Ecology and Environment ›› 2023, Vol. 32 ›› Issue (5): 898-909.DOI: 10.16258/j.cnki.1674-5906.2023.05.008
• Research Articles • Previous Articles Next Articles
CHEN Junfang1,2(), WU Xian1,2, LIU Xiaolin1,2, LIU Juan3, YANG Jiarong1,2, LIU Yu1,2,*(
)
Received:
2022-09-30
Online:
2023-05-18
Published:
2023-08-09
Contact:
LIU Yu
陈俊芳1,2(), 吴宪1,2, 刘啸林1,2, 刘娟3, 杨佳绒1,2, 刘宇1,2,*(
)
通讯作者:
刘宇
作者简介:
陈俊芳(1999年生),女,硕士研究生,研究方向为土壤微生物生态。E-mail: junfangchen163@163.com
基金资助:
CLC Number:
CHEN Junfang, WU Xian, LIU Xiaolin, LIU Juan, YANG Jiarong, LIU Yu. Shaping Characteristics of Elemental Stoichiometry on Microbial Diversity under Different Soil Water Contents[J]. Ecology and Environment, 2023, 32(5): 898-909.
陈俊芳, 吴宪, 刘啸林, 刘娟, 杨佳绒, 刘宇. 不同土壤水分下元素化学计量对微生物多样性的塑造特征[J]. 生态环境学报, 2023, 32(5): 898-909.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2023.05.008
类别 | r | P |
---|---|---|
细菌 | 0.34 | 0.001 |
真菌 | 0.16 | 0.001 |
Table 1 Relationship of soil moisture and community composition of bacteria and fungi (Mantel test)
类别 | r | P |
---|---|---|
细菌 | 0.34 | 0.001 |
真菌 | 0.16 | 0.001 |
因子 | 相对较高水分 | 相对较低水分 | P |
---|---|---|---|
全氮 | 6.30±2.60 | 3.90±1.10 | <0.001 |
全磷 | 0.40±0.10 | 0.31±0.10 | <0.001 |
有机质 | 109.3±67.4 | 56.4±21.8 | <0.001 |
碳氮比率 | 16.8±6.20 | 14.2±2.50 | <0.001 |
碳磷比率 | 283.7±152.0 | 182.6±75.6 | <0.001 |
氮磷比率 | 16.4±5.70 | 12.6±4.10 | <0.001 |
Table 2 Comparisons of soil elements and stoichiometry under relatively high vs. low water contents
因子 | 相对较高水分 | 相对较低水分 | P |
---|---|---|---|
全氮 | 6.30±2.60 | 3.90±1.10 | <0.001 |
全磷 | 0.40±0.10 | 0.31±0.10 | <0.001 |
有机质 | 109.3±67.4 | 56.4±21.8 | <0.001 |
碳氮比率 | 16.8±6.20 | 14.2±2.50 | <0.001 |
碳磷比率 | 283.7±152.0 | 182.6±75.6 | <0.001 |
氮磷比率 | 16.4±5.70 | 12.6±4.10 | <0.001 |
[1] |
AUSTIN A T, VITOUSEK P M, 2012. Introduction to a virtual special issue on ecological stoichiometry and global change[J]. New Phytologist, 196(3): 649-651.
DOI PMID |
[2] |
AUSTIN A T, YAHDJIAN L, STARK J M, et al., 2004. Water pulses and biogeochemical cycles in arid and semiarid ecosystems[J]. Oecologia, 141(2): 221-235.
DOI PMID |
[3] |
BARDGETT R D, VAN DER PUTTEN W H, 2014. Belowground biodiversity and ecosystem functioning[J]. Nature, 515(7528): 505-511.
DOI |
[4] |
BARNARD R L, OSBORNE C A, FIRESTINE M K, 2013. Responses of soil bacterial and fungal communities to extreme desiccation and rewetting[J]. The ISME Journal, 7(11): 2229-2241.
DOI |
[5] |
BATTISTUZZI F U, HEDGES S B, 2009. A major clade of prokaryotes with ancient adaptations to life on land[J]. Molecular Biology and Evolution, 26(2): 335-343.
DOI PMID |
[6] |
BOLGER A M, LOHSE M, USADEL B, 2014. Trimmomatic: a flexible trimmer for Illumina sequence data[J]. Bioinformatics, 30(15): 2114-2120.
DOI PMID |
[7] |
DELGADO-BAQUERIZO M, MAESTRE F T, GALLARDO A, et al., 2013. Decoupling of soil nutrient cycles as a function of aridity in global drylands[J]. Nature, 502(7473): 672-676.
DOI |
[8] |
DELGADO-BAQUERIZO M, MAESTRE F T, REICH P B, et al., 2016. Microbial diversity drives multifunctionality in terrestrial ecosystems[J]. Nature Communications, 7(1): 10541.
DOI |
[9] |
DELGADO-BAQUERIZO M, REICH P B, KHACHANE A N, et al., 2017. It is elemental: soil nutrient stoichiometry drives bacterial diversity[J]. Environmental Microbiology, 19(3): 1176-1188.
DOI URL |
[10] |
DIXON P, 2003. VEGAN, a package of R functions for community ecology[J]. Journal of Vegetation Science, 14(6): 927-930.
DOI URL |
[11] |
EDGAR R C, 2010. Search and clustering orders of magnitude faster than BLAST[J]. Bioinformatics, 26(19): 2460-2461.
DOI PMID |
[12] |
ELSER J J, FAGAN W F, KERKHOFF A J, et al., 2010. Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change[J]. New Phytologist, 186(3): 593-608.
DOI PMID |
[13] |
ELSER J J, HAMILTON A, 2007. Stoichiometry and the new biology: the future is now[J]. PLoS Biology, 5(7): e181.
DOI PMID |
[14] |
FINZI A C, AUSTIN A T, CLELAND E E, et al., 2011. Responses and feedbacks of coupled biogeochemical cycles to climate change: Examples from terrestrial ecosystems[J]. Frontiers in Ecology and the Environment, 9(1): 61-67.
DOI URL |
[15] |
HALL E K, SINGER G A, KAINZ M J, et al., 2010. Evidence for a temperature acclimation mechanism in bacteria: an empirical test of a membrane-mediated trade-off[J]. Functional Ecology, 24(4): 898-908.
DOI URL |
[16] |
HUANG J P, YU H P, GUAN X D, et al., 2016. Accelerated dryland expansion under climate change[J]. Nature Climate Change, 6(2): 166-171.
DOI |
[17] |
HOOPER D, BIGNELL D, BROWN V, et al., 2000. Interactions between aboveground and belowground biodiversity in terrestrial ecosystems: Patterns, mechanisms, and feedbacks[J]. BioScience, 50(12): 1049-1061.
DOI URL |
[18] |
HU Z H, CHEN H Y H, YUE C, et al., 2020. Traits mediate drought effects on wood carbon fluxes[J]. Global Change Biology, 26(6): 3429-3442.
DOI PMID |
[19] | JIAO S, PENG Z, QI J, et al., 2021. Linking bacterial-fungal relationships to microbial diversity and soil nutrient cycling[J]. mSystems, 6(2): e01052-20. |
[20] |
JOHN R, DALLING J W, HARMS K E, et al., 2007. Soil nutrients influence spatial distributions of tropical tree species[J]. Proceedings of the National Academy of Sciences of the United States of America, 104(3): 864-869.
DOI PMID |
[21] |
LI C H, FULTZ L M, MOORE-KUCERA J, et al., 2018. Soil microbial community restoration in conservation reserve program semi-arid grasslands[J]. Soil Biology and Biochemistry, 118: 166-177.
DOI URL |
[22] |
LIU L B, GUDMUNDSSON L, HAUSER M, et al., 2020. Soil moisture dominates dryness stress on ecosystem production globally[J]. Nature Communications, 11(1): 4892.
DOI PMID |
[23] |
LENNON J T, AANDERUD Z T, LEHMKUHL B K, et al., 2012. Mapping the niche space of soil microorganisms using taxonomy and traits[J]. Ecology, 93(8): 1867-1879.
DOI PMID |
[24] |
MAESTRE FT, DELGADO-BAQUERIZO M, JEFFRIES TC, et al., 2015. Increasing aridity reduces soil microbial diversity and abundance in global drylands[J]. Proceedings of the National Academy of Sciences of the United States of America, 112(51): 15684-15689.
DOI PMID |
[25] |
MAGOČ T, SALZBERG S L, 2011. FLASH: Fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics, 27(21): 2957-2963.
DOI PMID |
[26] |
MAKINO W, COTNER J B, STERNER R W, et al., 2003. Are bacteria more like plants or animals? Growth rate and resource dependence of bacterial C:N:P stoichiometry[J]. Functional Ecology, 17(1): 121-130.
DOI URL |
[27] |
MCGILL W B, COLE C V, 1981. Comparative aspects of cycling of organic C, N, S and P through soil organic matter[J]. Geoderma, 26(4): 267-286.
DOI URL |
[28] |
NEW M, TODD M, HULME M, et al., 2001. Precipitation measurements and trends in the twentieth century[J]. International Journal of Climatology, 21(15): 1889-1922.
DOI URL |
[29] |
OCHOA-HUESO R, COLLINS S L, DELGADO-BAQUERIZO M, et al., 2018. Drought consistently alters the composition of soil fungal and bacterial communities in grasslands from two continents[J]. Global Change Biology, 24(7): 2818-2827.
DOI URL |
[30] |
PEÑUELAS J, SARDANS J, 2009. Elementary factors[J]. Nature, 460(7257): 803-804.
DOI |
[31] | QIAO Y, WANG J, LIU H M, et al., 2020. Depth-dependent soil C-N-P stoichiometry in a mature subtropical broadleaf forest[J]. Geoderma, 370: 114357. |
[32] |
QI J J, CHEN B B, GAO J M, et al., 2022. Responses of soil bacterial community structure and function to dry-wet cycles more stable in paddy than in dryland agricultural ecosystems[J]. Global Ecology and Biogeography, 31(2): 362-377.
DOI URL |
[33] |
SARDANS J, RIVAS-UBACH A, PEÑUELAS J, 2012. The elemental stoichiometry of aquatic and terrestrial ecosystems and its. relationships with organismic lifestyle and ecosystem structure and function: a review and perspectives[J]. Biogeochemistry, 111(1): 1-39.
DOI URL |
[34] |
SCHIMEL J, BALSER T C, WALLENSTEIN M, 2007. Microbial stress-response physiology and its implications for ecosystem function[J]. Ecology, 88(6): 1386-1394.
DOI PMID |
[35] |
SCHLOSS P D, WESTCOTT S L, RYABIN T, et al., 2009. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities[J]. Applied and Environmental Microbiology, 75(23): 7537-7541.
DOI PMID |
[36] |
SCHLESINGER W H, REYNOLDS J F, CUNNINGHAM G L, et al., 1990. Biological feedbacks in global desertification[J]. Science, 247(4946): 1043-1048.
DOI PMID |
[37] |
SCHWINNING S, SALA O E, 2004. Hierarchy of responses to resource pulses in arid and semi-arid ecosystems[J]. Oecologia, 141(2): 211-220.
PMID |
[38] |
STERNER R W, ELSER J J, 2003. Ecological stoichiometry: The biology of elements from molecules to the biosphere[J]. Journal of Plankton Research, 25(9): 1183.
DOI URL |
[39] |
VAN DER HEIJDEN M G A, BARDGETT R D, VAN STRAALEN N M, 2008. The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems[J]. Ecology Letters, 11(3): 296-310.
DOI PMID |
[40] | XU L, NAYLOR D, DONG Z, et al., 2018. Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria[J]. Proceedings of the National Academy of Sciences of the United States of America, 115(18): E4284-E4293. |
[41] |
ZECHMEISTER-BOLTENSTERN S, KEIBLINGER K M, MOOSHAMMER M, et al., 2015. The application of ecological stoichiometry to plant-microbial-soil organic matter transformations[J]. Ecological Monographs, 85(2): 133-155.
DOI URL |
[42] | 鲍士旦, 2000. 土壤农化分析[M]. 北京: 中国农业出版社. |
BAO S D, 2000. Soil agrochemical analysis[M]. Beijing: China Agriculture Press. | |
[43] | 黄菊莹, 余海龙, 刘吉利, 等, 2018. 控雨对荒漠草原植物、微生物和土壤C、N、P化学计量特征的影响[J]. 生态学报, 38(15): 5362-5373. |
HUANG J Y, YU H L, LIU J L, et al., 2018. Effects of precipitation levels on the C:N:P stoichiometry in plants, microbes, and soils in a desert steppe in China[J]. Acta Ecologica Sinica, 38(15): 5362-5373. | |
[44] | 李一春, 余海龙, 王攀, 等, 2020. 降水量对荒漠草原植物群落多样性和C:N:P生态化学计量特征的影响[J]. 中国草地学报, 42(1): 117-126. |
LI Y C, YU H L, WANG P, et al., 2020. Effects of precipitation on plant community diversity and C:N:P ecological stoichiometry diversity in a desert steppe of Ningxia, Northwestern China[J]. Chinese Journal of Grassland, 42(1): 117-126. | |
[45] | 王誉陶, 李建平, 井乐, 等, 2020. 模拟降雨对黄土高原典型草原土壤化学计量及微生物多样性的影响[J]. 生态学报, 40(5): 1517-1531. |
WANG Y T, LI J P, JING L, et al., 2020. Effects of different precipitation treatments on soil ecological chemistry and microbial diversity in the Loess Plateau[J]. Acta Ecologica Sinica, 40(5): 1517-1531. |
[1] | HAO Lei, ZHAI Yongguang, QI Wenchao, LAN Qiongqiong. Spatial-temporal Dynamics of Vegetation Carbon Sources/sinks in Inner Mongolia from 2001 to 2020 and Its Response to Climate Change [J]. Ecology and Environment, 2023, 32(5): 825-834. |
[2] | LI Hui, LI Bilong, GE Lili, HAN Chenhui, YANG Qian, ZHANG Yuejun. Temporal and Spatial Characteristics of Vegetation Evolution and Topographic Effects in Fenhe River Basin from 2000 to 2021 [J]. Ecology and Environment, 2023, 32(3): 439-449. |
[3] | WANG Jie, SHAN Yan, MA Lan, SONG Yanjing, WANG Xiangyu. Effects of Straw and Biochar Synergistic Returning on the Improvement of Salt-affected Soil in the Yellow River Delta [J]. Ecology and Environment, 2023, 32(1): 90-98. |
[4] | QI Yue, ZHANG Qiang, HU Shujuan, CAI Dihua, ZHAO Funian, ZHANG Kai, WANG Heling, WANG Runyuan. Climate Change and Its Impact on Winter Wheat Potential Productivity of Loess Plateau in China [J]. Ecology and Environment, 2022, 31(8): 1521-1529. |
[5] | DENG Tianle, XIE Liyong, ZHANG Fengzhe, ZHAO Hongliang, JIANG Yutong. Competition for Growth Space between Barnyard Grass and Rice under Elevated Atmospheric CO2 Concentration [J]. Ecology and Environment, 2022, 31(8): 1566-1572. |
[6] | HUA Li, CHENG Taozhi, LIANG Zhiyong. Remediation Effect of Petroleum-Contaminated Soil by Immobilized Mixed Bacteria in Northern Shaanxi Province of China [J]. Ecology and Environment, 2022, 31(8): 1610-1615. |
[7] | LU Yanyu, SUN Wei, FANG Yanqiu, TANG Weian, DENG Hanqing, HE Dongyan. Estimating the Climatic Potential Productivity and the Climatic Capacity of Food Security Based on the Cropping Structure in Anhui Province [J]. Ecology and Environment, 2022, 31(7): 1293-1305. |
[8] | LI Dengke, WANG Zhao. Quantitative Analysis of the Impact of Climate Change and Human Activities on Vegetation NPP in Shaanxi Province [J]. Ecology and Environment, 2022, 31(6): 1071-1079. |
[9] | CAO Xiaoyun, ZHU Cunxiong, CHEN Guoqian, SUN Shujiao, ZHAO Huifang, ZHU Wenbin, ZHOU Bingrong. Surface Greenness Change and Topographic Differentiation over Qaidam Basin from 2000 to 2021 [J]. Ecology and Environment, 2022, 31(6): 1080-1090. |
[10] | ZHANG Hengyu, SUN Shuchen, WU Yuanzhi, AN Juan, SONG Hongli. Distribution Characteristics of Soil Water, Carbon and Nitrogen under Different Vegetation Densities in Loess Plateau [J]. Ecology and Environment, 2022, 31(5): 875-884. |
[11] | CHEN Lijuan, ZHOU Wenjun, YI Yanyun, SONG Qinghai, ZHANG Yiping, LIANG Naishen, LU Zhiyun, WEN Handong, MOHD Zeeshan, SHA Liqing. Characteristics of Soil CH4 Flux in the Subtropical Evergreen Broad-leaved Forest in Ailao Mountain, Yunnan, Southwest China [J]. Ecology and Environment, 2022, 31(5): 949-960. |
[12] | WANG Yingcheng, YAO Shiting, JIN Xin, YU Wenzhen, LU Guangxin, WANG Junbang. Comparative Study on Soil Bacterial Diversity of Degraded Alpine Meadow in the Sanjiangyuan Region [J]. Ecology and Environment, 2022, 31(4): 695-703. |
[13] | LIU Zhijun, CUI Lijuan, LI Wei, LI Jing, LEI Yinru, ZHU Yinuo, WANG Rumiao, DOU Zhiguo. Effects of Spartina alterniflora Invasion on the Diversity and Community Structure of nirS-type Denitrifying Bacteria in Yancheng Coastal Wetlands [J]. Ecology and Environment, 2022, 31(4): 704-714. |
[14] | DENG Xiao, WU Chunyuan, YANG Guisheng, LI Yi, LI Qinfen. Improvement Effect of Coconut-shell Biochar on Coastal Soil in Hainan [J]. Ecology and Environment, 2022, 31(4): 723-731. |
[15] | SONG Xiuli, HUANG Ruilong, KE Caijie, HUANG Wei, ZHANG Wu, TAO Bo. Effects of Different Cropping Systems on Bacterial Community Structure and Diversity in Continuous Cropping Soil [J]. Ecology and Environment, 2022, 31(3): 487-496. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn