Ecology and Environment ›› 2023, Vol. 32 ›› Issue (7): 1275-1284.DOI: 10.16258/j.cnki.1674-5906.2023.07.010
• Research Articles • Previous Articles Next Articles
LIANG Yitong1(), LI Zemin1, WU Yulun1, QIU Guanglei1, WU Haizhen2, WEI Chaohai1,*(
)
Received:
2023-05-21
Online:
2023-07-18
Published:
2023-09-27
Contact:
WEI Chaohai
梁燚彤1(), 李泽敏1, 吴宇伦1, 邱光磊1, 吴海珍2, 韦朝海1,*(
)
通讯作者:
韦朝海
作者简介:
梁燚彤(1998年生),女,硕士研究生,主要从事厌氧氨氧化与自养反硝化耦合工艺研究。E-mail: gkzxxx_2009@126.com
基金资助:
CLC Number:
LIANG Yitong, LI Zemin, WU Yulun, QIU Guanglei, WU Haizhen, WEI Chaohai. Effects of Nitrite on Nitrogen Removal Efficiency and Microbial Community in Anammox-based Coupled System[J]. Ecology and Environment, 2023, 32(7): 1275-1284.
梁燚彤, 李泽敏, 吴宇伦, 邱光磊, 吴海珍, 韦朝海. 亚硝酸盐对厌氧氨氧化耦合系统的脱氮效能及微生物群落的影响[J]. 生态环境学报, 2023, 32(7): 1275-1284.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2023.07.010
阶段 | 时间/ d | 进水氮质量浓度/(mg·L-1) | 进水氮比例 | 水力停留时间/ h | 氮负荷率/ (kg kg·m-3·d-1) | FeS日投加量/ (g·d-1) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
N0 | 1-21 | 50 | 50 | 0 | 1.00 | 0 | 35 | 0.069 | 0.1 | ||
A | A1 | 22-35 | 100 | 50 | 0 | 0.50 | 0 | 17 | 0.207 | 0.1 | |
A2 | 36-50 | 50 | 0.50 | 0.276 | |||||||
A3 | 51-65 | 100 | 1.00 | 0.345 | |||||||
A4 | 66-80 | 150 | 1.50 | 0.414 | |||||||
B | B1 | 81-95 | 100 | 100 | 0 | 1.00 | 0 | 24 | 0.209 | 0.2 | |
B2 | 96-110 | 50 | 0.50 | 0.261 | |||||||
B3 | 111-125 | 100 | 1.00 | 0.313 | |||||||
B4 | 126-140 | 150 | 1.50 | 0.365 |
Table 1 Operational conditions of the AFBR at different phases
阶段 | 时间/ d | 进水氮质量浓度/(mg·L-1) | 进水氮比例 | 水力停留时间/ h | 氮负荷率/ (kg kg·m-3·d-1) | FeS日投加量/ (g·d-1) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
N0 | 1-21 | 50 | 50 | 0 | 1.00 | 0 | 35 | 0.069 | 0.1 | ||
A | A1 | 22-35 | 100 | 50 | 0 | 0.50 | 0 | 17 | 0.207 | 0.1 | |
A2 | 36-50 | 50 | 0.50 | 0.276 | |||||||
A3 | 51-65 | 100 | 1.00 | 0.345 | |||||||
A4 | 66-80 | 150 | 1.50 | 0.414 | |||||||
B | B1 | 81-95 | 100 | 100 | 0 | 1.00 | 0 | 24 | 0.209 | 0.2 | |
B2 | 96-110 | 50 | 0.50 | 0.261 | |||||||
B3 | 111-125 | 100 | 1.00 | 0.313 | |||||||
B4 | 126-140 | 150 | 1.50 | 0.365 |
样品 名称 | 序列 | OUT 数目 | Chao指数 | ACE指数 | Coverage指数 | 辛普森 指数 | 香农 指数 |
---|---|---|---|---|---|---|---|
N0 | 43223 | 991 | 224 | 214 | 0.999 | 0.065 | 3.55 |
A1 | 41258 | 991 | 214 | 211 | 0.999 | 0.085 | 3.37 |
A2 | 38530 | 991 | 206 | 206 | 0.999 | 0.271 | 2.53 |
A3 | 40755 | 991 | 229 | 226 | 0.999 | 0.487 | 1.79 |
A4 | 38569 | 991 | 219 | 216 | 0.999 | 0.415 | 2.00 |
B1 | 37984 | 991 | 223 | 222 | 0.999 | 0.365 | 2.22 |
B2 | 39069 | 991 | 226 | 226 | 0.999 | 0.463 | 1.81 |
B3 | 38439 | 991 | 233 | 230 | 0.999 | 0.483 | 1.75 |
B4 | 38143 | 991 | 222 | 224 | 0.999 | 0.468 | 1.80 |
Table 2 Richness and diversity of microbial communities in different phases
样品 名称 | 序列 | OUT 数目 | Chao指数 | ACE指数 | Coverage指数 | 辛普森 指数 | 香农 指数 |
---|---|---|---|---|---|---|---|
N0 | 43223 | 991 | 224 | 214 | 0.999 | 0.065 | 3.55 |
A1 | 41258 | 991 | 214 | 211 | 0.999 | 0.085 | 3.37 |
A2 | 38530 | 991 | 206 | 206 | 0.999 | 0.271 | 2.53 |
A3 | 40755 | 991 | 229 | 226 | 0.999 | 0.487 | 1.79 |
A4 | 38569 | 991 | 219 | 216 | 0.999 | 0.415 | 2.00 |
B1 | 37984 | 991 | 223 | 222 | 0.999 | 0.365 | 2.22 |
B2 | 39069 | 991 | 226 | 226 | 0.999 | 0.463 | 1.81 |
B3 | 38439 | 991 | 233 | 230 | 0.999 | 0.483 | 1.75 |
B4 | 38143 | 991 | 222 | 224 | 0.999 | 0.468 | 1.80 |
Figure 6 Canonical correlation analysis (CCA) between different wastewater quality and physicochemical properties and community composition of denitrification
[1] |
BAO P, WANG S Y, MA B, et al., 2017. Achieving partial nitrification by inhibiting the activity of Nitrospira-like bacteria under high-DO conditions in an intermittent aeration reactor[J]. Journal of Environmental Sciences, 56: 71-78.
DOI PMID |
[2] |
CAO S B, DU R, ZHOU Y, 2021. Coupling anammox with heterotrophic denitrification for enhanced nitrogen removal: A review[J]. Critical Reviews in Environmental Science and Technology, 51(19): 2260-2293.
DOI URL |
[3] |
DEDYSH S N, KULICHEVSKAYA I S, BELETSKY A V, et al., 2020. Lacipirellula parvula gen. nov., sp. nov., representing a lineage of planctomycetes widespread in low-oxygen habitats, description of the family Lacipirellulaceae fam. nov. and proposal of the orders Pirellulales ord. nov., Gemmatales ord. nov. and Isosphaerales ord. nov[J]. Systematic and Applied Microbiology, 43(1): 126050.
DOI URL |
[4] |
DI CAPUA F, PIROZZI F, LENS P N L, et al., 2019. Electron donors for autotrophic denitrification[J]. Chemical Engineering Journal, 362: 922-937.
DOI |
[5] |
DU R, CAO S B, LI B K, et al., 2017. Performance and microbial community analysis of a novel DEAMOX based on partial-denitrification and anammox treating ammonia and nitrate wastewaters[J]. Water Research, 108: 46-56.
DOI PMID |
[6] |
GONG Y Y, TANG J C, ZHAO D Y, 2016. Application of iron sulfide particles for groundwater and soil remediation: A review[J]. Water Research, 89: 309-320.
DOI PMID |
[7] |
GRAMP J P, BIGHAM J M, JONES F S, et al., 2010. Formation of Fe-sulfides in cultures of sulfate-reducing bacteria[J]. Journal of Hazardous Materials, 175(1): 1062-1067.
DOI URL |
[8] |
HAN X Y, ZHANG S J, YANG S H, et al., 2020. Full-scale partial nitritation/anammox (PN/A) process for treating sludge dewatering liquor from anaerobic digestion after thermal hydrolysis[J]. Bioresource Technology, 297: 122380.
DOI URL |
[9] |
HU Y S, WU G X, LI R H, et al., 2020. Iron sulphides mediated autotrophic denitrification: An emerging bioprocess for nitrate pollution mitigation and sustainable wastewater treatment[J]. Water Research, 179: 115914.
DOI URL |
[10] |
HUANG D Q, FU J J, LI Z Y, et al., 2022. Inhibition of wastewater pollutants on the anammox process: A review[J]. Science of the Total Environment, 803: 150009.
DOI URL |
[11] |
HUO D, DANG Y, SUN D Z, et al., 2022. Efficient nitrogen removal from leachate by coupling Anammox and sulfur-siderite-driven denitrification[J]. Science of the Total Environment, 829: 154683.
DOI URL |
[12] |
JI J T, PENG Y Z, WANG B, et al., 2020. Synergistic Partial-Denitrification, Anammox, and in-situ Fermentation (SPDAF) Process for Advanced Nitrogen Removal from Domestic and Nitrate-Containing Wastewater[J]. Environmental Science & Technology, 54(6): 3702-3713.
DOI URL |
[13] |
JIN R C, YANG G F, YU J J, et al., 2012. The inhibition of the Anammox process: A review[J]. Chemical Engineering Journal, 197: 67-79.
DOI URL |
[14] |
KARTAL B, KELTJENS J T, 2016. Anammox Biochemistry: A Tale of Heme c Proteins[J]. Trends in Biochemical Sciences, 41(12): 998-1011.
DOI PMID |
[15] |
LAWSON C E, WU S, BHATTACHARJEE A S, et al., 2017. Metabolic network analysis reveals microbial community interactions in anammox granules[J]. Nature Communications, 8(1): 15416.
DOI URL |
[16] |
MA J, WEI J, KONG Q, et al., 2021. Synergy between autotrophic denitrification and Anammox driven by FeS in a fluidized bed bioreactor for advanced nitrogen removal[J]. Chemosphere, 280: 130726.
DOI URL |
[17] |
PAN J X, MA J D, WU H Z, et al., 2019. Application of metabolic division of labor in simultaneous removal of nitrogen and thiocyanate from wastewater[J]. Water Research, 150: 216-224.
DOI PMID |
[18] |
QIN Y, WU C, CHEN B, et al., 2019. Short term performance and microbial community of a sulfide-based denitrification and Anammox coupling system at different N/S ratios[J]. Bioresource Technology, 294: 122130.
DOI URL |
[19] |
RAMBO I M, DOMBROWSKI N, CONSTANT L, et al., 2020. Metabolic relationships of uncultured bacteria associated with the microalgae Gambierdiscus[J]. Environmental Microbiology, 22(5): 1764-1783.
DOI PMID |
[20] |
SHARMA V, VASHISHTHA A, JOS A L M, et al., 2022. Phylogenomics of the Phylum Proteobacteria: Resolving the Complex Relationships[J]. Current Microbiology, 79(8): 224.
DOI PMID |
[21] |
SIJBESMA W F, ALMEIDA J S, REIS M A, et al., 1996. Uncoupling effect of nitrite during denitrification by Pseudomonas fluorescens: An in vivo 31P-NMR study[J]. Biotechnology and Bioengineering, 52(1): 176-182.
DOI URL |
[22] |
VAN DE GRAAF A A, DE BRUIJN P, ROBERTSON L A, et al., 1996. Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor[J]. Microbiology, 142(8): 2187-2196.
DOI URL |
[23] |
WAN K, YU Y, HU J G, et al., 2022. Recovery of anammox process performance after substrate inhibition: Reactor performance, sludge morphology, and microbial community[J]. Bioresource Technology, 357: 127351.
DOI URL |
[24] |
WU C L, QIN Y J, YANG L, et al., 2020. Effects of loading rates and N/S ratios in the sulfide-dependent autotrophic denitrification (SDAD) and Anammox coupling system[J]. Bioresource Technology, 316: 123969.
DOI URL |
[25] |
WU P, CHEN J J, GARLAPATI V K, et al., 2022. Novel insights into Anammox-based processes: A critical review[J]. Chemical Engineering Journal, 444: 136534.
DOI URL |
[26] |
YANG Y, LU H, SHAO Z Y, et al., 2020. Electron buffer formation through coupling thiosulfate-dependent denitratation with anammox in a single-stage sequencing batch reactor[J]. Bioresource Technology, 312: 123560.
DOI URL |
[27] |
ZHOU X, WANG G L, YIN Z Y, et al., 2020. Performance and microbial community in a single-stage simultaneous carbon oxidation, partial nitritation, denitritation and anammox system treating synthetic coking wastewater under the stress of phenol[J]. Chemosphere, 243: 125382.
DOI URL |
[28] | 陈重军, 王建芳, 张海芹, 等, 2014. 厌氧氨氧化污水处理工艺及其实际应用研究进展[J]. 生态环境学报, 23(3): 521-527. |
CHEN C J, WANG J F, ZHANG H Q, et al., 2014. Research progress in anammox wastewater treatment system and its actual application[J]. Ecology and Environmental Sciences, 23(3): 521-527. | |
[29] | 国家环境保护总局, 2002. 水和废水检测分析方法[M]. 第4版. 北京:中国环境科学出版社: 255-279. |
State Environmental Protection Administration, 2002. Water and wastewater monitoring analysis method[M]. 4th edition. Beijing: China Environmental Science Press: 255-279. | |
[30] | 马景德, 潘建新, 李泽敏, 等, 2019. FeS自养反硝化与厌氧氨氧化耦合总氮去除及微生物特征[J]. 环境科学, 40(8): 3683-3690. |
MA J D, PAN J X, LI Z M, et al., 2019. Performance and mechanisms of advanced nitrogen removal via fes-driven autotrophic denitrification coupled with ANAMMOX[J]. Environmental Science, 40(8): 3683-3690. | |
[31] | 李泽莹, 班玮璘, 王锦, 等, 2022. 厌氧氨氧化脱氮工艺及其影响因素[J]. 给水排水, 58(S1): 1100-1107. |
LI Z Y, BAN W L, WANG J, et al., 2022. Anammox denitrification process and its influencing factors[J]. Water & Wastewater Engineering, 48(S1): 1100-1107. | |
[32] |
朱紫旋, 陈俊江, 张星星, 等, 2023. 基于短程反硝化厌氧氨氧化新型污水生物脱氮工艺的研究进展[J]. 化工进展, 42(4): 2091-2100.
DOI |
ZHU Z X, CHEN J J, ZHANG X X, et al., 2023. Research advances on novel wastewater biological nitrogen removal technology by partial denitrification coupled with Anammox[J]. Chemical Industry and Engineering Progress, 42(4): 2091-2100.
DOI |
|
[33] | 韩雪恪, 王峥嵘, 彭永臻, 等, 2023. 几种重要因素对厌氧氨氧化过程的影响综述[J]. 中国环境科学, 43(5): 2220-2227. |
HAN X G, WANG Z R, PENG Y Z, et al., 2023. A review of several important factors influencing the Anammox process[J]. China Environmental Science, 43(5): 2220-2227. |
[1] | WANG Yun, ZHENG Xilai, CAO Min, LI Lei, SONG Xiaoran, LIN Xiaolei, GUO Kai. Study on Denitrification Performance and Control Factors in Brackish-Freshwater Transition Zone of Coastal Aquifer [J]. Ecology and Environment, 2023, 32(5): 980-988. |
[2] | YANG Nie, SUN Xiaoxun, KONG Tianle, SUN Weimin, CHEN Quanyuan, GAO Pin. Response of Microbial Communities to Changes in Antimony Pollution Concentrations in Fluvial Sediment [J]. Ecology and Environment, 2023, 32(3): 609-618. |
[3] | HUA Li, CHENG Taozhi, LIANG Zhiyong. Remediation Effect of Petroleum-Contaminated Soil by Immobilized Mixed Bacteria in Northern Shaanxi Province of China [J]. Ecology and Environment, 2022, 31(8): 1610-1615. |
[4] | GAO Peng, GAO Pin, SUN Weimin, KONG Tianle, HUANG Duanyi, LIU Huaqing, SUN Xiaoxun. Response of the Endosphere and Rhizosphere Microbial Community in Petris vittata L. to Arsenic Stress [J]. Ecology and Environment, 2022, 31(6): 1225-1234. |
[5] | ZHU Yihao, LI Qingmei, LIU Xiaoli, LI Na, SONG Fengling, CHEN Weifeng. Characteristics of Soil Microbial Community in Newly Cultivated Land under Different Land Consolidation Types [J]. Ecology and Environment, 2022, 31(5): 909-917. |
[6] | MEI Chuang, CAI Kunzheng, LI Zishan, XU Meili, HUANG Fei. Effects of Rice-straw Biochar on the Transformation of Cadmium Fractions and Microbial Community in Paddy Soils [J]. Ecology and Environment, 2022, 31(2): 380-390. |
[7] | LIU Bingru. Response of Thermal Adaptability of Soil Microbial Respiration and Microbial Community and Diversity to Global Climate Change: A Review [J]. Ecology and Environment, 2022, 31(1): 181-186. |
[8] | GE Yinglan, SUN Ting. Soil Microbial Community Structure and Diversity of Potato in Rhizosphere and Non-rhizosphere Soil [J]. Ecology and Environment, 2020, 29(1): 141-148. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn