Ecology and Environment ›› 2023, Vol. 32 ›› Issue (4): 678-686.DOI: 10.16258/j.cnki.1674-5906.2023.04.005
• Research Articles • Previous Articles Next Articles
ZHAO Weibin1,2(), TANG Li1, WANG Song3, LIU Lingling3, WANG Shufeng2, XIAO Jiang2,*(
), CHEN Guangcai2
Received:
2022-10-28
Online:
2023-04-18
Published:
2023-07-12
Contact:
XIAO Jiang
赵维彬1,2(), 唐丽1, 王松3, 刘玲玲3, 王树凤2, 肖江2,*(
), 陈光才2
通讯作者:
肖江
作者简介:
赵维彬(1998年生),男,硕士研究生,主要从事土壤改良材料研发和观赏植物生理方面的研究。E-mail: z3062322436@163.com
基金资助:
CLC Number:
ZHAO Weibin, TANG Li, WANG Song, LIU Lingling, WANG Shufeng, XIAO Jiang, CHEN Guangcai. Improvement Effect of Two Biochars on Coastal Saline-Alkaline Soil[J]. Ecology and Environment, 2023, 32(4): 678-686.
赵维彬, 唐丽, 王松, 刘玲玲, 王树凤, 肖江, 陈光才. 两种生物炭对滨海盐碱土的改良效果[J]. 生态环境学报, 2023, 32(4): 678-686.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2023.04.005
土壤性质 | 试验地土壤 |
---|---|
容重/(g∙cm−3) | 1.47 |
含水量/% | 30.87 |
孔隙度/% | 41.89 |
pH | 8.89 |
w(盐分)/(g∙kg−1) | 8.23 |
CEC/(cmol∙kg−1) | 2.21 |
w(SOC)/(g∙kg−1) | 12.41 |
w(TN)/(g∙kg−1) w(TP)/(g∙kg−1) w(AN)/(mg∙kg−1) | 0.72 1.08 31.16 |
w(AP)/(mg∙kg−1) | 24.06 |
Table 1 The basic properties of soil in present study
土壤性质 | 试验地土壤 |
---|---|
容重/(g∙cm−3) | 1.47 |
含水量/% | 30.87 |
孔隙度/% | 41.89 |
pH | 8.89 |
w(盐分)/(g∙kg−1) | 8.23 |
CEC/(cmol∙kg−1) | 2.21 |
w(SOC)/(g∙kg−1) | 12.41 |
w(TN)/(g∙kg−1) w(TP)/(g∙kg−1) w(AN)/(mg∙kg−1) | 0.72 1.08 31.16 |
w(AP)/(mg∙kg−1) | 24.06 |
理化性质 | 骨炭 (AB) | 竹炭 (PB) |
---|---|---|
比表面积/(m2∙g−1) | 57.17 | 760 |
孔隙大小/nm | 11.4 | 3.07 |
pH | 7.93 | 9.24 |
EC/(μS∙cm−1) CEC/(cmol∙kg−1) | 929 4.47 | 714 1.24 |
w(C)/(mg∙g−1) | 104 | 418 |
w(灰分)/% | 89.6 | 58.2 |
w(N)/(mg∙g−1) | 26 | 2.14 |
w(P)/(mg∙g−1) | 21.2 | 0.081 |
w(Na)/(mg∙g−1) | 1.03 | 0.287 |
w(Mg)/(mg∙g−1) | 0.66 | 0.085 |
w(Ca)/(mg∙g−1) | 38.85 | 0.43 |
w(K)/(mg∙g−1) | 0.129 | 0.765 |
Table 2 The basic properties of biochars
理化性质 | 骨炭 (AB) | 竹炭 (PB) |
---|---|---|
比表面积/(m2∙g−1) | 57.17 | 760 |
孔隙大小/nm | 11.4 | 3.07 |
pH | 7.93 | 9.24 |
EC/(μS∙cm−1) CEC/(cmol∙kg−1) | 929 4.47 | 714 1.24 |
w(C)/(mg∙g−1) | 104 | 418 |
w(灰分)/% | 89.6 | 58.2 |
w(N)/(mg∙g−1) | 26 | 2.14 |
w(P)/(mg∙g−1) | 21.2 | 0.081 |
w(Na)/(mg∙g−1) | 1.03 | 0.287 |
w(Mg)/(mg∙g−1) | 0.66 | 0.085 |
w(Ca)/(mg∙g−1) | 38.85 | 0.43 |
w(K)/(mg∙g−1) | 0.129 | 0.765 |
[1] |
AKHTAR S, ANDERSEN M N, LIU F, 2015. Residual effects of biochar on improving growth, physiology and yield of wheat under salt stress[J]. Agricultural Water Management, 158: 61-68.
DOI URL |
[2] |
AMELOOT N, SLEUTEL S, DAS K, et al., 2015. Biochar amendment to soils with contrasting organic matter level: Effects on N mineralization and biological soil properties[J]. Global Change Biology Bioenergy, 7(1): 135-144.
DOI URL |
[3] |
AZEEM M, ALI A, JEYASUNDAR P, et al., 2021. Effects of sheep bone biochar on soil quality, maize growth, and fractionation and phytoavailability of Cd and Zn in a mining-contaminated soil[J]. Chemosphere, 282: 131016.
DOI URL |
[4] |
AZEEM M, SHAHEEN S M, ALI A, et al., 2022. Removal of potentially toxic elements from contaminated soil and water using bone char compared to plant- and bone-derived biochars: A review[J]. Journal of Hazardous Materials, 427: 128131.
DOI URL |
[5] | BHADORIA P B S, KASELOWSKY J, CLAASSEN N, et al., 2010. Impedance factor for chloride diffusion in soil as affected by bulk density and water content[J]. Journal of Plant Nutrition and Soil Science, 154(1): 69-72. |
[6] |
BLANCO-CANQUI H, 2017. Biochar and soil physical properties[J]. Soil Science Society of America Journal, 81(4): 687-711.
DOI URL |
[7] |
BORDOLOI S, KUMAR H, HUSSAIN R, et al., 2020. Assessment of hydro-mechanical properties of biochar-amended soil sourced from two contrasting feedstock[J]. Biomass Conversion and Biorefinery, 1: 1-16.
DOI URL |
[8] |
BRODOWSKI S, W AMELUNG, L HAUMAIER C, et al., 2005. Morphological and chemical properties of black carbon in physical soil fractions as revealed by scanning electron microscopy and energy-dispersive x-ray spectroscopy[J]. Geoderma, 128(1-2): 116-129.
DOI URL |
[9] |
BURRELL L D, ZEHETNER F, RAMPAZZO N, et al., 2016. Long-term effects of biochar on soil physical properties[J]. Geoderma, 282: 96-102.
DOI URL |
[10] |
CHINTALA R, MOLLINEDO J, SCHUMACHER T E, et al., 2014. Effect of biochar on chemical properties of acidic soil[J]. Archives of Agronomy and Soil Science, 60(3): 393-404.
DOI URL |
[11] |
CLOUGH A, SKJEMSTAD J O, 2000. Physical and chemical protection of soil organic carbon in three agricultural soils with different contents of calcium carbonate[J]. Soil Research, 38(5): 1005-1016.
DOI URL |
[12] |
CUI L Q, LIU Y M, YAN J L, et al., 2022. Revitalizing coastal saline-alkali soil with biochar application for improved crop growth[J]. Ecological Engineering, 179: 106594.
DOI URL |
[13] |
DELUCA T, MACKENZIE M, GUNDALE M, et al., 2006. Wildfire-produced charcoal directly influences nitrogen cycling in ponderosa pine forests[J]. Soil Science Society of America Journal, 70(2): 448-453.
DOI URL |
[14] |
DUAN M L, LIU G H, ZHOU B B, et al., 2021. Effects of modified biochar on water and salt distribution and water-stable macro-aggregates in saline-alkaline soil[J]. Journal of Soils and Sediments, 21(6): 2192-2202.
DOI |
[15] |
FAN R Q, ZHANG B H, LI J Y, et al., 2019. Straw-derived biochar mitigates CO2 emission through changes in soil pore structure in a wheat-rice rotation system[J]. Chemosphere, 243: 125329.
DOI URL |
[16] |
GUL S, WHALEN J K, THOMAS B W, et al., 2015. Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions[J]. Agriculture Ecosystems and Environment, 206: 46-59.
DOI URL |
[17] |
HAILEGNAW N S, MERCL F, PRAČKE, et al., 2019. Mutual relationships of biochar and soil pH, CEC, and exchangeable base cations in a model laboratory experiment[J]. Journal of Soils and Sediments, 19(5): 2405-2416.
DOI |
[18] |
HE K, HE G, WANG C P, et al., 2020. Biochar amendment ameliorates soil properties and promotes Miscanthus growth in a coastal saline-alkali soil[J]. Applied Soil Ecology, 155: 103674.
DOI URL |
[19] |
JING Y L, ZHANG Y H, HAN I, et al., 2020. Effects of different straw biochars on soil organic carbon, nitrogen, available phosphorus, and enzyme activity in paddy soil[J]. Scientific Reports, 10: 8837.
DOI PMID |
[20] |
KARIMI A, MOEZZI A, CHOROM M, et al., 2020. Application of biochar changed the status of nutrients and biological activity in a calcareous soil[J]. Journal of Soil Science and Plant Nutrition, 20(2): 450-459.
DOI |
[21] |
LASHARI M S, YE Y X, JI H S, et al., 2015. Biochar-manure compost in conjunction with pyroligneous solution alleviated salt stress and improved leaf bioactivity of maize in a saline soil from central China: A 2-year field experiment[J]. Journal of the Science of Food and Agriculture, 95(6): 1321-1327.
DOI PMID |
[22] |
LENG L J, HUANG H J, 2018. An overview of the effect of pyrolysis process parameters on biochar stability[J]. Bioresource Technology, 270: 627-642.
DOI PMID |
[23] |
LI S M, BARRETO V, LI R W, et al., 2018. Nitrogen retention of biochar derived from different feedstocks at variable pyrolysis temperatures[J]. Journal of analytical and applied pyrolysis, 133: 136-146.
DOI URL |
[24] |
LI S, YANG Y C, LI Y C, et al., 2020. Remediation of saline-sodic soil using organic and inorganic amendments: Physical, chemical, and enzyme activity properties[J]. Journal of soil and Sediments, 20(3): 1454-1467.
DOI |
[25] |
LUO S S, WANG S J, TIAN L, et al., 2018. Aggregate-related changes in soil microbial communities under different ameliorant applications in saline-sodic soils[J]. Geoderma, 329: 108-117.
DOI URL |
[26] |
MIDDELBURG J J, NIEUWENHUIZE J, VAN BREUGEL P, 1999. Black carbon in marine sediments[J]. Marine Chemistry, 65(3): 245-252.
DOI URL |
[27] |
MUSTAFA K, HOSSAIN A, VLADIMIR S A, et al., 2010. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar[J]. Journal of Environmental Management, 92(1): 223-228.
DOI URL |
[28] |
OUYANG X K, JIN R N, YANG L P, et al., 2014. Bamboo derived porous bioadsorbents and their adsorption of Cd (II) from mixed aqueous solutions[J]. RSC Advances, 4(54): 28699-28706.
DOI URL |
[29] |
RAZZAGHI F, OBOUR P B, ARTHUR E, 2020. Does biochar improve soil water retention? A systematic review and meta-analysis[J]. Geoderma, 361: 114055.
DOI URL |
[30] | SARAN S, ELISA L C, EVELYN K, et al., 2009. Biochar, climate change and soil: A review to guide future research[R]. CSIRO Land and Water Science Report: 5-6. |
[31] | SHEPHERD M A, HARRISON R, WEBB J, 2002. Managing soil organic matter-implications for soil structure on organic farms[J]. Soil Use and Management, 18: 284-292 |
[32] | SOHI S P, KRULL E, LOPEZ-CAPEL E, et al., 2010. A review of biochar and its use and function in soil[J]. Advances in Agronomy, 105: 47-82. |
[33] |
SONG D L, TANG J W, XI X Y, et al., 2018. Responses of soil nutrients and microbial activities to additions of maize straw biochar and chemical fertilization in a calcareous soil[J]. European Journal of Soil Biology, 84: 1-10.
DOI URL |
[34] |
SUN X Q, SHE D L, FEI Y H, et al., 2021. Three-dimensional fractal characteristics of soil pore structure and their relationships with hydraulic parameters in biochar-amended saline soil[J]. Soil and Tillage Research, 205: 104809.
DOI URL |
[35] | TOMCZYK A, SOKOOWSKA Z, BOGUTA P, 2020. Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects[J]. Reviews in Environmental Science and Bio-Technology, 19(1): 191-215. |
[36] |
TRAKAL L, V ESELSKÁ V, ŠAFAŘÍK I, et al., 2016. Lead and cadmium sorption mechanisms on magnetically modified biochars[J]. Bioresource Technology, 203: 318-324.
DOI PMID |
[37] |
UM-E-LAILA, HUSSAIN A, NAZIR A, et al., 2021. Potential application of biochar composite derived from rice straw and animal bones to improve plant growth[J]. Sustainability, 13(19): 11104.
DOI URL |
[38] |
VACCARI F P, BARONTI S, LUGATO E, et al., 2011. Biochar as a strategy to sequester carbon and increase yield in durum wheat[J]. European Journal of Agronomy, 34(4): 231-238.
DOI URL |
[39] |
WANG S Y, TSAI M H, LO S F, et al., 2008. Effects of manufacturing conditions on the adsorption capacity of heavy metal ions by Makino bamboo charcoal[J]. Bioresource Technology, 99(15): 7027-7033.
DOI URL |
[40] |
XIAO Q, ZHU L X, SHEN Y F, et al., 2016. Sensitivity of soil water retention and availability to biochar addition in rainfed semi-arid farmland during a three-year field experiment[J]. Field Crops Research, 196: 284-293.
DOI URL |
[41] |
YANG X, HINZMANN M, PAN H, et al., 2022. Pig carcass-derived biochar caused contradictory effects on arsenic mobilization in a contaminated paddy soil under fluctuating controlled redox conditions[J]. Journal of Hazardous Materials, 421: 126647.
DOI URL |
[42] |
YU X L, LU S G, 2019. Reconfiguration of macropore networks in a silty loam soil following biochar addition identified by X-ray microtomography and network analyses[J]. European Journal of Soil Science, 70(3): 591-603.
DOI URL |
[43] |
YUAN J H, XU R K, WANG N, et al., 2011. Amendment of acid soils with crop residues and biochars[J]. Pedosphere, 21(3): 302-308.
DOI URL |
[44] |
YUE Y, GUO W N, LIN Q M, et al., 2016. Improving salt leaching in a simulated saline soil column by three biochars derived from rice straw (Oryza sativa L.), sunfower straw (Helianthus annuus), and cow manure[J]. Journal of Soil and Water Conservation, 71(6): 467-475.
DOI URL |
[45] |
ZAVALLONI C, G ALBERTI, S BIASIOL, et al., 2011. Microbial mineralization of biochar and wheat straw mixture in soil: A short-term study[J]. Applied Soil Ecology, 50: 45-51.
DOI URL |
[46] |
ZHANG A F, LIU Y M, PAN G X, et al., 2012. Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from central China Plain[J]. Plant and Soil, 351: 263-275.
DOI URL |
[47] |
ZHANG J, CHEN Q, YOU C F, 2016. Biochar effect on water evaporation and hydraulic conductivity in sandy soil[J]. Pedosphere, 26(2): 265-272.
DOI URL |
[48] |
ZHANG P, BING X, JIAO L, et al., 2022. Amelioration effects of coastal saline-alkali soil by ball-milled red phosphorus-loaded biochar[J]. Chemical Engineering Journal, 431(Part 1): 133904.
DOI URL |
[49] |
ZHENG H, WANG X, CHEN L, et al., 2018. Enhanced growth of halophyte plants in biochar-amended coastal soil: Roles of nutrient availability and rhizosphere microbial modulation[J]. Plant, Cell and Environment, 41(3): 517-532.
DOI URL |
[50] | 鲍士旦, 2000. 土壤农化分析[M]. 北京: 中国农业出版社. |
BAO S D, 2002. Soil agro-chemical analysis[M]. Beijing: China Agriculture Press. | |
[51] |
卜晓莉, 汪浪浪, 马青林, 等, 2019. 稻壳炭施用对太湖滨岸灰潮土氮磷淋失及土壤性质的影响[J]. 生态环境学报, 28(11): 2216-2222.
DOI URL |
BU X L, WANG L, MA Q L, et al., 2019. Effects of rice husk biochar addition on nitrogen and phosphorus leaching and soil properties of gray fluvo-aquic soils in Taihu Lake shore[J]. Ecology and Environment Sciences, 28(11): 2216-2222.
DOI URL |
|
[52] | 陈义群, 董元华, 2008. 土壤改良剂的研究与应用进展[J]. 生态环境, 17(3): 1282-1289. |
CHEN Y Q, DONG Y H, 2008. Progress of research and utilization of soil amendments[J]. Ecology and Environment Sciences, 17(3): 1282-1289. | |
[53] |
邓晓, 武春媛, 杨桂生, 等, 2022. 椰壳生物炭对海南滨海土壤的改良效果[J]. 生态环境学报, 31(4): 723-731.
DOI URL |
DENG X, WU C Y, YANG G S, et al., 2022. Improvement effect of coconut-shell biochar on coastal soil in Hainan[J]. Ecology and Environment Sciences, 31(4): 723-731.
DOI URL |
|
[54] | 董合忠, 辛承松, 李维江, 2012. 滨海盐碱地棉田盐度等级划分[J]. 山东农业科学, 44(3): 36-39. |
DONG H Z, XIN C S, LI W J, 2012. Soil salinity grading of cotton field in coastal saline area[J]. Shandong Agricultural Sciences, 44(3): 36-39. | |
[55] |
葛晓改, 周本智, 肖文发, 等, 2016. 生物质炭输入对土壤碳排放的激发效应研究进展[J]. 生态环境学报, 25(2): 339-345.
DOI URL |
GE X G, ZHOU B Z, XIAO W F, et al., 2016. Priming effect of biochar addition on soil carbon emission: A review[J]. Ecology and Environment Sciences, 25(2): 339-345. | |
[56] |
韩剑宏, 刘泽霞, 张连科, 等, 2019. 生物炭和环保酵素对盐碱化土壤特性的影响[J]. 生态环境学报, 28(5): 1029-1036.
DOI URL |
HAN J H, LIU Z X, ZHANG L K, et al., 2019. Effects of biochar and environmental enzymes on the characteristics of salinized soil[J]. Ecology and Environment Sciences, 28(5): 1029-1036. | |
[57] | 李金彪, 陈金林, 刘广明, 等, 2014. 滨海盐碱地绿化理论技术研究进展[J]. 土壤通报, 45(1): 246-251. |
LI J B, CHEN J L, LIU G M, et al., 2014. Progress of greening theory and technology for coastal saline land[J]. Chinese Journal of Soil Science, 45(1): 246-251. | |
[58] | 毛庆莲, 王胜, 2020. 国内盐碱地治理趋势探究浅析[J]. 湖北农业科学, 59(S1): 302-306. |
MAO L Q, WANG S, 2020. Brief analysis on the trend of improve saline alkali soil in China[J]. Hubei Agricultural Sciences, 59(S1): 302-306. | |
[59] | 唐光木, 徐万里, 顾美英, 等, 2019. 棉秆炭特性及其对灰漠土土壤有机碳矿化的效应[J]. 生态学报, 39(05): 1795-1803. |
TANG G M, XU W L, GU Y M, et al., 2019. Characteristics of cotton stalk-char and its effect on organic carbon mineralization in grey desert soil[J]. Acta Ecologica Sinica, 39(05): 1795-1803. | |
[60] | 徐刚, 张友, 武玉, 等, 2016. 生物炭对土壤中氮磷有效性影响的研究进展[J]. 中国科学: 生命科学, 46(9): 1085-1090. |
XU G, ZHANG Y, WU Y, et al., 2016. Effects of biochar application on nitrogen and phosphorus availability in soils: A review[J]. Scientia Sinica (Vitae), 46(9): 1085-1090. | |
[61] | 杨劲松, 姚荣江, 王相平, 等, 2022. 中国盐渍土研究: 历程、现状与展望[J]. 土壤学报, 59(1): 10-27. |
YANG J S, YAO R J, WANG X P, et al., 2022. Research on salt-affected soils in China: History, status quo and prospect[J]. Acta Pedologica Sinica, 59(1): 10-27. | |
[62] | 袁帅, 赵立欣, 孟海波, 等, 2016. 生物炭主要类型、理化性质及其研究展望[J]. 植物营养与肥料学报, 22(5): 1402-1417. |
YUAN S, ZHAO L X, MENG H B, et al., 2016. The main types of biochar and their properties and expectative researches[J]. Journal of Plant Nutrition and Fertilizers, 22(5): 1402-1417. | |
[63] |
赵英, 王丽, 赵惠丽, 等, 2022. 滨海盐碱地改良研究现状及展望[J]. 中国农学通报, 38(3): 67-74.
DOI |
ZHAO Y, WANG L, ZHAO H L, et al., 2019. Research status and prospects of saline-alkali land amelioration in the coastal region of China[J]. Chinese Agricultural Science Bulletin, 38(3): 67-74. |
[1] | LI Ping, BAI Xiaoming, CHEN Xin, LI Juanxia, RAN Fu, CHEN Hui, YANG Xiaoni, KANG Ruiqing. Effects of Trifolium repens Invasion on Soil Properties and Plant Communities of Gramineous Turfgrass [J]. Ecology and Environment, 2023, 32(1): 70-79. |
[2] | WANG Jie, SHAN Yan, MA Lan, SONG Yanjing, WANG Xiangyu. Effects of Straw and Biochar Synergistic Returning on the Improvement of Salt-affected Soil in the Yellow River Delta [J]. Ecology and Environment, 2023, 32(1): 90-98. |
[3] | YOU Hongjian, ZHANG Wenwen, LAN Zhengfang, MA Lan, ZHANG Baodi, MU Xiaokun, LI Wenhui, CAO Yune. Effects of Earthworm in-situ Composting and Biochar on Cucumber Root-knot Nematodes and Rhizosphere Microorganisms [J]. Ecology and Environment, 2023, 32(1): 99-109. |
[4] | LI Xiaohui, AI Xianbin, LI Liang, WANG Xiyang, XIN Zaijun, SUN Xiaoyan. Study on Passivation Effects of New Modified Rice Husk Biochar Materials on Cadmium Contaminated Soil [J]. Ecology and Environment, 2022, 31(9): 1901-1908. |
[5] | TAO Ling, HUANG Lei, ZHOU Yilei, LI Zhongxing, REN Jun. Influences of Biochar Prepared by Co-pyrolysis with Sludge and Attapulgite on Bioavailability and Environmental Risk of Heavy Metals in Mining Soil [J]. Ecology and Environment, 2022, 31(8): 1637-1646. |
[6] | FANG Xianbao, ZHANG Zhijun, LAI Yangqing, YE Mai, DIAO Zenghui. Remediation of Heavy Metals Cr and Cd in Soil by A Novel Sludge-derived Biochar [J]. Ecology and Environment, 2022, 31(8): 1647-1656. |
[7] | QIAN Lianwen, YU Tiantian, LIANG Xujun, WANG Yixiang, CHEN Yongshan. Stability of Biochar after Application for 5 Years in the Amendment of Acidified Tea Garden Soil [J]. Ecology and Environment, 2022, 31(7): 1442-1447. |
[8] | ZHANG Huiqi, LI Zizhong, QI Yan. Effects of Corn Straw-based Biochar Amount on Pores and Water Holding Capacity of Sandy Soil [J]. Ecology and Environment, 2022, 31(6): 1272-1277. |
[9] | DENG Xiao, WU Chunyuan, YANG Guisheng, LI Yi, LI Qinfen. Improvement Effect of Coconut-shell Biochar on Coastal Soil in Hainan [J]. Ecology and Environment, 2022, 31(4): 723-731. |
[10] | WEI Lan, HUANG Lianxi, LI Xiang, WANG Zehuang, CHEN Weisheng, HUANG Qing, HUANG Yufen, LIU Zhongzhen. Biochar Medium Could Significantly Improve Banana Seedling Growth [J]. Ecology and Environment, 2022, 31(4): 732-739. |
[11] | ZHAO Chaofan, ZHOU Dandan, SUN Jiancai, QIAN Kunpeng, LI Fangfang. The Effect of Soluble Components on the Adsorption of Cadmium on Biochar [J]. Ecology and Environment, 2022, 31(4): 814-823. |
[12] | CHENG Wenyuan, LI Fayun, LÜ Jianhua, LIN Meixia, WANG Wei. Sorption Characteristics of Polycyclic Aromatic Hydrocarbons Phenanthrene on Sunflower Straw Biochar Modified with Alkali [J]. Ecology and Environment, 2022, 31(4): 824-834. |
[13] | SU Yan, QUAN Yanhong, HUAN Ziyan, YAO Jia, SU Xiaojuan. Effect of phosphate-modified Biochar on Remediation of Pb- and Zn-polluted Farmlands Around A Pb/Zn Mine in Yunnan Province, China [J]. Ecology and Environment, 2022, 31(3): 593-602. |
[14] | CONG Xin, WANG Yu, LI Yao, HE Yangyang. Adsorption Characteristics of Biochars and Graphene Oxide/biochar Composites for Antibiotics from Aqueous Solution [J]. Ecology and Environment, 2022, 31(2): 326-334. |
[15] | QIN Kun, WANG Zhikang, WANG Zhanghong, YANG Cheng, LIU Jiegang, SHEN Dekui. Cd(II) Adsorption Capability of the Biochar Derived from Co-pyrolysis of Lignin and Polyethylene [J]. Ecology and Environment, 2022, 31(2): 344-353. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn