X Y, et al., 2023. Effects of short-term precipitation manipulation on soil organic carbon and organic carbon groups in the south subtropical monsoon forest of Dinghushan[J]. Ecological Science, 42(5): 223-230. | |
[57] | 杨继松, 刘景双, 孙丽娜, 2008. 温度、水分对湿地土壤有机碳矿化的影响[J]. 生态学杂志, 27(1): 38-42. |
YANG J S, LIU J S, SUN L N, 2008. Effects of temperature and soil moisture on wetland soil organic carbon mineralization[J]. Chinese Journal of Ecology, 27(1): 38-42. | |
[58] | 尹宁宁, 王丽萍, 2014. 复垦基质中有机碳和丛植菌根真菌对团聚体形成的影响[J]. 河北师范大学学报(自然科学版), 38(5): 518-524. |
YIN N N, WANG L P, 2014. The effect of organic carbon and arbuscular mycorrhizal fungi on aggregate formation in reclaimed soil in mining area[J]. Journal of Hebei Normal University (Natural Science Edition), 38(5): 518-524. | |
[59] | 殷士学, 1993. 土壤微生物生物量及其与养分循环关系的研究进展[J]. 土壤学进展 (4): 1-8. |
YIN S X, 1993. Research progress on soil microbial biomass and its relationship with nutrient cycling[J]. Advances in Soil Science (4): 1-8. | |
[60] | 喻彩丽, 李亮, 张贝, 等, 2023. 丛枝菌根真菌和解磷菌对青梅根系发育、磷吸收及土壤磷有效性的影响[J]. 江苏农业科学, 51(17): 240-248. |
YU C L, LI L, ZHANG B, et al., 2023. Arbuscular mycorrhizal fungi and phosphate-solubilizing bacteria on root development and phosphorus absorption of green plum and the effects of soil phosphorus availability[J]. Jiangsu Agricultural Sciences, 51(17): 240-248. | |
[61] | 张丹丹, 2018. 模拟增温对土壤有机碳矿化及腐殖质组成的影响[D]. 长春: 吉林农业大学: 10-11. |
ZHANG D D, 2018. Effects of experimental warming on organic carbon mineralization and humus composition of soils[D]. Changchun: Jilin Agricultural University: 10-11. | |
[62] | 张林海, 曾从盛, 仝川, 2011. 生源要素有效性及生物因子对湿地土壤碳矿化的影响[J]. 生态学报, 31(18): 5387-5395. |
ZHANG L H, ZENG C S, TONG C, 2011. A review on the effects of biogenic elements and biological factors on wetland soil carbon mineralization[J]. Acta Ecologica Sinica, 31(18): 5387-5395. | |
[63] |
左倩倩, 王邵军, 陈闽昆, 等, 2020. 土壤碳矿化对西双版纳热带森林恢复演替的响应[J]. 生态环境学报, 29(7): 1318-1325.
DOI |
ZUO Q Q, WANG S J, CHEN M K, et al., 2020. Response of soil carbon mineralization to restoration succession of Xishuangbanna tropical forests[J]. Ecology and Environmental Sciences, 29(7): 1318-1325. | |
[64] | 张昆凤, 王邵军, 张路路, 等, 2023. 土壤细菌呼吸对西双版纳热带森林恢复的响应[J]. 生态学报, 43(10): 4142-4153. |
ZHANG K F, WANG S J, ZHANG L L, et al., 2023. Response of soil bacterial respiration to tropical forest restoration in Xishuangbanna, China[J]. Acta Ecologica Sinica, 43(10): 4142-4153. | |
[65] | 赵爽, 王邵军, 杨波, 等, 2022. 接种丛枝菌根真菌对云南石漠化土壤呼吸的影响[J]. 生态学报, 42(21): 8830-8838. |
ZHAO S, WANG S J, YANG B, et al., 2022. Effects of arbuscular mycorrhiza fungi inoculations on soil respiration in Yunnan rocky desertification habitat[J]. Acta Ecologica Sinica, 42(21): 8830-8838. | |
[66] | 郑智超, 2023. 呼玛河流域多年冻土区森林和湿地土壤有机碳矿化及其温度敏感性研究[D]. 哈尔滨: 哈尔滨师范大学: 1-45. |
ZHENG Z C, 2023. Study on soil organic carbon mineralization and temperature sensitivity of forest and wetland in permafrost regions of the Huma River Basin[D]. Harbin: Harbin Normal University:1-45. | |
[67] | 朱玉帆, 刘伟超, 李佳欣, 等, 2023. 黄土丘陵区人工刺槐林土壤有机碳矿化特征及其与有机碳组分的关系[J]. 环境科学, 44(1): 444-451. |
ZHU Y F, LIU W C, LI J X, et al., 2023. Mineralization characteristics of soil organic carbon and its relationship with organic carbon components in artificial Robinia pseudoacacia forest in loess hilly region[J]. Environmental Science, 44(1): 444-451. | |
[68] |
周祉蕴, 王奕钧, 杨艳丽, 等, 2024. 脉冲降水和凋落物对温性草原土壤碳矿化激发效应的影响[J]. 草地学报, 32(3): 879-888.
DOI |
ZHOU Z Y, WANG Y J, YANG Y L, et al., 2024. Influence of pulsed precipitation and litter on the priming effects of soil carbon mineralization in temperate steppe[J]. Acta Agrestia Sinica, 32(3): 879-888. |
[1] | LI Yanlin, CHEN Yangyang, YANG Shuangrong, LIU Jumei. Study on the Effects of Organic Acids in Plant Root Exudates on Soil Organic Carbon and Nitrogen Mineralization [J]. Ecology and Environment, 2024, 33(9): 1362-1371. |
[2] | WU Yunpeng, LI Yanmei, HU Yuanze, WANG Yan, CHE Guangxin, LIU Fangjun. The Impact of Different Photovoltaic Array Treatments on the Physicochemical Properties, Bacterial Community Composition, and Diversity of Soils in Rocky Desertification Areas of Central Yunnan [J]. Ecology and Environment, 2024, 33(10): 1570-1579. |
[3] | TANG Zhiwei, WENG Ying, ZHU Xiatong, CAI Hongmei, DAI Wenci, WANG Pengna, ZHENG Baoqiang, LI Jincai, CHEN Xiang. Meta-analysis of Soil Microbial Mass Carbon and Its Influencing Factors in Farmland in China under Straw Return [J]. Ecology and Environment, 2023, 32(9): 1552-1562. |
[4] | LIANG Xin, HAN Yafeng, ZHENG Ke, WANG Xugang, CHEN Zhihuai, DU Juan. Effects of Fe3O4 on Soil Carbon Mineralization in Paddy Field [J]. Ecology and Environment, 2023, 32(9): 1615-1622. |
[5] | LIU Han, WANG Ping, SUN Luyuan, QING Wenjing, CHEN Xiaofen, CHEN Jin, ZHOU Guopeng, LIANG Ting, LIU Jia, LI Yanli. Effects of Winter Green Manure Planting on Soil Microbial Biomass Carbon, Nitrogen, and Enzyme Activity in Red Soil Young Citrus Orchard [J]. Ecology and Environment, 2023, 32(9): 1623-1631. |
[6] | XU Zijin, ZHANG Xuesong, CHEN Mingman. Analysis of Spatiotemporal Evolution Characteristics of Ecosystem Services in Mountainous Karst Areas: A Case Study of Guizhou Province, China [J]. Ecology and Environment, 2023, 32(7): 1196-1206. |
[7] | QIN Jiaqi, XIAO Zhirou, MING Angang, ZHU Hao, TENG Jinqian, LIANG Zeli, TAO Yi, QIN Lin. Effect of Monoculture and Mixed Plantation with Coniferous and Broadleaved Tree Species on Soil Microbial Carbon Cycle Functional Gene Abundance [J]. Ecology and Environment, 2023, 32(10): 1719-1731. |
[8] | LI Weiwen, HUANG Jinquan, QI Yujie, LIU Xiaolan, LIU Jigen, MAO Zhichao, GAO Xiufang. Meta-analysis of Soil Microbial Biomass Carbon Content and Its Influencing Factors under Soil Erosion [J]. Ecology and Environment, 2023, 32(1): 47-55. |
[9] | HUANG Weijia, LIU Chun, LIU Yue, HUANG Bin, LI Dingqiang, YUAN Zaijian. Soil Ecological Stoichiometry and Its Influencing Factors at Different Elevations in Nanling Mountains [J]. Ecology and Environment, 2023, 32(1): 80-89. |
[10] | CUI Qiao, LI Zongxing, ZHANG Baijuan, ZHAO Yue, NAN Fusen. A Meta-analysis of the Effects of Freezing and Thawing on Soil Dissolved Carbon and Nitrogen and Microbial Biomass Carbon and Nitrogen Contents [J]. Ecology and Environment, 2022, 31(8): 1700-1712. |
[11] | MA Huiying, LI Xinzhu, MA Xinyu, GONG Lu. Characteristics and Driving Factors of Soil Organic Carbon Fractions under Different Vegetation Types of the mid-Northern Piedmont of the Tianshan Mountains, Xinjiang [J]. Ecology and Environment, 2022, 31(6): 1124-1131. |
[12] | GONG Lingxuan, WANG Lili, ZHAO Jianning, LIU Hongmei, YANG Dianlin, ZHANG Guilong. Effects of Different Cover Crop Patterns on Soil Physicochemical Properties and Organic Carbon Mineralization in Tea Gardens [J]. Ecology and Environment, 2022, 31(6): 1141-1150. |
[13] | LI Mengli, XU Moxin, CHEN Yongshan, YE Lili, JIANG Jinping. Effects of Different Amounts of Calcium Carbonate on the Mineralization of Straw Organic Carbon in Calcareous Soil [J]. Ecology and Environment, 2022, 31(10): 2002-2009. |
[14] | CHEN Shuangshuang, ZHU Ninghua, ZHOU Guangyi, YUAN Xingming, SHANG Hai, WANG Yixuan. Vegetation and Soil Physical Characteristics of Artificial Arbor Forests under Different Grades of Rocky Desertification [J]. Ecology and Environment, 2022, 31(1): 52-61. |
[15] | HU Rui, FANG Huanying, XIAO Shengsheng, DUAN Jian, ZHANG Jie, LIU Hongguang, TANG Chongjun. Soil Carbon Sink Effect of Main Management Models in Typical Granite Erosion Area of Red Soil in South China [J]. Ecology and Environment, 2021, 30(8): 1617-1626. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn