Ecology and Environment ›› 2022, Vol. 31 ›› Issue (1): 181-186.DOI: 10.16258/j.cnki.1674-5906.2022.01.020
• Reviews • Previous Articles Next Articles
Received:
2021-02-13
Online:
2022-01-18
Published:
2022-03-10
作者简介:
刘秉儒(1971年生),男,研究员,博士,硕士研究生导师,从事生态恢复过程与机理研究。E-mail: bingru.liu@163.com
基金资助:
CLC Number:
LIU Bingru. Response of Thermal Adaptability of Soil Microbial Respiration and Microbial Community and Diversity to Global Climate Change: A Review[J]. Ecology and Environment, 2022, 31(1): 181-186.
刘秉儒. 土壤微生物呼吸热适应性与微生物群落及多样性对全球气候变化响应研究[J]. 生态环境学报, 2022, 31(1): 181-186.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2022.01.020
[1] |
BÁRCENAS-MORENO G, GOMEZ-BRANDON M, ROUSK J, et al., 2009. Adaptation of soil microbial communities to temperature: Comparison of fungi and bacteria in a laboratory experiment[J]. Global Change Biology, 15(12): 2950-2957.
DOI URL |
[2] |
BIRNBAUM C, HOPKINS A J M, FONTAINE J B, 2019. Soil fungal responses to experi-mental warming and drying in a Mediterranean shrubland[J]. Science of The Total Environment, DOI: 10.1016/j.scitotenv.2019.05.222.
DOI |
[3] |
BRADFORD M A, 2013. Thermal adaptation of decomposer communities in warming soils[J]. Frontiers in Microbiology, DOI: 10.3389/fmicb.2013.00333.
DOI |
[4] |
BROWN J H, GILLOOLY J F, ALLEN A P, 2004. Toward a metabolic theory of ecology[J]. Ecology, 85(7): 1771-1789.
DOI URL |
[5] |
CHENG L, ZHANG N, YUAN M, et al., 2017. Warming enhances old organic carbon decomposition through altering functional icrobial communities[J]. The ISME Journal, 11(8):1825-1835.
DOI URL |
[6] |
CHODAK M, KLIMEK B, AZRBAD H, et al., 2015. Functional diversity of soil microbial communities under Scots pine, Norway spruce, silver birch and mixed boreal forests[J]. Pedobiologia, 58(2-3): 81-88.
DOI URL |
[7] |
CROWTHER T W, BRADFORD M A, 2013. Thermal acclimation in widespread heterotrophic soil microbes[J]. Ecology Letters, 16(4): 469-477.
DOI URL |
[8] | DACAL M, BRADFORD MA., PLAZA C, et al., 2019. Soil microbial respiration adapts to ambient temperature in global drylands[J]. Nature Ecology & Evolution, 3(2): 232-238. |
[9] |
FANG C, MONCRIEFF J B, 2001. The dependence of soil CO2 efflux on temperature[J]. Soil Biology and Biochemistry, 33(2): 155-165.
DOI URL |
[10] |
FREY S D, DRIJBER R, SMITH H, et al., 2008. Microbial biomass, functional capacity, and community structure after 12 years of soil warming[J]. Soil Biology and Biochemistry, 40(11): 2904-2907.
DOI URL |
[11] |
FREY S D, LEE J, MELILLO J M, et al., 2013. The temperature response of soil microbial efficiency and its feedback to climate[J]. Nature Climate Change, 3(4): 395-398.
DOI URL |
[12] |
GARCÍA-PALACIOS P, GROSS N, GAITAN J, et al., 2018. Climate mediates the biodiversity-ecosystem stability relationship globally[J]. PNAS, 115(33): 8400-8405.
DOI URL |
[13] |
GUO X, FENG J J, SHI Z, et al., 2018. Climate warming leads to divergent succession of grassland microbial communities[J]. Nature Climate Change, 8(9): 813-818.
DOI URL |
[14] |
HARTLEY I P, HEINEMEYER A, INESON P, 2007. Effects of three years of soil warming and shading on the rate of soil respiration: substrate availability and not thermal acclimation mediates observed response[J]. Global Change Biology, 13(8): 1761-1770.
DOI URL |
[15] |
HARTLEY I P, HOPKINS D W, GARNETT M H, et al., 2008. Soil microbial respiration in arctic soil does not acclimate to temperature[J]. Ecology Letters, 11(10): 1092-1100.
DOI URL |
[16] |
HEDĚNEC P, JILKOVÁ V, LIN Q, 2019. Microbial communities in local and transplanted soils along a latitudinal gradient[J]. CATENA, 173: 456-464.
DOI URL |
[17] | IPCC, 2007. Climate change 2007:The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge, United Kingdom and New York, Cambridge University Press. |
[18] | IPCC, 2013. Climate Change 2013: The Physical Science Basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge, United Kingdom and New York, Cambridge University Press. |
[19] |
KIRSCHBAUM M U F, 2004. Soil respiration under prolonged soil warming: Are rate reductions caused by acclimation or substrate loss?[J]. Global Change Biology, 10(11): 1870-1877.
DOI URL |
[20] |
KÖRNER C, 2000. Why are there global gradients in species richness? Mountains may hold the answer[J]. Trends in Ecology and Evolution, 15(12): 513-514.
DOI URL |
[21] | LADAU J, SHI Y, JING X, et al., 2018. Existing climate change will lead to pronounced shifts in the diversity of soil prokaryotes[J]. Msystems, 3(5): e00167-18. |
[22] |
LI H, YANG S, XU Z W, 2017. Responses of soil microbial functional genes to global changes are indirectly influenced by aboveground plant biomass variation[J]. Soil Biology and Biochemistry, 104: 18-29.
DOI URL |
[23] | LI Y, LI H T, JIN D M, et al., 2007. Application of WBE model to ecology: A review[J]. Acta Ecologica Sinica, 27(7): 3018-3031. |
[24] |
LIANG Y T, JIANG Y J, WANG F, et al., 2015. Long-term soil transplant simulating climate change with latitude significantly alters microbial temporal turnover[J]. ISME Journal, 9(12): 2561-2572.
DOI URL |
[25] |
LIU Y R, DELGADO-BAQUERIZO M, WANG J T, et al., 2018. New insights into the role of microbial community composition in driving soil respiration rates[J]. Soil Biology and Biochemistry, 118: 35-41.
DOI URL |
[26] |
LUO Y Q, WAN S Q, HUI D F, et al., 2001. Acclimatization of soil respiration to warming in a tall grass prairie[J]. Nature, 413(6856): 622-625.
DOI URL |
[27] |
MAESTRE F T, DELGADO-BAQERIZO M, JEFFRIES T C, et al., 2015. Increasing aridity reduces soil microbial diversity and abundance in global drylands[J]. PNAS, 112(51): 15684-15689.
DOI URL |
[28] |
MALCOLM G M, LÓPEZ-GUTIÉRRZ J C, KOIDE R T, et al., 2008. Acclimation to temperature and temperature sensitivity of metabolism by ectomycorrhizal fungi[J]. Global Change Biology, 14(5): 1169-1180.
DOI URL |
[29] |
O’MALLEY M A, 2007. The nineteenth century roots of 'everything is everywhere'[J]. Nature Reviews Microbiology, 5(8): 647-651.
DOI URL |
[30] |
ROUSK J, FREY S D, BÅÅTH E, 2012. Temperature adaptation of bacterial communities in experimentally warmed forest soils[J]. Global Change Biology, 18(10): 3252-3258.
DOI URL |
[31] |
SIERRA J, BRISSON N, RIPOCHE D, et al., 2010. Modelling the impact of thermal adaptation of soil microorganisms and crop system on the dynamics of organic matter in a tropical soil under a climate change scenario[J]. Ecological Modelling, 221(23): 2850-2858.
DOI URL |
[32] |
SILVERIRA F A O, BARBOSA M, BEIROZ W, 2019. Tropical mountains as natural laboratories to study global changes: A long-term ecological research project in a megadiverse biodiversity hotspot[J]. Perspectives in Plant Ecology, Evolution and Systematics, 38: 64-73.
DOI URL |
[33] |
SINGH B K, BARDGETT R D, SMITH P, et al., 2010. Microorganisms and climate change: terrestrial feedbacks and mitigation options[J]. Nature Reviews Microbiology, 8: 779-790.
DOI URL |
[34] |
SOFI J A, LONE A H, GANIE M A, 2016. Soil Microbiological activity and carbon dynamics in the current climate change scenarios: A review[J]. Pedosphere, 26(5): 577-591.
DOI URL |
[35] |
STARK S, MNNIST M K, GANZERT L, et al., 2015. Grazing intensity in subarctic tundra affects the temperature adaptation of soil microbial communities[J]. Soil Biology and Biochemistry, 84: 147-157.
DOI URL |
[36] |
TUCKER C L, BELL J, PENDALL E, et al., 2013. Does declining carbon-use efficiency explain thermal acclimation of soil respiration with warming?[J]. Global Change Biology, 19(1): 252-263.
DOI URL |
[37] |
VICCA S, FIVEZ L, KOCKELBERGH F, et al., 2009. No signs of thermal acclimation of heterotrophic respiration from peat soils exposed to different water levels[J]. Soil Biology and Biochemistry, 41(9): 2014-2016.
DOI URL |
[38] |
WANG J M, WANG Y, HE N P, et al., 2020. Plant functional traits regulate soil bacterial diversity across temperate deserts[J]. Science of the Total Environment, DOI: 10.1016/j.scitotenv.2020.136976.
DOI |
[39] |
WARDLE D A, BARDGETT R D, KLIRONOMOS J N, et al., 2004. Ecological linkages between aboveground and belowground biota[J]. Science, 304(5677): 1629-1633.
DOI URL |
[40] |
WEI H, GUENT B, VICCA S, et al., 2014. Thermal acclimation of organic matter decomposition in an artificial forest soil is related to shifts in microbial community structure[J]. Soil Biology and Biochemistry, 71: 1-12.
DOI URL |
[41] |
WIEDENBECK J, COHAN F M, 2011. Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches[J]. FEMS Microbiology Reviews, 35(5): 957-976.
DOI URL |
[42] |
XU M, LI X L, CAI X B, et al., 2014. Soil microbial community structure and activity along a montane elevational gradient on the Tibetan Plateau[J]. European Journal of Soil Biology, 64: 6-14.
DOI URL |
[43] |
XU Z H, CHEN C R, HE J Z, et al., 2009. Trends and challenges in soil research 2009: Linking global climate change to local long-term forest productivity[J]. Journal of Soils Sediments, 9: 83-88.
DOI URL |
[44] |
ZHANG F G, ZHANG Q G, 2016. Microbial diversity limits soil heterotrophic respiration and mitigates the respiration response to moisture increase[J]. Soil Biology and Biochemistry, 98: 180-185.
DOI URL |
[45] |
ZHOU J Z, DENG Y, SHEN L N, et al., 2016. Temperature mediates continental-scale diversity of microbes in forest soils[J]. Nature Communications, DOI: 10.1038/ncomms12083.
DOI |
[46] | 曹鹏, 贺纪正, 2015. 微生物生态学理论框架初探[J]. 生态学报, 35(22): 1-14. |
CAO P, HE J Z, 2015. Preliminary theoretical framework of microbial ecology[J]. Acta Eclogica Sinica, 35(22): 1-14. | |
[47] | 贺纪正, 陆雅海, 傅伯杰, 2015a. 土壤生物学前沿[M]. 北京: 科学出版社. |
HE J Z, LU Y H, FU B J, 2015. Frontiers in Soil Biology[M]. Beijing: Science Press. | |
[48] | 贺纪正, 王军涛, 2015b. 土壤微生物群落构建理论与时空演变特征[J]. 生态学报, 35(20): 6575-6583. |
HE J Z, WANG J T, 2015b. Mechanisms of community organization and spatiotemporal patterns of soil microbial communities[J]. Acta Eclogica Sinica, 35(20): 6575-6583. | |
[49] | 贺金生, 王政权, 方精云, 2004. 全球变化下的地下生态学:问题与展望[J]. 科学通报, 49(13): 1226-1235. |
HE J S, WANG Z Q, FANG J Y, 2004. Underground ecology under global change: Problems and prospects[J]. Chinese Science Bulletin, 49(13): 1226-1235.
DOI URL |
|
[50] | 胡水金, 陈欣, 张卫建, 等, 2007. 土壤微生物对全球变化的响应[M]// 邬建国. 现代生态学讲座(III):学科进展与热点论题. 北京: 高等教育出版社. |
HU S J, CHEN X, ZHANG W J, et al., 2007. Responses of Soil Microorganisms to Global Change[M]// Wu J G. Lectures on Modern Ecology (III):Discipline Progress and Hot Topics. Beijing: Higher Education Press. | |
[51] | 梁玉婷, 蒋瑀霁, 汪峰, 等, 2015. 土壤微生物群落演替及功能基因组对气候条件变化的响应[C]// 第八次全国土壤生物与生物化学学术研讨会暨第三次全国土壤健康学术研讨会论文摘要集. |
LIANG Y T, JIANG Y J, WANG F, et al., 2015. Response of soil microbial community succession and functional genomes to climatic changes[C]// The 8th National Symposium on Soil Biology and Biochemistry and the 3rd National Symposium on Soil Health. | |
[52] | 刘秉儒, 张秀珍, 胡天华, 等, 2013. 贺兰山不同海拔典型植被带土壤微生物多样性[J]. 生态学报, 33(22): 7211-7220. |
LIU B R, ZHANG X Z, HU T H, et al., 2013. Soil microbial diversity under typical vegetation zones along an elevation gradient in Helan Mountains[J]. Acta Eclogica Sinica, 33(22): 7211-7220. | |
[53] |
刘洋, 张健, 杨万勤, 2009. 高山生物多样性对气候变化响应的研究进展[J]. 生物多样性, 17(1): 88-96.
DOI |
LIU Y, ZHANG J, YANG W Q, 2009. Responses of alpine biodiversity to climate change[J]. Biodiversity Science, 17(1): 88-96.
DOI URL |
|
[54] |
牛克昌, 刘怿宁, 沈泽昊, 等, 2009. 群落构建的中性理论和生态位理论[J]. 生物多样性, 17(6): 579-593.
DOI |
NIU K C, LIU Y N, SHEN Z H, et al., 2009. Community assembly: The relative importance of neutral theory and niche theory[J]. Biodiversity Science, 17(6): 579-593.
DOI URL |
|
[55] | 沈芳芳, 刘影, 罗昌泰, 等, 2019. 陆地生态系统植物和土壤微生物群落多样性对全球变化的响应与适应研究进展[J]. 生态环境学报, 28(10): 2129-2140. |
SHEN F F, LIU Y, LUO C T, et al., 2019. Research progress on response and adaptation of plant and soil microbial community diversity to global change in terrestrial ecosystem[J]. Ecology and Environment Sciences, 28(10): 2129-2140. | |
[56] | 沈瑞昌, 徐明, 方长明, 等, 2018. 全球变暖背景下土壤微生物呼吸的热适应性: 证据、机理和争议[J]. 生态学报, 38(1): 11-19. |
SHEN R C, XU M, FANG C M, et al., 2018. Thermal adaptation of soil microbial respiration under global warming:evidence, mechanisms and controversies[J]. Acta Eclogica Sinica, 38(1): 11-19. | |
[57] | 盛浩, 杨玉盛, 陈光水, 2007. 土壤异养呼吸对气候变暖的反馈[J]. 福建师范大学学报 (自然科学版), 23(3): 104-108. |
SHENG H, YANG Y S, CHEN G S, 2007. Feedbacks of Soil Heterotrophic Respiration to Global Warming[J]. Journal of Fujian Normal University (Natural Science Edition), 23(3): 104-108. | |
[58] | 万云, 许丽丽, 耿其芳, 等, 2012. 全球变化背景下生态学热点问题研究--第二届“国际青年生态学者论坛”[J]. 生态学报, 32(17): 5601-5608. |
WAN Y, XU L L, GENG Q F, et al., 2012. Ecological hot topics in global change on the 2nd International Young Ecologist Forum[J]. Acta Ecologica Sinica, 32(17): 5601-5608.
DOI URL |
|
[59] | 王美溪, 刘珂艺, 邢亚娟, 2018. 气候变化背景下土壤微生物与植物物种多样性关联分析[J]. 中国农学通报, 34(20): 111-117. |
WANG M X, LIU K Y, XING Y L, 2018. Association analysis of soil microorganism and plant species diversity under climate change[J]. Chinese Agricultural Science Bulletin, 34(20): 111-117. | |
[60] | 杨毅, 黄玫, 刘洪升, 等, 2011. 土壤呼吸的温度敏感性和适应性研究进展[J]. 自然资源学报, 26(10): 1811-1820. |
YANG Y, HUANG M, LIU H S, et al., 2011. The interrelation between temperature sensitivity and adaptability of soil respiration[J]. Journal of Natural Resources, 26(10): 1811-1820. | |
[61] |
张乃莉, 郭继勋, 王晓宇, 等, 2007. 土壤微生物对气候变暖和大气N沉降的响应[J]. 植物生态学报, 31(2): 252-261.
DOI |
ZHANG N L, GUO J X, WANG X Y, et al., 2007. Soil microbial feedbacks to climate warming and atmospheric N deposition[J]. Journal of Plant Ecology (Chinese Version), 31(2): 252-261. | |
[62] | 赵丹, 刘鹏飞, 潘超, 等, 2015. 生态代谢组学研究进展[J]. 生态学报, 35(15): 4958-4967. |
ZHAO D, LIU P F, PAN C, et al., 2015. Advances in ecometabolomics[J]. Acta Eclogica Sinica, 35(15): 4958-4967. | |
[63] |
朱璧如, 张大勇, 2011. 基于过程的群落生态学理论框架[J]. 生物多样性, 19(4): 389-399.
DOI |
ZHU B R, ZHANG D Y, 2011. A process-based theoretical framework for community ecology[J]. Biodiversity Science, 19(4): 389-399.
DOI |
[1] | CHEN Junfang, WU Xian, LIU Xiaolin, LIU Juan, YANG Jiarong, LIU Yu. Shaping Characteristics of Elemental Stoichiometry on Microbial Diversity under Different Soil Water Contents [J]. Ecology and Environment, 2023, 32(5): 898-909. |
[2] | WANG Yun, ZHENG Xilai, CAO Min, LI Lei, SONG Xiaoran, LIN Xiaolei, GUO Kai. Study on Denitrification Performance and Control Factors in Brackish-Freshwater Transition Zone of Coastal Aquifer [J]. Ecology and Environment, 2023, 32(5): 980-988. |
[3] | YOU Haizhou, WANG Chao, ZHAO Guangzhi, LI Dongmei. Distribution Characteristics of Populus euramericana Nocturnal Sap Flow and Its Response to Environmental Factors in North China Plain [J]. Ecology and Environment, 2023, 32(2): 256-263. |
[4] | LIU Xilin, ZHUO Ruina. Influential Factors and Their Critical Thresholds of Initial Runoff Production Time on the Benggang Colluvial Slopes [J]. Ecology and Environment, 2023, 32(1): 36-46. |
[5] | WANG Jie, SHAN Yan, MA Lan, SONG Yanjing, WANG Xiangyu. Effects of Straw and Biochar Synergistic Returning on the Improvement of Salt-affected Soil in the Yellow River Delta [J]. Ecology and Environment, 2023, 32(1): 90-98. |
[6] | ZHANG Lin, ZHOU Piao, QI Shi, ZHANG Dai, WU Bingchen, CUI Ranran. Difference Influence of Spatial Structure of Platycladus orientalis Plantations on Diversity of Understory Herbaceous and Its Correlation Degree [J]. Ecology and Environment, 2022, 31(9): 1794-1801. |
[7] | HUA Li, CHENG Taozhi, LIANG Zhiyong. Remediation Effect of Petroleum-Contaminated Soil by Immobilized Mixed Bacteria in Northern Shaanxi Province of China [J]. Ecology and Environment, 2022, 31(8): 1610-1615. |
[8] | ZHU Jinfu, HUANG Ruiling, DONG Zhiqiang, MAO Xiaoning, ZHOU Huakun. Response of the Soil Bacterial Community to Nitrogen Addition in Alpine Wetland of Qinghai Lake [J]. Ecology and Environment, 2022, 31(6): 1101-1109. |
[9] | LEI Jun, ZHANG Jian, ZHAO Funian, QI Yue, ZHANG Xiuyun, LI Qiang, SHANG Junlin. Response of Photosynthetic Parameters for Spring Wheat at Flowering Stage to Soil Moisture and Temperature [J]. Ecology and Environment, 2022, 31(6): 1151-1159. |
[10] | JIANG Peng, QIN Mei’ou, LI Rongping, MENG Ying, YANG Feiyun, WEN Rihong, SUN Pei, FANG Yuan. Seasonal Variability of GPP and Its Influencing Factors in the Typical Ecosystems in China [J]. Ecology and Environment, 2022, 31(4): 643-651. |
[11] | WANG Yingcheng, YAO Shiting, JIN Xin, YU Wenzhen, LU Guangxin, WANG Junbang. Comparative Study on Soil Bacterial Diversity of Degraded Alpine Meadow in the Sanjiangyuan Region [J]. Ecology and Environment, 2022, 31(4): 695-703. |
[12] | LIU Zhijun, CUI Lijuan, LI Wei, LI Jing, LEI Yinru, ZHU Yinuo, WANG Rumiao, DOU Zhiguo. Effects of Spartina alterniflora Invasion on the Diversity and Community Structure of nirS-type Denitrifying Bacteria in Yancheng Coastal Wetlands [J]. Ecology and Environment, 2022, 31(4): 704-714. |
[13] | DENG Xiao, WU Chunyuan, YANG Guisheng, LI Yi, LI Qinfen. Improvement Effect of Coconut-shell Biochar on Coastal Soil in Hainan [J]. Ecology and Environment, 2022, 31(4): 723-731. |
[14] | SONG Xiuli, HUANG Ruilong, KE Caijie, HUANG Wei, ZHANG Wu, TAO Bo. Effects of Different Cropping Systems on Bacterial Community Structure and Diversity in Continuous Cropping Soil [J]. Ecology and Environment, 2022, 31(3): 487-496. |
[15] | ZHU Xu, LI Haimei, LI Yanhua, SUN Yingkun, TIAN Yuan. Physiological Responses of Eight Shrubs to Atmospheric Particulate Matter Pollution [J]. Ecology and Environment, 2022, 31(3): 535-545. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn