Ecology and Environment ›› 2023, Vol. 32 ›› Issue (8): 1487-1495.DOI: 10.16258/j.cnki.1674-5906.2023.08.014
• Research Article [Environmental Sciences] • Previous Articles Next Articles
LIANG Chuan1(), YANG Yanfang2,*(
), YU Shanshan1, ZHOU Li1, ZHANG Jingwei1, ZHANG Xiujuan2
Received:
2023-02-22
Online:
2023-08-18
Published:
2023-11-08
Contact:
YANG Yanfang
梁川1(), 杨艳芳2,*(
), 俞姗姗1, 周利1, 张经纬1, 张秀娟2
通讯作者:
杨艳芳
作者简介:
梁川(1996年生),男,硕士,主要研究方向为土壤微生物生态。E-mail: joyecl1015@163.com
基金资助:
CLC Number:
LIANG Chuan, YANG Yanfang, YU Shanshan, ZHOU Li, ZHANG Jingwei, ZHANG Xiujuan. Differences of Microbial Biomass and Community Structure Characteristics in Sediments under Net-pen and Pond Fish Farming[J]. Ecology and Environment, 2023, 32(8): 1487-1495.
梁川, 杨艳芳, 俞姗姗, 周利, 张经纬, 张秀娟. 围网与围塘养鱼下沉积物微生物量和群落结构特征差异[J]. 生态环境学报, 2023, 32(8): 1487-1495.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2023.08.014
生境 | w(粘粒)/% | w(粉粒)/% | w(砂砾)/% | pH | w(有机质)/(g∙kg-1) | w(全磷)/(g∙kg-1) | w(有效磷)/(mg∙kg-1) | w(全氮)/(g∙kg-1) | w(碱解氮)/(mg∙kg-1) | |
---|---|---|---|---|---|---|---|---|---|---|
季节性 淹水 | 围网 | 38.71±9.92a | 51.59±5.86ab1) | 9.70±5.50a | 5.13±0.32c | 79.39±20.10a | 0.68±0.08b | 18.40±9.23a | 2.01±0.62a | 77.00±19.80b |
围塘 | 37.69±8.39a | 52.46±4.92a | 9.85±6.95a | 5.54±0.42bc | 62.55±31.00ab | 0.69±0.15b | 19.44±9.00a | 1.76±0.96ab | 108.11±40.23a | |
常年 淹水 | 围网 | 30.30±7.28a | 53.16±6.96a | 16.55±10.83a | 6.01±0.50ab | 64.64±26.34ab | 0.93±0.16a | 17.29±9.98a | 1.56±0.70ab | 63.78±7.38b |
围塘 | 35.18±13.52a | 45.75±5.33c | 19.08±14.92a | 6.26±0.39a | 40.85±10.91c | 1.13±0.28a | 22.16±7.04a | 1.03±0.45c | 77.00±18.52b |
Table1 Basic physical and chemical properties of sediments in the studied area
生境 | w(粘粒)/% | w(粉粒)/% | w(砂砾)/% | pH | w(有机质)/(g∙kg-1) | w(全磷)/(g∙kg-1) | w(有效磷)/(mg∙kg-1) | w(全氮)/(g∙kg-1) | w(碱解氮)/(mg∙kg-1) | |
---|---|---|---|---|---|---|---|---|---|---|
季节性 淹水 | 围网 | 38.71±9.92a | 51.59±5.86ab1) | 9.70±5.50a | 5.13±0.32c | 79.39±20.10a | 0.68±0.08b | 18.40±9.23a | 2.01±0.62a | 77.00±19.80b |
围塘 | 37.69±8.39a | 52.46±4.92a | 9.85±6.95a | 5.54±0.42bc | 62.55±31.00ab | 0.69±0.15b | 19.44±9.00a | 1.76±0.96ab | 108.11±40.23a | |
常年 淹水 | 围网 | 30.30±7.28a | 53.16±6.96a | 16.55±10.83a | 6.01±0.50ab | 64.64±26.34ab | 0.93±0.16a | 17.29±9.98a | 1.56±0.70ab | 63.78±7.38b |
围塘 | 35.18±13.52a | 45.75±5.33c | 19.08±14.92a | 6.26±0.39a | 40.85±10.91c | 1.13±0.28a | 22.16±7.04a | 1.03±0.45c | 77.00±18.52b |
生境 | 微生物PLFAs总量/ (nmol∙g-1) | 细菌PLFAs含量/(nmol∙g-1) | 真菌PLFAs含量/ (nmol∙g-1) | |||||
---|---|---|---|---|---|---|---|---|
G+细菌 | G-细菌 | 放线菌 | 厌氧菌 | 总PLFAs | ||||
季节性 淹水 | 围网 | 44.56±12.44b | 10.81±3.19b | 12.49±3.48bc | 4.64±0.97a | 0.56±0.19a | 39.44±10.95b | 1.72±0.37b |
围塘 | 25.15±10.48c | 6.56±3.01b | 6.83±2.85c | 2.65±1.36b | 0.31±0.18b | 22.60±9.62c | 0.73±0.35c | |
常年 淹水 | 围网 | 93.85±21.86a | 22.14±5.38a | 28.27±10.58a | 4.51±1.10a | 0.72±0.19a | 73.45±20.09a | 4.81±1.22a |
围塘 | 45.02±7.51b | 10.79±2.49b | 14.45±3.24b | 2.32±0.37b | 0.28±0.07b | 38.53±6.29bc | 1.83±0.27b |
Table2 The amount of sediment microbial PLFAs under different fish farming models in the studied area
生境 | 微生物PLFAs总量/ (nmol∙g-1) | 细菌PLFAs含量/(nmol∙g-1) | 真菌PLFAs含量/ (nmol∙g-1) | |||||
---|---|---|---|---|---|---|---|---|
G+细菌 | G-细菌 | 放线菌 | 厌氧菌 | 总PLFAs | ||||
季节性 淹水 | 围网 | 44.56±12.44b | 10.81±3.19b | 12.49±3.48bc | 4.64±0.97a | 0.56±0.19a | 39.44±10.95b | 1.72±0.37b |
围塘 | 25.15±10.48c | 6.56±3.01b | 6.83±2.85c | 2.65±1.36b | 0.31±0.18b | 22.60±9.62c | 0.73±0.35c | |
常年 淹水 | 围网 | 93.85±21.86a | 22.14±5.38a | 28.27±10.58a | 4.51±1.10a | 0.72±0.19a | 73.45±20.09a | 4.81±1.22a |
围塘 | 45.02±7.51b | 10.79±2.49b | 14.45±3.24b | 2.32±0.37b | 0.28±0.07b | 38.53±6.29bc | 1.83±0.27b |
Figure 1 Relative proportions of different microbial population PLFAs in total microbial PLFAs under different fish farming models and their significance tests
生境 | 菌类比值 | Alpha 多样性指数 | ||||
---|---|---|---|---|---|---|
F/B | G+/G- | Simpson指数 | Shannon指数 | |||
季节性淹水 | 围网 | 0.17±0.04b | 0.87±0.09a | 0.06±0.01c | 3.20±0.12a | |
围塘 | 0.12±0.03b | 1.01±0.27a | 0.07±0.02bc | 2.91±0.09b | ||
常年 淹水 | 围网 | 0.31±0.18a | 0.86±0.03a | 0.08±0.01ab | 3.08±0.13a | |
围塘 | 0.18±0.04b | 0.78±0.25a | 0.09±0.01a | 2.81±0.06b |
Table 3 Ratio of different microbial population and microbial diversity index of sediments in the studied area
生境 | 菌类比值 | Alpha 多样性指数 | ||||
---|---|---|---|---|---|---|
F/B | G+/G- | Simpson指数 | Shannon指数 | |||
季节性淹水 | 围网 | 0.17±0.04b | 0.87±0.09a | 0.06±0.01c | 3.20±0.12a | |
围塘 | 0.12±0.03b | 1.01±0.27a | 0.07±0.02bc | 2.91±0.09b | ||
常年 淹水 | 围网 | 0.31±0.18a | 0.86±0.03a | 0.08±0.01ab | 3.08±0.13a | |
围塘 | 0.18±0.04b | 0.78±0.25a | 0.09±0.01a | 2.81±0.06b |
[1] |
BAHRAM M, HILDEBRAND F, FORSLUND S K, et al., 2018. Structure and function of the global topsoil microbiome[J]. Nature, 560(7717): 233-237.
DOI |
[2] |
BOSSIO D A, SCOW K M, 1998. Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utilization patterns[J]. Microbial Ecology, 35(3): 265-278.
DOI PMID |
[3] |
CHELOSSI E, VEZZULLI L, MILANO A, et al., 2003. Antibiotic resistance of benthic bacteria in fish-farm and control sediments of the Western Mediterranean[J]. Aquaculture, 219(1-4): 83-97.
DOI URL |
[4] | CURD E E, MARTINY J B H, LI H, et al., 2018. Bacterial diversity is positively correlated with soil heterogeneity[J]. Ecosphere, 9(1): 1-16. |
[5] |
DE MENEZES A B, PRENDERGAST-MILLER M T, POONPATANA P, et al., 2015. C/N ratio drives soil actinobacterial cellobiohydrolase gene diversity[J]. Applied and Environmental Microbiology, 81(9): 3016-3028.
DOI PMID |
[6] |
DE VRIES F T, HOFFLAND E, VAN EEKEREN N, et al., 2006. Fungal/bacterial ratios in grasslands with contrasting nitrogen management[J]. Soil Biology and Biochemistry, 38(8): 2092-2103.
DOI URL |
[7] |
FROSTEGRD A, BTH E, 1996. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil[J]. Biology and Fertility of Soils, 22(1-2): 59-65.
DOI URL |
[8] |
INGWERSEN J, POLL C, STRECK T, et al., 2008. Micro-scale modelling of carbon turnover driven by microbial succession at a biogeochemical interface[J]. Soil Biology and Biochemistry, 40(4): 864-878.
DOI URL |
[9] |
KUCUKSEZGIN F, PAZI I, GONUL L T, et al., 2021. The impact of fish farming on the water column and marine sediments in three coastal regions from eastern Aegean coast[J]. Environmental Science and Pollution Research, 28(23): 29564-29580.
DOI |
[10] |
LIU Z G, IQBAL M, ZENG Z B, et al., 2020. Comparative analysis of microbial community structure in the ponds with different aquaculture model and fish by high-throughput sequencing[J]. Microbial Pathogenesis, 142: 104101.
DOI URL |
[11] |
MARTENSSON L, OLSSON P A, 2012. Reductions in microbial biomass along disturbance gradients in a semi-natural grassland[J]. Applied Soil Ecology, 62: 8-13.
DOI URL |
[12] |
TAMMINEN M, KARKMAN A, CORANDER J, et al., 2011. Differences in bacterial community composition in Baltic Sea sediment in response to fish farming[J]. Aquaculture, 313(1-4): 15-23.
DOI URL |
[13] |
VEZZULLI L, CHELOSSI E, RICCARDI G, et al., 2002. Bacterial community structure and activity in fish farm sediments of the Ligurian sea (Western Mediterranean)[J]. Aquaculture international, 10(2): 123-141.
DOI URL |
[14] |
WU R S S, 1995. The environmental impact of marine fish culture: toward a sustainable future[J]. Marine Pollution Bulletin, 31(4-12): 159-166.
DOI URL |
[15] |
ZHOU A G, XIE S L, JUNAID M, et al., 2021. First insight into the environmental microbial communities associated with potentially pathogenic strains in pond cultured tilapia (Oreochromis niloticus) at various growth stages based on 16S, 18S, and ITS2 rRNA gene amplicons sequencing[J]. Aquaculture, 532: 736007.
DOI URL |
[16] |
ZHOU J G, WANG Y, LEI Q L, 2020. Using bioinformatics to quantify the variability and diversity of the microbial community structure in pond ecosystems of a subtropical catchment[J]. Current Bioinformatics, 15(10): 1178-1186
DOI URL |
[17] |
ZHOU J Z, XIA B C, TREVES D S, et al., 2002. Spatial and resource factors influencing high microbial diversity in soil[J]. Applied Environmental Microbiology, 68(1): 326-334.
DOI URL |
[18] | 刘秉儒, 牛宋芳, 张文文, 2019. 荒漠草原区土壤粒径组成对柠条根际土壤微生物数量及酶活性的影响[J]. 生态学报, 39(24): 9171-9178. |
LIU B R, NIU S F, ZHANG W W, 2019. Effects of soil particle size on enzyme activities and the amount of soil microorganism in rhizosphere of Caragana korshinskii in desert steppe[J]. Acta Ecologica Sinica, 39(24): 9171-9178 | |
[19] | 鲁如坤, 2000. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社. |
LU R K, 2000. Methods for agrochemical analysis of soil[M]. Beijing: China Agricultural Science and Technology Press. | |
[20] | 裘琼芬, 张德民, 叶仙森, 等, 2013. 象山港网箱养殖对近海沉积物细菌群落的影响[J]. 生态学报, 33(2): 483-491. |
QIU Q F, ZHANG D M, YE X S, et al., 2013. The bacterial community of coastal sediments influenced by cage culture in Xiangshan Bay, Zhejiang, China[J]. Acta Ecologica Sinica, 33(2): 483-491.
DOI URL |
|
[21] | 王好才, 夏敏, 刘圣恩, 等, 2021. 若尔盖高原泥炭沼泽湿地土壤细菌群落空间分布及其驱动机制[J]. 生态学报, 41(7): 2663-2675. |
WANG H C, XIA M, LIU S E, et al., 2021. Spatial distribution and driving mechanism of soil bacterial communities in the wetland of Zoigeplateau[J]. Acta Ecologica Sinica, 41(7): 2663-2675. | |
[22] | 王群艳, 吴小红, 祝贞科, 等, 2016. 土壤质地对自养固碳微生物及其同化碳的影响[J]. 环境科学, 37(10): 3987-3995. |
WANG Q Y, WU X H, ZHU Z K, et al., 2016. Effects of soil texture on autotrophic CO2 fixation bacterial communities and their CO2 assimilation contents[J]. Environmental Science, 37(10): 3987-3995. | |
[23] | 吴庆龙, 陈开宁, 高光, 等, 1995. 大水面网围精养对水环境的影响及其对策[J]. 水产学报, 19(4): 343-349. |
WU Q L, CHEN K N, GAO G, et al., 1995. Effects of pen fish culture on water environment and their countermeasure[J]. Journal of Fisheries of China, 19(4): 343-349. | |
[24] | 杨长明, 吴亚琼, 王育来, 等, 2018. 南淝河表层沉积物细菌群落结构特征及驱动因素[J]. 中国环境科学, 38(9): 3552-3561. |
YANG C M, WU Y Q, WANG Y L, et al., 2018. Microbial community structure characteristics and its key driving factors in surface sediments along Nanfei River[J]. China Environmental Science, 38(9): 3552-3561. | |
[25] | 于小彦, 张平究, 张经纬, 等, 2020. 城市河流沉积物微生物量分布和群落结构特征[J]. 环境科学学报, 40(2): 585-596. |
YU X Y, ZHANG P J, ZHANG J W, et al., 2020. Characteristics of distribution patterns of microbial biomass and community structures in the sediments from urban river[J]. Acta Scientiae Circumstantiae, 40(2): 585-596. | |
[26] | 张广帅, 闫吉顺, 赵全民, 等, 2020. 辽东湾小凌河口湿地土壤微生物群落结构与微生态环境因子的关系[J]. 生态学杂志, 39(7): 2283-2291. |
ZHANG G S, YAN J S, ZHAO Q M, et al., 2020. Relationship between soil microbial community structure and micro-ecological environmental factors in Xiaolinghe estuarine wetland of Liaodong Bay[J]. Chinese Journal of Ecology, 39(7): 2283-2291. | |
[27] | 张广帅, 于秀波, 张全军, 等, 2018. 鄱阳湖湿地土壤微生物群落结构沿地下水位梯度分异特征[J]. 生态学报, 38(11): 3825-3837. |
ZHANG G S, YU X B, ZHANG Q J, et al., 2018. Variation in the distribution of soil microbial community structure along ground water level gradients in the Poyang Lake Wetland[J]. Acta Ecologica Sinica, 38(11): 3825-3837. | |
[28] | 周雅心, 林少颖, 郑毅, 等, 2021. 围垦养殖对中国典型滨海湿地土壤真菌多样性及群落结构影响[J]. 环境科学学报, 41(7): 2826-2837. |
ZHOU Y X, LIN S Y, ZHENG Y, et al., 2021. Effects of reclamation aquaculture on soil fungi diversity and community structure of typical coastal wetlands in China[J]. Acta Scientiae Circumstantiae, 41(7): 2826-2837. | |
[29] |
朱义族, 李雅颖, 韩继刚, 等, 2019. 水分条件变化对土壤微生物的影响及其响应机制研究进展[J]. 应用生态学报, 30(12): 4323-4332.
DOI |
ZHU Y Z, LI Y Y, HAN J G, et al., 2019. Effects of changes in water status on soil microbes and their response mechanism: A review[J]. Chinese Journal of Applied Ecology, 30(12): 4323-4332. | |
[30] | 卓丽, 王美欢, 石运刚, 等, 2019. 南方典型水源地及水产养殖区抗生素的复合污染特征及生态风险[J]. 生态毒理学报, 14(2): 164-175. |
ZHUO L, WANG M H, SHI Y G, et al., 2019. Occurrence, distribution, and ecological risk of antibiotics in surface water of typical drinking water sources and aquaculture in South China[J]. Asian Journal of Ecotoxicology, 14(2): 164-175. |
[1] | JIANG Yishan, SUN Yingtao, ZHANG Gan, LUO Chunling. Pattern and Influencing Factors of Forest Soil Microbial Communities in Different Climate Types in China [J]. Ecology and Environment, 2023, 32(8): 1355-1364. |
[2] | CHEN Dongdong, HUO Lili, ZHAO Liang, CHEN Xin, SHU Min, HE Fuquan, ZHANG Yukun, ZHANG Li, LI Qi. Contribution of Water and Heat Factors to Spatial Variability of Soil Microbial Biomass Carbon and Nitrogen in Qinghai Alpine Grassland: Based on Enhanced Regression Tree Model [J]. Ecology and Environment, 2023, 32(7): 1207-1217. |
[3] | ZHOU Hongguang, GAN Yanping, WU Dequan, YANG Yanmei, ZHANG Yang, WANG Luyao. Regulation of Arsenic Transport and Transformation in Contaminated Sediment by FeMnMg-LDH under Flooding-drying Conditions [J]. Ecology and Environment, 2023, 32(7): 1249-1262. |
[4] | TONG Yongjie, WANG Yi, HUA Yumei, ZHAO Jianwei, LIU Guanglong, JIANG Yongcan. Transformation of Phosphorus in Sediments Driven by Nitrate and Iron in the Presence of Organic Electron Donor [J]. Ecology and Environment, 2023, 32(7): 1263-1274. |
[5] | CHEN Junfang, WU Xian, LIU Xiaolin, LIU Juan, YANG Jiarong, LIU Yu. Shaping Characteristics of Elemental Stoichiometry on Microbial Diversity under Different Soil Water Contents [J]. Ecology and Environment, 2023, 32(5): 898-909. |
[6] | WANG Yun, ZHENG Xilai, CAO Min, LI Lei, SONG Xiaoran, LIN Xiaolei, GUO Kai. Study on Denitrification Performance and Control Factors in Brackish-Freshwater Transition Zone of Coastal Aquifer [J]. Ecology and Environment, 2023, 32(5): 980-988. |
[7] | ZHANG Guangyi, ZHANG Jiatao, WANG Xiaowei. Phosphorus Speciation Distribution and Release in Lake Sediment Microbial Fuel Cells [J]. Ecology and Environment, 2023, 32(3): 590-598. |
[8] | YANG Qili, DOU Weili, LIU Zhiwen, GUO Jing, LÜ Gang. Analysis of Petroleum Hydrocarbon Pollution Characteristics and Influencing Factors Based on N-alkanes Tracing in the River Channel of Fuxin Xihe River [J]. Ecology and Environment, 2023, 32(3): 599-608. |
[9] | YANG Nie, SUN Xiaoxun, KONG Tianle, SUN Weimin, CHEN Quanyuan, GAO Pin. Response of Microbial Communities to Changes in Antimony Pollution Concentrations in Fluvial Sediment [J]. Ecology and Environment, 2023, 32(3): 609-618. |
[10] | LI Weiwen, HUANG Jinquan, QI Yujie, LIU Xiaolan, LIU Jigen, MAO Zhichao, GAO Xiufang. Meta-analysis of Soil Microbial Biomass Carbon Content and Its Influencing Factors under Soil Erosion [J]. Ecology and Environment, 2023, 32(1): 47-55. |
[11] | HUANG Weijia, LIU Chun, LIU Yue, HUANG Bin, LI Dingqiang, YUAN Zaijian. Soil Ecological Stoichiometry and Its Influencing Factors at Different Elevations in Nanling Mountains [J]. Ecology and Environment, 2023, 32(1): 80-89. |
[12] | WANG Jie, SHAN Yan, MA Lan, SONG Yanjing, WANG Xiangyu. Effects of Straw and Biochar Synergistic Returning on the Improvement of Salt-affected Soil in the Yellow River Delta [J]. Ecology and Environment, 2023, 32(1): 90-98. |
[13] | HUA Li, CHENG Taozhi, LIANG Zhiyong. Remediation Effect of Petroleum-Contaminated Soil by Immobilized Mixed Bacteria in Northern Shaanxi Province of China [J]. Ecology and Environment, 2022, 31(8): 1610-1615. |
[14] | CUI Qiao, LI Zongxing, ZHANG Baijuan, ZHAO Yue, NAN Fusen. A Meta-analysis of the Effects of Freezing and Thawing on Soil Dissolved Carbon and Nitrogen and Microbial Biomass Carbon and Nitrogen Contents [J]. Ecology and Environment, 2022, 31(8): 1700-1712. |
[15] | JI Bingjing, LIU Yi, WU Yang, GAO Shutao, ZENG Xiangying, YU Zhiqiang. Occurrence, Source and Potential Ecological Risk of Parent and Oxygenated Polycyclic Aromatic Hydrocarbons in Sediments of Yangtze River Estuary and Adjacent East China Sea [J]. Ecology and Environment, 2022, 31(7): 1400-1408. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn