Ecology and Environment ›› 2023, Vol. 32 ›› Issue (5): 889-897.DOI: 10.16258/j.cnki.1674-5906.2023.05.007
• Research Articles • Previous Articles Next Articles
WANG Chao1,2,3(), YANG Qiannan1,2, ZHANG Chi3, LIU Tongxu4, ZHANG Xialong1,2, CHEN Jing1,2, LIU Kexue1,2,*(
)
Received:
2023-02-28
Online:
2023-05-18
Published:
2023-08-09
Contact:
LIU Kexue
王超1,2,3(), 杨倩楠1,2, 张池3, 刘同旭4, 张晓龙1,2, 陈静1,2, 刘科学1,2,*(
)
通讯作者:
刘科学
作者简介:
王超(1994年生),男,硕士研究生,主要从事耕地质量提升和土壤结构改良研究。E-mail: wzfaye66@sina.com
基金资助:
CLC Number:
WANG Chao, YANG Qiannan, ZHANG Chi, LIU Tongxu, ZHANG Xialong, CHEN Jing, LIU Kexue. The Characteristics of Soil Phosphorus Fractions and Their Availability under Different Land Use Types in Danxia Mountain[J]. Ecology and Environment, 2023, 32(5): 889-897.
王超, 杨倩楠, 张池, 刘同旭, 张晓龙, 陈静, 刘科学. 丹霞山不同土地利用方式土壤磷组分特征及其有效性[J]. 生态环境学报, 2023, 32(5): 889-897.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2023.05.007
编号 | 样地类型 | 海拔/m | 地理坐标 | 年限/a | 主要植被 |
---|---|---|---|---|---|
AF | 乔木林 | 268.9 | 25°2′36″N, 113°43′2″E | >30 | 丹霞梧桐(Firmiana danxiaensis H. H. Hsue & H. S. Kiu)、枫香(Liquidambar formosana Hance)、米储(Castanopsis Carlesii) |
SL | 灌木林 | 191.7 | 25°2′38″N, 113°43′28″E | >20 | 南酸枣(Choerospondias axillaris (Roxb.) Burtt et Hill.)、鸭脚木(Schefflera octophylla (Lour.) Harms)、圆叶小石积(Osteomeles subrotunda K. Koch)、芒萁(Dicranopteris dichotoma (Thunb.) Berhn.) |
AG | 撂荒草地 | 117.5 | 25°2′27″N, 113°43′57″E | >10 | 雀稗(Paspalum thunbergii Kunth ex steud.)、狗尾草(Setaria viridis (L.) Beauv.) |
CL | 农田 | 88.0 | 25°2′45″N, 113°43′21″E | >20 | 菜心(Brassica campestris L. ssp.chinensis var.utilis Tsen)、辣椒(Capsicum annuum L.)、玉米(Zea mays L.) |
Table 1 Condition of different sample plots
编号 | 样地类型 | 海拔/m | 地理坐标 | 年限/a | 主要植被 |
---|---|---|---|---|---|
AF | 乔木林 | 268.9 | 25°2′36″N, 113°43′2″E | >30 | 丹霞梧桐(Firmiana danxiaensis H. H. Hsue & H. S. Kiu)、枫香(Liquidambar formosana Hance)、米储(Castanopsis Carlesii) |
SL | 灌木林 | 191.7 | 25°2′38″N, 113°43′28″E | >20 | 南酸枣(Choerospondias axillaris (Roxb.) Burtt et Hill.)、鸭脚木(Schefflera octophylla (Lour.) Harms)、圆叶小石积(Osteomeles subrotunda K. Koch)、芒萁(Dicranopteris dichotoma (Thunb.) Berhn.) |
AG | 撂荒草地 | 117.5 | 25°2′27″N, 113°43′57″E | >10 | 雀稗(Paspalum thunbergii Kunth ex steud.)、狗尾草(Setaria viridis (L.) Beauv.) |
CL | 农田 | 88.0 | 25°2′45″N, 113°43′21″E | >20 | 菜心(Brassica campestris L. ssp.chinensis var.utilis Tsen)、辣椒(Capsicum annuum L.)、玉米(Zea mays L.) |
利用方式 | 土层深度/cm | pH | w(BD)/(g·cm-3) | w(DOC)/(mg·kg-1) | w(Feo)/(g·kg-1) | w(NH4+-N)/(mg·kg-1) | w(NO3--N)/(mg·kg-1) |
---|---|---|---|---|---|---|---|
AF | 0-20 | 6.28±0.13A | 1.08±0.01C | 291±6A | 2.42±0.13B | 15.76±0.32A | 3.90±0.09B |
20-40 | 6.77±0.15A | 1.20±0.01B | 231±6BC | 0.99±0.07D | 4.39±0.46C | 3.56±0.36B | |
SL | 0-20 | 6.01±0.12B | 1.19±0.00B | 274±13AB | 1.72±0.07C | 16.02±0.21A | 3.96±0.07B |
20-40 | 5.91±0.06B | 1.22±0.01B | 254±15A | 1.30±0.09B | 7.05±0.07B | 2.46±0.05D | |
AG | 0-20 | 5.29±0.02C | 1.25±0.03A | 276±8AB | 1.05±0.06D | 1.56±0.20C | 3.57±0.04C |
20-40 | 5.16±0.17C | 1.31±0.01A | 215±8C | 1.12±0.02C | 2.01±0.07D | 2.87±0.14C | |
CL | 0-20 | 5.21±0.04C | 1.28±0.04A | 260±15B | 2.84±0.07A | 8.89±0.33B | 37.22±0.20A |
20-40 | 4.80±0.03D | 1.30±0.04A | 238±11AB | 2.81±0.06A | 7.65±0.19A | 15.93±0.10A |
Table 2 Basic physicochemical properties of soil samples
利用方式 | 土层深度/cm | pH | w(BD)/(g·cm-3) | w(DOC)/(mg·kg-1) | w(Feo)/(g·kg-1) | w(NH4+-N)/(mg·kg-1) | w(NO3--N)/(mg·kg-1) |
---|---|---|---|---|---|---|---|
AF | 0-20 | 6.28±0.13A | 1.08±0.01C | 291±6A | 2.42±0.13B | 15.76±0.32A | 3.90±0.09B |
20-40 | 6.77±0.15A | 1.20±0.01B | 231±6BC | 0.99±0.07D | 4.39±0.46C | 3.56±0.36B | |
SL | 0-20 | 6.01±0.12B | 1.19±0.00B | 274±13AB | 1.72±0.07C | 16.02±0.21A | 3.96±0.07B |
20-40 | 5.91±0.06B | 1.22±0.01B | 254±15A | 1.30±0.09B | 7.05±0.07B | 2.46±0.05D | |
AG | 0-20 | 5.29±0.02C | 1.25±0.03A | 276±8AB | 1.05±0.06D | 1.56±0.20C | 3.57±0.04C |
20-40 | 5.16±0.17C | 1.31±0.01A | 215±8C | 1.12±0.02C | 2.01±0.07D | 2.87±0.14C | |
CL | 0-20 | 5.21±0.04C | 1.28±0.04A | 260±15B | 2.84±0.07A | 8.89±0.33B | 37.22±0.20A |
20-40 | 4.80±0.03D | 1.30±0.04A | 238±11AB | 2.81±0.06A | 7.65±0.19A | 15.93±0.10A |
利用方式 | 土层深度/cm | IP | OP | S-P | L-P | ML-P | O-P |
---|---|---|---|---|---|---|---|
AF | 0-20 | 52.4±0.9C | 47.6±0.9B | 0.88±0.05A | 18.8±0.3A | 33.1±0.3A | 47.2±0.1D |
20-40 | 52.5±0.6C | 47.5±0.6B | 0.66±0.10A | 19.4±0.2A | 33.2±0.4B | 46.7±0.5C | |
SL | 0-20 | 56.3±0.1B | 43.7±0.1C | 0.68±0.10B | 12.6±0.6B | 22.9±0.5C | 63.8±1.0B |
20-40 | 49.5±1.6D | 50.5±1.6A | 0.38±0.06B | 10.2±0.4C | 34.3±0.4A | 55.2±0.2B | |
AG | 0-20 | 61.2±0.3A | 38.8±0.3D | 0.60±0.01B | 7.7±0.5C | 17.3±0.4D | 74.5±0.9A |
20-40 | 56.3±0.3B | 43.7±0.3C | 0.32±0.02B | 10.1±0.9C | 26.6±0.7C | 63.1±1.5A | |
CL | 0-20 | 50.7±0.2D | 49.3±0.2A | 0.44±0.02C | 13.1±0.8B | 27.9±1.8B | 58.5±2.3C |
Table 3 Changes of the percent of soil phosphorus fractions %
利用方式 | 土层深度/cm | IP | OP | S-P | L-P | ML-P | O-P |
---|---|---|---|---|---|---|---|
AF | 0-20 | 52.4±0.9C | 47.6±0.9B | 0.88±0.05A | 18.8±0.3A | 33.1±0.3A | 47.2±0.1D |
20-40 | 52.5±0.6C | 47.5±0.6B | 0.66±0.10A | 19.4±0.2A | 33.2±0.4B | 46.7±0.5C | |
SL | 0-20 | 56.3±0.1B | 43.7±0.1C | 0.68±0.10B | 12.6±0.6B | 22.9±0.5C | 63.8±1.0B |
20-40 | 49.5±1.6D | 50.5±1.6A | 0.38±0.06B | 10.2±0.4C | 34.3±0.4A | 55.2±0.2B | |
AG | 0-20 | 61.2±0.3A | 38.8±0.3D | 0.60±0.01B | 7.7±0.5C | 17.3±0.4D | 74.5±0.9A |
20-40 | 56.3±0.3B | 43.7±0.3C | 0.32±0.02B | 10.1±0.9C | 26.6±0.7C | 63.1±1.5A | |
CL | 0-20 | 50.7±0.2D | 49.3±0.2A | 0.44±0.02C | 13.1±0.8B | 27.9±1.8B | 58.5±2.3C |
Figure 6 Relationship between soil microbial biomass phosphorus (a), alkaline phosphatase activities (b), acid phosphatase activities (c), and soil physicochemical properties
[1] |
CAVALCANTE H, ARAUJO F, NOYMA N P, et al., 2018. Phosphorus fractionation in sediments of tropical semiarid reservoirs[J]. Science of the Total Environment, 619-620: 1022-1029.
DOI URL |
[2] |
CHEN C M, JAMES J D, WANG J, et al., 2014. Properties of Fe-organic matter associations via coprecipitation versus adsorption[J]. Environmental Science and Technology, 48(23): 13751-9.
DOI PMID |
[3] |
CHEN C M, STEVEN J H, ELIZABETH C, et al., 2020. Iron-mediated organic matter decomposition in humid soils can counteract protection[J]. Nature Communication, 11: 2255.
DOI |
[4] |
CHEN Y S, CHEN H P, LI J, et al., 2019. Rapid and efficient activated sludge treatment by electro-Fenton oxidation[J]. Water Research, 152: 181-190.
DOI PMID |
[5] |
FAN Y X, LIN F, YANG L M, et al., 2018. Decreased soil organic P fraction associated with ectomycorrhizal fungal activity to meet increased P demand under N application in a subtropical forest ecosystem[J]. Biology and Fertility of Soils, 54(1): 149-161.
DOI URL |
[6] | FU D G, WU X N, DUAN C Q, et al., 2020. Response of soil phosphorus fractions and fluxes to different vegetation restoration types in a subtropical mountain ecosystem[J]. Catena, 193: 104663. |
[7] |
FUJITA K, KUNITO T, MORO H, et al., 2017. Microbial resource allocation for phosphatase synthesis reflects the availability of inorganic phosphorus across various soils[J]. Biogeochemistry, 136(3): 325-339.
DOI |
[8] | HERBERT E R, BOON P A, 2015. Global perspective on wetland salinization: ecological consequences of a growing threat to freshwater wetlands[J]. Ecosphere, 5(10): 1-43. |
[9] |
HOU E Q, CHEN C R, KUANG Y W, et al., 2016. A structural equation model analysis of phosphorus transformations in global unfertilized and uncultivated soils[J]. Global Biogeochemical Cycles, 30(9): 1300-1309.
DOI URL |
[10] |
HOULTON B Z, WANG Y P, VITOUSEK P M, et al., 2008. A unifying framework for dinitrogen fixation in the terrestrial biosphere[J]. Nature, 454(7202): 327-30.
DOI |
[11] |
LI Z X, YANG W, CAI C F, et al., 2013. Aggregate mechanical stability and relationship with aggregate breakdown under simulated rainfall[J]. Soil Science, 178(7): 369-377.
DOI URL |
[12] |
MA H L, TECIMEN H B, MA F, et al., 2022. Different responses of soil nitrogen to combined addition of labile carbon sources with fresh versus decomposed litter[J]. Journal of Plant Nutrition and Soil Science, 185(2): 232-242.
DOI URL |
[13] | MAGADLELA A, LEMBEDE Z, EGBEWALE S O, et al., 2023. The metabolic potential of soil microorganisms and enzymes in phosphorus-deficient kwazulu-natal grassland ecosystem soils[J]. Applied Soil Ecology, 181: 104647. |
[14] |
MANDER C, WAKELIN S, YOUNG S, et al., 2012. Incidence and diversity of phosphate-solubilising bacteria are linked to phosphorus status in grassland soils[J]. Soil Biology and Biochemistry, 44(1): 93-101.
DOI URL |
[15] |
MARANGUIT D, GUILLAUME T, KUZYAKOV Y, 2017. Land-use change affects phosphorus fractions in highly weathered tropical soils[J]. Catena, 149(Part 1): 385-393.
DOI URL |
[16] |
REDEL Y, RUBIO R, GODOY R, et al., 2008. Phosphorus fractions and phosphatase activity in an Andisol under different forest ecosystems[J]. Geoderma, 145(3): 216-221.
DOI URL |
[17] |
SANTOS S R, SILVA E D B, ALLEONI L R F, et al., 2017. Citric acid influence on soil phosphorus availability[J]. Journal of Plant Nutrition, 40(15): 2138-2145.
DOI URL |
[18] |
SUN D S, BI Q F, LI K J, et al., 2018. Significance of temperature and water availability for soil phosphorus transformation and microbial community composition as affected by fertilizer sources[J]. Biology and Fertility of Soils, 54(2): 229-241.
DOI URL |
[19] |
TIAN J H, LU X, CHEN Q Q, et al., 2020. Phosphorus fertilization affects soybean rhizosphere phosphorus dynamics and the bacterial community in karst soils[J]. Plant and Soil, 475: 137-152.
DOI |
[20] | TIESSEN H, MOIR J, 1993. Characterization of available P by sequential extraction[M]/Carter M R, Gregorich E G. Soil sampling and Methods of Analysis. 2nd Edition. Boca Raton: CRC Press, 7: 225-229. |
[21] |
TURNER B L, LAMBERS H, CONDRON L M, et al., 2013. Soil microbial biomass and the fate of phosphorus during long-term ecosystem development[J]. Plant and Soil, 367: 225-234.
DOI URL |
[22] |
WANG S J, LIU Q M, ZHANG D F. 2010. Karst rocky desertification in southwestern China: Geomorphology, land use, impact and rehabilitation[J]. Land Degradation & Development, 15(2): 115-121.
DOI URL |
[23] |
WEIHRAUCH C, OPP C, 2018. Ecologically relevant phosphorus pools in soils and their dynamics: The story so far[J]. Geoderma, 325: 183-194.
DOI URL |
[24] |
YAN L B, PENG H, ZHANG S, et al., 2019. The spatial patterns of red beds and danxia landforms: Implication for the formation factors-China[J]. Scientific Reports, 9: 1961.
DOI PMID |
[25] |
ZHANG H X, SHI L L, WEN D Z, et al., 2016. Soil potential labile but not occluded phosphorus forms increase with forest succession[J]. Biology and Fertility of Soils, 52: 41-51.
DOI URL |
[26] | ZHANG Y Q, FINN D, BHATTACHARYYA R, et al., 2021. Long-term changes in land use influence phosphorus concentrations, speciation, and cycling within subtropical soils[J]. Geoderma, 393: 115010. |
[27] | 陈苏, 马鸿岳, 陈影, 等, 2021. 纳米羟基磷灰石对小麦植物酶及土壤酶活性的影响研究[J]. 安全与环境学报, 21(3): 1249-1256. |
CHEN S, MA H Y, SHAN Y, et al., 2021. Effect of nano-hydroxyapatite on plant enzyme and soil enzyme activity in wheat[J]. Journal of Safety and Environment, 21(3): 1249-1256. | |
[28] |
何祖霞, 严岳鸿, 马其侠, 等, 2012. 湖南丹霞地貌区的苔藓植物多样性[J]. 生物多样性, 20(4): 522-526.
DOI |
HE Z X, YAN Y H, MA Q X, et al., 2012. The bryophyte diversity of the danxia landform in Hunan, China[J]. Biodiversity Science, 20(4): 522-526.
DOI URL |
|
[29] | 齐德利, 颜明, 闫丹, 等, 2016. 中国丹霞地貌的面积概算——粤北坪石红层盆地的实证研究[J]. 山地学报, 34(2): 134-141. |
QI D L, YAN M, YAN D, et al., 2016. Estimate area of danxia landform in China-an empirical research on pingshi red-beds basin in northern Guangdong[J]. Mountain Research, 34(2): 134-141. | |
[30] | 钱前, 章润阳, 刘坤平, 等, 2022. 喀斯特不同土地利用方式和生态恢复模式的土壤磷素特征[J]. 生态学杂志, 41(11): 2128-2136 |
QIAN Q, ZHANG R Y, LIU K P, et al., 2022. Soil phosphorus characteristics of different land use and ecological restoration types in karst ecosystem[J]. Chinese Journal of Ecology, 41(11): 2128-2136. | |
[31] | 张甘霖, 龚子同, 2012. 土壤调查实验室分析方法[M]. 北京: 科学出版社. |
ZHANG G L, GONG Z T, 2012. Soil survey laboratory methods[M]. Beijing: Science press. | |
[32] | 张磊, 贾淑娴, 李啸灵, 等, 2022. 亚热带米槠天然林凋落物和根系输入变化对土壤磷组分的影响[J]. 生态学报, 42(2): 656-666. |
ZHANG L, JIA S X, LI X L, et al., 2022. Effects of litter and root inputs changes on soil phosphorus fractions in a subtropical natural forest of Castanopsis carlesii[J]. Acta Ecologica Sinica, 42(2): 656-666. |
[1] | ZHENG Qingzhou, HE Jun, LI Shenzhi, DENG Chengzhi, WU Zhipeng, HUANG Xiaolin, WU Xia. Analysis on the Differences and Influencing Factors of Human Comfort between Urban and Rural Areas in Chongqing [J]. Ecology and Environment, 2023, 32(6): 1089-1097. |
[2] | WANG Lin, WEI Wei. Characteristics and Driving Factors of Ecosystem Services Changes in A Typical County of the Loess Plateau [J]. Ecology and Environment, 2023, 32(6): 1140-1148. |
[3] | LIU Xia, GUO Shu, WANG Lin. Study on the Value of Land Use and Ecological Services in the Region of Regional Integration: Take Shuanglai Pilot Area as An Example [J]. Ecology and Environment, 2023, 32(6): 1163-1172. |
[4] | WENG Shengheng, ZHANG Yuqin, JIANG Dongxin, PAN Weihua, LI Lichun, ZHANG Fangmin. Spatio-temporal Changes and Attribution Analysis of Net Ecosystem Productivity in Forest Ecosystem in Fujian Province [J]. Ecology and Environment, 2023, 32(5): 845-856. |
[5] | ZHANG Junwei, XIA Shengjie, CHEN Huiru, LIU Yanhong. Influence of Landscape Pattern Evolution on Thermal Environment of Urban Agglomerations in Central Shanxi Province [J]. Ecology and Environment, 2023, 32(5): 943-955. |
[6] | JIANG Yongwei, DING Zhenjun, YUAN Junbin, ZHANG Zheng, LI Yang, WEN Qingchun, WANG Yeyao, JIN Xiaowei. Study on Benthic Macroinvertebrates Community Structure and Water Quality Evaluation in Main Rivers of Liaoning Province [J]. Ecology and Environment, 2023, 32(5): 969-979. |
[7] | WANG Yun, ZHENG Xilai, CAO Min, LI Lei, SONG Xiaoran, LIN Xiaolei, GUO Kai. Study on Denitrification Performance and Control Factors in Brackish-Freshwater Transition Zone of Coastal Aquifer [J]. Ecology and Environment, 2023, 32(5): 980-988. |
[8] | KOU Zhu, QING Chun, YUAN Changguo, LI Ping. Diversity and Distribution of Sulfur Oxidizing Bacteria in Hot Springs of Northeast Tibet, China [J]. Ecology and Environment, 2023, 32(5): 989-1000. |
[9] | WANG Tiezheng, QU Xinyue, LIU Chunxiang, LI Youzhi. Spatial and Temporal Changes in Water Quality in the Dongjiang Lake and Their Relationships with Land Use in the Watershed [J]. Ecology and Environment, 2023, 32(4): 722-732. |
[10] | WANG Xinyu, GAO Dengzhou, LIU Bolin, WANG Bin, ZHENG Yanling, LI Xiaofei, HOU Lijun. The Tidal-cycle Variation and Influencing Factors of Dark Carbon Fixation Process in the Yangtze Estuary [J]. Ecology and Environment, 2023, 32(4): 733-743. |
[11] | WANG Jiali, FENG Jingke, YANG Yuanzheng, ZU Jiaxing, CAI Wenhua, YANG Jian. Research on Spatial Relations between Impervious Surfaces and the Urban Thermal Environment in the Central Metropolitan Area of Nanning City [J]. Ecology and Environment, 2023, 32(3): 525-534. |
[12] | LI Yushi, XIA Zhiye, ZHANG Lei. Carbon Emission Prediction and Spatial Optimization of Land Use in Chengdu-Chongqing Economic Circle in 2030 Based on SSPs Multi-scenarios [J]. Ecology and Environment, 2023, 32(3): 535-544. |
[13] | YOU Haizhou, WANG Chao, ZHAO Guangzhi, LI Dongmei. Distribution Characteristics of Populus euramericana Nocturnal Sap Flow and Its Response to Environmental Factors in North China Plain [J]. Ecology and Environment, 2023, 32(2): 256-263. |
[14] | SHENG Meijun, LI Shengjun, YANG Xinyue, WANG Rui, LI Jie, LI Gang, XIU Weiming. Changes of Soil Enzyme Activities in Cropland with Different Land Use Intensities in Fluvo-aquic Soil Area, North China [J]. Ecology and Environment, 2023, 32(2): 299-308. |
[15] | YANG Qiu, CAO Yingjie, ZHANG Yu, CHEN Jianyao, WANG Shizhong, TIAN Di. Hydrochemical Characteristics and Its Cause Analysis of Groundwater and Mine Water in Closed Lead Zinc Mining Area [J]. Ecology and Environment, 2023, 32(2): 361-371. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn