Ecology and Environment ›› 2023, Vol. 32 ›› Issue (4): 687-696.DOI: 10.16258/j.cnki.1674-5906.2023.04.006
• Research Articles • Previous Articles Next Articles
YUAN Jiaqiu1,2(), SUN Dawei2, YANG Ling3, FU Xiangxiang2,*(
)
Received:
2023-03-03
Online:
2023-04-18
Published:
2023-07-12
Contact:
FU Xiangxiang
通讯作者:
洑香香
作者简介:
袁佳秋(1994年生),女,讲师,博士研究生,主要从事抗逆机制研究。E-mail: 20221026@jsfpc.edu.cn
基金资助:
CLC Number:
YUAN Jiaqiu, SUN Dawei, YANG Ling, FU Xiangxiang. Responses of Calcium Composition and Osmotica under Salt Stress in Cornus hongkongensis Subsp. Tonkinensis (W. P. Fang) Q. Y. Xiang[J]. Ecology and Environment, 2023, 32(4): 687-696.
袁佳秋, 孙大伟, 杨玲, 洑香香. 东京四照花钙组分与渗透调节物质对盐胁迫的响应[J]. 生态环境学报, 2023, 32(4): 687-696.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2023.04.006
处理 | 孔隙长度/µm | 孔隙宽度/µm | 宽长比W/L | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
5 d | 30 d | Sig. | 5 d | 30 d | Sig. | 5 d | 30 d | Sig. | |||
CK | 7.51±0.27A | 8.53±0.08A | * | 2.86±0.33A | 3.05±0.03A | ns | 0.38±0.03A | 0.36±0.00A | ns | ||
T1 | 4.79±0.80B | 4.78±0.53C | ns | 1.38±0.19B | 1.33±0.17C | ns | 0.29±0.03B | 0.27±0.01C | ns | ||
T2 | 5.16±0.50B | 5.01±0.13C | ns | 1.43±0.15B | 1.37±0.02C | ns | 0.28±0.01B | 0.28±0.01C | ns | ||
T3 | 4.65±0.84B | 7.08±0.72B | ** | 1.16±0.32B | 2.04±0.17B | * | 0.24±0.03B | 0.29±0.01B | ns |
Table 1 Effect of salt stress on stoma of leaves in C. hongkongensis subsp. tonkinensis
处理 | 孔隙长度/µm | 孔隙宽度/µm | 宽长比W/L | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
5 d | 30 d | Sig. | 5 d | 30 d | Sig. | 5 d | 30 d | Sig. | |||
CK | 7.51±0.27A | 8.53±0.08A | * | 2.86±0.33A | 3.05±0.03A | ns | 0.38±0.03A | 0.36±0.00A | ns | ||
T1 | 4.79±0.80B | 4.78±0.53C | ns | 1.38±0.19B | 1.33±0.17C | ns | 0.29±0.03B | 0.27±0.01C | ns | ||
T2 | 5.16±0.50B | 5.01±0.13C | ns | 1.43±0.15B | 1.37±0.02C | ns | 0.28±0.01B | 0.28±0.01C | ns | ||
T3 | 4.65±0.84B | 7.08±0.72B | ** | 1.16±0.32B | 2.04±0.17B | * | 0.24±0.03B | 0.29±0.01B | ns |
指标 | 处理 | 胁迫时间/d/ | ||
---|---|---|---|---|
5 d | 30 d | Sig. | ||
可溶性蛋白 质量分数/ (mg∙g−1) | CK | 5.39±0.40A | 5.54±0.35B | ns |
T1 | 5.17±0.48A | 5.44±0.12B | ns | |
T2 | 5.95±0.38A | 5.60±0.43B | ns | |
T3 | 5.81±0.52A | 6.65±0.45A | ns | |
可溶性糖 质量分数/ (mg∙g−1) | CK | 21.91±1.87A | 19.77±1.83B | ns |
T1 | 24.60±1.52A | 20.29±2.12B | * | |
T2 | 21.72±2.22A | 25.13±1.70A | ns | |
T3 | 22.50±2.17A | 22.81±1.80AB | ns | |
脯氨酸 质量分数/ (μg∙g−1) | CK | 1436.83±256.96A | 1221.83±72.96AB | ns |
T1 | 1089.86±66.99B | 897.59±196.75B | ns | |
T2 | 971.23±111.53B | 956.41±214.04B | ns | |
T3 | 1042.41±229.38B | 1463.03±244.93A | ns |
Table 2 Response of osmotic regulators in the salt-stressed seedlings of C. hongkongensis subsp. tonkinensis
指标 | 处理 | 胁迫时间/d/ | ||
---|---|---|---|---|
5 d | 30 d | Sig. | ||
可溶性蛋白 质量分数/ (mg∙g−1) | CK | 5.39±0.40A | 5.54±0.35B | ns |
T1 | 5.17±0.48A | 5.44±0.12B | ns | |
T2 | 5.95±0.38A | 5.60±0.43B | ns | |
T3 | 5.81±0.52A | 6.65±0.45A | ns | |
可溶性糖 质量分数/ (mg∙g−1) | CK | 21.91±1.87A | 19.77±1.83B | ns |
T1 | 24.60±1.52A | 20.29±2.12B | * | |
T2 | 21.72±2.22A | 25.13±1.70A | ns | |
T3 | 22.50±2.17A | 22.81±1.80AB | ns | |
脯氨酸 质量分数/ (μg∙g−1) | CK | 1436.83±256.96A | 1221.83±72.96AB | ns |
T1 | 1089.86±66.99B | 897.59±196.75B | ns | |
T2 | 971.23±111.53B | 956.41±214.04B | ns | |
T3 | 1042.41±229.38B | 1463.03±244.93A | ns |
指标 | ISD | Ca2+ FI | W/L | SP | SS | Pro | H2O-Ca | NaCl-Ca | HAc-Ca | HCl-Ca | CaOx AR |
---|---|---|---|---|---|---|---|---|---|---|---|
ISD | 1 | ||||||||||
Ca2+ FI | 0.628** | 1 | |||||||||
W/L | −0.305 | −0.221 | 1 | ||||||||
SP | 0.606** | 0.554** | −0.237 | 1 | |||||||
SS | 0.131 | 0.139 | −0.355 | −0.001 | 1 | ||||||
Pro | 0.137 | 0.072 | 0.512* | 0.265 | −0.047 | 1 | |||||
H2O-Ca | −0.915** | −0.692** | 0.351 | −0.515** | −0.070 | 0.056 | 1 | ||||
NaCl-Ca | −0.865** | −0.478* | 0.177 | −0.644** | 0.129 | −0.209 | 0.777** | 1 | |||
HAc-Ca | −0.209 | −0.065 | 0.091 | −0.214 | 0.120 | 0.134 | 0.249 | 0.288 | 1 | ||
HCl-Ca | −0.819** | −0.453* | 0.211 | −0.480* | 0.060 | 0.133 | 0.846** | 0.764** | 0.498* | 1 | |
CaOx AR | −0.784** | −0.543** | 0.322 | −0.731** | 0.118 | −0.122 | 0.734** | 0.747** | 0.266 | 0.796** | 1 |
Table 3 Correlation coefficients among leaves calcium component and osmoregulation substances
指标 | ISD | Ca2+ FI | W/L | SP | SS | Pro | H2O-Ca | NaCl-Ca | HAc-Ca | HCl-Ca | CaOx AR |
---|---|---|---|---|---|---|---|---|---|---|---|
ISD | 1 | ||||||||||
Ca2+ FI | 0.628** | 1 | |||||||||
W/L | −0.305 | −0.221 | 1 | ||||||||
SP | 0.606** | 0.554** | −0.237 | 1 | |||||||
SS | 0.131 | 0.139 | −0.355 | −0.001 | 1 | ||||||
Pro | 0.137 | 0.072 | 0.512* | 0.265 | −0.047 | 1 | |||||
H2O-Ca | −0.915** | −0.692** | 0.351 | −0.515** | −0.070 | 0.056 | 1 | ||||
NaCl-Ca | −0.865** | −0.478* | 0.177 | −0.644** | 0.129 | −0.209 | 0.777** | 1 | |||
HAc-Ca | −0.209 | −0.065 | 0.091 | −0.214 | 0.120 | 0.134 | 0.249 | 0.288 | 1 | ||
HCl-Ca | −0.819** | −0.453* | 0.211 | −0.480* | 0.060 | 0.133 | 0.846** | 0.764** | 0.498* | 1 | |
CaOx AR | −0.784** | −0.543** | 0.322 | −0.731** | 0.118 | −0.122 | 0.734** | 0.747** | 0.266 | 0.796** | 1 |
[1] |
ABID M, ZHANG Y J, LI Z, et al., 2020. Effect of Salt stress on growth, physiological and biochemical characters of Four kiwifruit genotypes[J]. Scientia Horticulturae, 271: 109473.
DOI URL |
[2] |
AL HASSAN M, MOROSAN M, LÓPEZ-GRESA M D P, et al., 2016. Salinity-induced variation in biochemical markers provides insight into the mechanisms of salt tolerance in common (Phaseolus vulgaris) and runner (P. coccineus) beans[J]. International Journal of Molecular Sciences, 17(9): 1582.
DOI URL |
[3] |
AZEVEDO NETO A D, PRISCO J T, GOMES-FILHO E, 2009. Changes in soluble amino-N, soluble proteins and free amino acids in leaves and roots of salt-stressed maize genotypes[J]. Journal of Plant Interactions, 4(2): 137-144.
DOI URL |
[4] |
DEINLEIN U, STEPHAN A B, HORIE T, et al., 2014. Plant salt-tolerance mechanisms[J]. Trends in Plant Science, 19(6): 371-379.
DOI PMID |
[5] |
FAROOQ M, GOGOI N, HUSSAIN M, et al., 2017. Effects, tolerance mechanisms and management of salt stress in grain legumes[J]. Plant Physiology and Biochemistry, 118: 199-217.
DOI PMID |
[6] |
FU X X, LIU H N, ZHOU X D, et al., 2013. Seed dormancy mechanism and dormancy breaking techniques for Cornus kousa var. chinensis [J]. Seed Science and Technology, 41(3): 458-463.
DOI URL |
[7] |
GONG Z Z, XIONG L M, SHI H Z, et al., 2020. Plant abiotic stress response and nutrient use efficiency[J]. Science China Life Sciences, 63(5): 635-674.
DOI |
[8] |
JAFARI S, GARMDAREH S E H, 2019. Effects of salinity on morpho-physiological, and biochemical characteristics of stock plant (Matthiola incana L.)[J]. Scientia Horticulturae, 257: 108731.
DOI URL |
[9] |
JENSEN E C, 2013. Quantitative analysis of histological staining and fluorescence using ImageJ[J]. The Anatomical Record, 296(3): 378-381.
DOI URL |
[10] |
LU Q, XU J, FU X X, et al., 2020. Physiological and growth responses of two dogwoods to short-term drought stress and re-watering[J]. Acta Ecologica Sinica, 40(2): 172-177.
DOI URL |
[11] |
LU Q, YANG L, WANG H W, et al., 2021. Calcium Ion Richness in Cornus hongkongensis subsp. elegans (WP Fang et YT Hsieh) QY Xiang Could Enhance Its Salinity Tolerance[J]. Forests, 12(11): 1522.
DOI URL |
[12] |
MUNNS R, GILLIHAM M, 2015. Salinity tolerance of crops-what is the cost?[J]. New Phytologist, 208(3): 668-673.
DOI URL |
[13] | OHTA Y, YAMAMOTO K, DEGUCHI M, 1970. Chemical fractionation of calcium in the fresh rice leaf blade and influences of deficiency or oversupply of calcium and age of leaf on the content of each calcium fraction: chemical fractionation of calcium in some plant species (part 1)[J]. Japanese Journal of Soil Science & Plant Nutrition, 41(1):19-26. |
[14] |
RENAULT S, 2012. Salinity tolerance of Cornus sericea seedlings from three provenances[J]. Acta Physiologiae Plantarum, 34(5): 1735-1746.
DOI URL |
[15] |
SHAHID M A, SARKHOSH A, KHAN N, et al., 2020. Insights into the physiological and biochemical impacts of salt stress on plant growth and development[J]. Agronomy, 10(7): 938.
DOI URL |
[16] |
TUNA A L, KAYA C, ASHRAF M, et al., 2007. The effects of calcium sulphate on growth, membrane stability and nutrient uptake of tomato plants grown under salt stress[J]. Environmental and Experimental Botany, 59(2): 173-178.
DOI URL |
[17] | ZHANG J F, JIANG J M, SHAN Q H, et al., 2010. Soil salinization and ecological remediation by planting trees in China[P]. Mechanic Automation and Control Engineering (MACE), International Conference on. |
[18] |
ZHANG R, XU C, BAO Z L, et al., 2021. Auxin alters sodium ion accumulation and nutrient accumulation by playing protective role in salinity challenged strawberry[J]. Plant Physiology and Biochemistry, 164: 1-9.
DOI PMID |
[19] | ZHANG T, YANG H B, 2022. Physiological and biochemical mechanisms of exogenous calcium chloride on alleviating salt stress in two tartary buckwheat (Fagopyrum tataricum) varieties differing in salinity tolerance[J]. Phyton-International Journal of Experimental Botany, 91(8): 1643-1658. |
[20] |
ZHONG Y P, QI X J, CHEN J Y, et al., 2019. Growth and physiological responses of four kiwifruit genotypes to salt stress and resistance evaluation[J]. Journal of Integrative Agriculture, 18(1): 83-95.
DOI URL |
[21] | 曹建华, 朱敏洁, 黄芬, 等, 2011. 不同地质条件下植物叶片中钙形态对比研究——以贵州茂兰为例[J]. 矿物岩石地球化学通报, 30(3): 251-260. |
CAO J H, ZHU M J, HUANG F, et al., 2011. Comparison Study on Calcium forms in Plant Leaves under Different Geological Backgrounds: A Case Study in Maolan, Guizhou Province[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 30(3): 251-260. | |
[22] | 洑香香, 徐杰, 刘国华, 2015. 观赏型四照花种质资源及其开发利用[J]. 林业科技开发, 29(3): 1-6. |
FU X X, XU J, LIU G H, 2015. Development and utilization of germplasm resources of ornamental C. kousa subsp. chinensis[J]. Journal of Forestry Engineering, 29(3): 1-6. | |
[23] | 李合生, 2006. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社: 182- 201, 258-260. |
LI H S, 2006. Principles and techniques of plant physiology and biochemistry experiment[M]. Beijing: Chinese high education press: 182- 201, 258-260. | |
[24] | 鲁强, 徐杰, 洑香香, 等, 2019. 短期高温胁迫对大花四照花和日本四照花生长和光合的影响[J]. 江苏农业科学, 47(22): 159-163. |
LU Q, XU J, FU X X et al., 2019. Effects of short-term high temperature stress on the growth and photosynthesis of C. florida and C. kousa subsp. Kousa[J]. Jiangsu Agricultural Sciences, 47(22): 159-163. | |
[25] | 鲁强, 杨玲, 王昊伟, 等, 2020. 秀丽四照花光合特性和叶绿体超微结构的盐胁迫响应[J]. 南京林业大学学报, 44(4): 29-36. |
LU Q, YANG L, WANG H W, et al., 2020. Responses of photosynthetic characteristics and chloroplast ultrastructure to salt stress in seedlings of Cornus hongkongensis subsp. Elegans[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 44(4): 29-36. | |
[26] | 鲁强, 2019. 两种四照花盐胁迫的生长及生理响应研究[D]. 南京: 南京林业大学: 67-68. |
LU Q, 2019. Growth and physiological response to salt stress in two species of Cornus[D]. Nanjing: Journal of Nanjing Forestry University: 67-68. | |
[27] | 马建军, 张立彬, 杜彬, 等, 2012. 欧李果实采后不同形态钙的质量分数及组成变化[J]. 浙江农林大学学报, 29(3): 401-406. |
MA J J, ZHANG L B, DU S, et al., 2012. Mass fraction and compositional change of calcium forms in wild Prunus humilis fruits during the post-harvest storage period[J]. Journal of Zhejiang A & F University, 29(3): 401-406. | |
[28] | 苏志孟, 张习敏, 马琳, 等, 2019. 堇菜叶片草酸钙晶体与水分维持的关系[J]. 广西植物, 39(6): 720-728. |
SU Z M, ZHANG X M, MA L, et al., 2019. Relationship between calcium oxalate crystals and water maintenance in leaves of Viola verecumda[J]. Guihaia, 39(6): 720-728. | |
[29] | 王光野, 曲红岩, 蔡立格, 等, 2018. 植物草酸钙晶体合成、降解机制及功能研究进展[J]. 中草药, 49(7): 1710-1715. |
WANG G Y, QU H Y, CAI L G, et al., 2018. Research progress on mechanism of synthesis and degradation and function of calcium oxalate crystals in plants[J]. Chinese Traditional and Herbal Drugs, 49(7): 1710-1715. | |
[30] | 王昊伟, 杨玲, 鲁强, 等, 2020. 盐胁迫对大花四照花种子萌发与幼苗生长的影响[J]. 南京林业大学学报(自然科学版), 44(3): 89-94. |
WANG H W, YANG L, LU Q, et al., 2020. Effects of salt stress on seed germination and seedling growth of Cornus florida[J]. Journal of Nanjing Forestry University (Natural Science Edition), 44(3): 89-94. | |
[31] | 王学奎, 黄见良, 2015. 植物生理生化实验原理与技术[M]. 北京: 高等教育出版社: 131-133. |
WANG X K, HUANG J L, 2015. Principles and techniques of plant physiology and biochemistry experiment[M]. Beijing: Chinese high Education Press: 131-133. | |
[32] | 吴运荣, 林宏伟, 莫肖蓉, 2014. 植物抗盐分子机制及作物遗传改良耐盐性的研究进展[J]. 植物生理学报, 50(11): 1621-1629. |
WU Y R, LIN H W, MO X R, 2014. Research progress in the mechanism of plant salt tolerance and genetic engi-neering of salt resistant crops[J]. Plant Physiology Communications, 50(11): 1621-1629. | |
[33] | 徐静静, 慈华聪, 何兴东, 等, 2012. 天津盐渍化生境54种植物钙晶体与钙组分特征[J]. 应用生态学报, 23(5): 1247-1253. |
XU J J, CI H C, HE X D, et al., 2012. Features of calcium crystals and calcium components in 54 plant species in salinized habitats of Tianjin[J]. Chinese Journal of Applied Ecology, 23(5): 1247-1253. | |
[34] | 张国显, 2015. 外源钙缓解低夜温导致番茄叶片光抑制的机理[D]. 沈阳: 沈阳农业大学: 36-59. |
ZHANG G X, 2015. Exogenous calcium alleviates low night temperature stress induced photoinhibition in tomato leaves[D]. Shengyang: Shenyang Agricultural University: 36-59. | |
[35] |
张京磊, 慈华聪, 何兴东, 等, 2015. 狼尾草对土壤柴油污染和盐分胁迫的适应性[J]. 生态环境学报, 24(11): 1904-1909.
DOI URL |
ZHANG J L, CI H C, HE X D, et al., 2015. Adaptability of Pennisetum alopecuroides to diesel oil-contaminated soil and salt stress[J]. Ecology and Environmental Sciences, 24(11): 1904-1909. | |
[36] | 张艳珍, 程存刚, 赵德英, 等, 2021. 施氮水平对富士苹果果实钙形态及品质的影响[J]. 植物营养与肥料学报, 27(1): 87-96. |
ZHANG Y Z, CHENG C G, ZHAO D Y, et al., 2021. Effects of nitrogen application levels on fruit Ca forms and quality of ‘Fuji’ apples[J]. Plant Nutrition and Fertilizer Science, 27(1): 87-96. |
[1] | LI Chengcheng, ZHANG Zirui, SONG Xiaoxuan, KONG Juanjuan, HAN Yang, RUAN Yanan. Effects of Ozone Stress on Antioxidant Metabolism and Reproductive Growth of Soybean [J]. Ecology and Environment, 2022, 31(7): 1383-1392. |
[2] | LIU Minxia, YU Ruixin, MU Ruolan, XIA Sujuan. Photosynthetic Characteristics of Three Typical Tree Species at Different Altitudes in Beishan, Lanzhou [J]. Ecology and Environment, 2021, 30(10): 1943-1951. |
[3] | LU Xuping, LI Fanglan, SHI Yafei, ZHANG Juanwei, YANG Wenwei, LUO Chengke, TIAN Lei, LI Peifu. Physiological Differences of Seedlings of Different Rice Varieties in Response to Alkali Stress and Construction of Stress Levels [J]. Ecology and Environment, 2021, 30(8): 1757-1768. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn