Ecology and Environment ›› 2023, Vol. 32 ›› Issue (10): 1889-1900.DOI: 10.16258/j.cnki.1674-5906.2023.10.017
• Reviews • Previous Articles
YANG Xiaoli1,2(), MAO Jiaxuan1, MA Luran1, XU Qijing1,2, LIU Xue1,2,*(
)
Received:
2023-07-30
Online:
2023-10-18
Published:
2024-01-16
Contact:
LIU Xue
杨晓莉1,2(), 毛佳璇1, 马露冉1, 徐其静1,2, 刘雪1,2,*(
)
通讯作者:
刘雪
作者简介:
杨晓莉(1998年生),女(彝族),硕士研究生,研究方向为植物营养与环境污染。E-mail: yangxiaoli1102013@126.com
基金资助:
CLC Number:
YANG Xiaoli, MAO Jiaxuan, MA Luran, XU Qijing, LIU Xue. Nanomaterial-immobilized Phytase: Preparation, Catalytic Efficiency and Influencing Factors[J]. Ecology and Environment, 2023, 32(10): 1889-1900.
杨晓莉, 毛佳璇, 马露冉, 徐其静, 刘雪. 纳米材料固定化植酸酶的制备及其催化效率与影响因素综述[J]. 生态环境学报, 2023, 32(10): 1889-1900.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2023.10.017
纳米材料 | 制备方法 | 外观特征 | 优点 | 缺点 | 参考文献 |
---|---|---|---|---|---|
壳聚糖 | 喷雾干燥法 | 多空微球 | 产量高, 包封率高, 稳定性好, 释放时间长 | 易氧化, 微囊致密性较差 | Cota‐Arriola et al., |
离子交联法 | 圆整度不高, 分散性好 | 反应条件温和、操作简单、 药物有效活性高 | 活性成分易从颗粒表面脱落 | Yeon et al., 吴益栋等 | |
乳化交联法 | 外观圆整, 表面光滑, 结构致密 | 合成速度快, 重现性好, 产率高 | 交联剂对机体有害, 与表面活性剂反应性差 | Mao et al., Riegger et al., | |
沉淀析出法 | 圆整度不高, 分散性好 | 可有效控制颗粒大小和药物释放 | 粒子的机械强度差 | Chandra et al., | |
冷冻干燥法 | 表面粗糙, 多孔微球, 粒径均匀 | 操作简单, 多孔微球具有良好的 球形度、孔壁较薄和孔径较小 | 纯壳聚糖基多孔微球使用较少 | Song et al., | |
反向胶束法 | 微粒分布均匀 | 粒子粒径较小, 分布范围小 | 操作复杂, 需使用大量有机 溶剂且纳米粒子难分离 | Cota‐Arriola et al., | |
羟基磷灰石 | 水热法 | 表面光滑 | 结晶度好, 重复性好、 水热温度范围广 | 需在高压高温处理, 步骤繁琐 | Jin et al., An et al., |
沉淀法 | 块状、针状结构 | 操作简单、成本低, 适用于工业生产 | 颗粒质量低, 尺寸大, 粒度分布广, 团聚物多 | Cengiz et al., | |
固相反应法 | 轮廓清晰, 形状规则 | 粒径大小均匀, 晶型完善, 分散性好, 产率高、工艺简单 | 产物纯度较低, 生产过程能耗较大 | Kim et al., 黄龙霄等, | |
溶胶-凝胶法 | 结晶为六方结构 | 工艺简单, 产品纯度、均匀度高 | 凝胶颗粒烧结性差, 干燥收缩大 | 黄龙霄等, | |
氧化石墨烯 | 原位聚合法 | 纳米片层状 | 氧化石墨烯与聚合物 基体间界面作用增强 | 基体黏度增大, 聚合物的相对分子质量和单分散性发生改变 | 张雷等, |
溶液共混法 | 层状纳米 | 机械性能和耐热性能好, 工艺简单, 成本低 | 需使用大量有机溶剂, 易造成环境污染 | Yang et al., 张雷等, | |
熔融共混法 | 不规则片状 | 分散均匀, 成本低, 安全环保, 利于工业生产 | 黏度较大, 氧化石墨烯与聚合物界面作用差, 复合材料性能降低 | Che et al., 张雷等, | |
乳液共混法 | 微粒分散 | 工艺简单、安全环保、 复合材料性能改善 | pH值影响氧化石墨烯边缘羧基电离程度, 影响亲水性、分散性 | 张雷等, | |
Pickering乳液聚合法 | 片状、微球 | 操作简单, 绿色环保, 耐水性能较好, 分散均匀 | 微球粒径分布较宽 | Che et al., 张雷等, | |
介孔二氧化硅 | 模板法 | 中空微球 | 操作简单, 介孔体微球外壳的 外层厚度达到40 nm, 存储容量大 | 分散性和介孔分子的 有序性较难控制 | Fang et al., 李雨露等, |
选择性刻蚀法 | 大小均一、单分散的双壳空心微球 | 操作简单、 有效、成本低 | 刻蚀剂会有残留, 影响其 在生物领域中的应用 | Tan et al., | |
喷雾干燥法 | 中空颗粒 | 制备方法简单, 样品的 分散性、稳定性较好 | 干燥产物含有挥发性物质, 对干燥设备和产品工艺技术要求高 | 李雨露等, |
Table 1 Preparation methods for different nanomaterials
纳米材料 | 制备方法 | 外观特征 | 优点 | 缺点 | 参考文献 |
---|---|---|---|---|---|
壳聚糖 | 喷雾干燥法 | 多空微球 | 产量高, 包封率高, 稳定性好, 释放时间长 | 易氧化, 微囊致密性较差 | Cota‐Arriola et al., |
离子交联法 | 圆整度不高, 分散性好 | 反应条件温和、操作简单、 药物有效活性高 | 活性成分易从颗粒表面脱落 | Yeon et al., 吴益栋等 | |
乳化交联法 | 外观圆整, 表面光滑, 结构致密 | 合成速度快, 重现性好, 产率高 | 交联剂对机体有害, 与表面活性剂反应性差 | Mao et al., Riegger et al., | |
沉淀析出法 | 圆整度不高, 分散性好 | 可有效控制颗粒大小和药物释放 | 粒子的机械强度差 | Chandra et al., | |
冷冻干燥法 | 表面粗糙, 多孔微球, 粒径均匀 | 操作简单, 多孔微球具有良好的 球形度、孔壁较薄和孔径较小 | 纯壳聚糖基多孔微球使用较少 | Song et al., | |
反向胶束法 | 微粒分布均匀 | 粒子粒径较小, 分布范围小 | 操作复杂, 需使用大量有机 溶剂且纳米粒子难分离 | Cota‐Arriola et al., | |
羟基磷灰石 | 水热法 | 表面光滑 | 结晶度好, 重复性好、 水热温度范围广 | 需在高压高温处理, 步骤繁琐 | Jin et al., An et al., |
沉淀法 | 块状、针状结构 | 操作简单、成本低, 适用于工业生产 | 颗粒质量低, 尺寸大, 粒度分布广, 团聚物多 | Cengiz et al., | |
固相反应法 | 轮廓清晰, 形状规则 | 粒径大小均匀, 晶型完善, 分散性好, 产率高、工艺简单 | 产物纯度较低, 生产过程能耗较大 | Kim et al., 黄龙霄等, | |
溶胶-凝胶法 | 结晶为六方结构 | 工艺简单, 产品纯度、均匀度高 | 凝胶颗粒烧结性差, 干燥收缩大 | 黄龙霄等, | |
氧化石墨烯 | 原位聚合法 | 纳米片层状 | 氧化石墨烯与聚合物 基体间界面作用增强 | 基体黏度增大, 聚合物的相对分子质量和单分散性发生改变 | 张雷等, |
溶液共混法 | 层状纳米 | 机械性能和耐热性能好, 工艺简单, 成本低 | 需使用大量有机溶剂, 易造成环境污染 | Yang et al., 张雷等, | |
熔融共混法 | 不规则片状 | 分散均匀, 成本低, 安全环保, 利于工业生产 | 黏度较大, 氧化石墨烯与聚合物界面作用差, 复合材料性能降低 | Che et al., 张雷等, | |
乳液共混法 | 微粒分散 | 工艺简单、安全环保、 复合材料性能改善 | pH值影响氧化石墨烯边缘羧基电离程度, 影响亲水性、分散性 | 张雷等, | |
Pickering乳液聚合法 | 片状、微球 | 操作简单, 绿色环保, 耐水性能较好, 分散均匀 | 微球粒径分布较宽 | Che et al., 张雷等, | |
介孔二氧化硅 | 模板法 | 中空微球 | 操作简单, 介孔体微球外壳的 外层厚度达到40 nm, 存储容量大 | 分散性和介孔分子的 有序性较难控制 | Fang et al., 李雨露等, |
选择性刻蚀法 | 大小均一、单分散的双壳空心微球 | 操作简单、 有效、成本低 | 刻蚀剂会有残留, 影响其 在生物领域中的应用 | Tan et al., | |
喷雾干燥法 | 中空颗粒 | 制备方法简单, 样品的 分散性、稳定性较好 | 干燥产物含有挥发性物质, 对干燥设备和产品工艺技术要求高 | 李雨露等, |
载体 | 植酸酶来源 | 固定化技术 | 表征技术 | 负载率/ % | 负载量/ (mg∙g−1) | 固定化酶活性/ (U∙g−1) | 固定化机理 | 参考文献 |
---|---|---|---|---|---|---|---|---|
壳聚糖 | 商业植酸酶 | 离子 凝胶 | 傅里叶红外光谱、 差示扫描量热法 | 69.2 | 18 | - | 壳聚糖阳离子与带负电荷的小分子或聚合物进行静电相互作用 (分子间和分子内交联) | 钱浩, |
地芽孢杆菌 Geobacillus sp. TF16 | 共价 结合 | - | 38 | - | 3.4 | 酶利用其蛋白质或碳水 化合物部分与壳聚糖结合 | Sirin et al., | |
赤小豆 Vigna umbellata Thunb | 交联 | 扫描电子显微镜、 傅里叶红外光谱 | 77.5 | - | - | 壳聚糖的D-葡糖胺-NH2与 戊二醛的-CHO交联反应, 将酶其固定到壳聚糖载体上 | Belho et al., | |
辣乳菇 Lactarius piperatus | 共价 结合 | X射线衍射、 傅里叶红外光谱 | 87 | - | 1.42 | 植酸酶以共价形式与载体表面弱键和游离键结合 | Onem et al., | |
羟基磷灰石 | 黑曲霉 A. niger | 共沉淀 | X射线衍射、 扫描电子显微镜 | 70 | 6 | 118 | 羟基磷灰石在氨基功能化后产生共价相互作用, 与酶氨基酸中羧基螯合反应 | Coutinho et al., |
黑曲霉 A. niger | 吸附 | 傅里叶红外光谱 | 100 | 5 | - | 羟基磷灰石纳米颗粒上Ca2+和植酸酶氨基酸残基在羟基磷灰石和COO−上形成离子和配位键 | Coutinho et al., | |
氧化石墨烯 | 枯草芽孢杆菌 Bacillus subtilis | 吸附- 交联 | 紫外-可见光谱 | 74.2 | - | 3.3 | 氧化石墨烯的含氧基团, 对酶进行氨氧化 | Sun et al., |
介孔二氧 化硅 | 商业植酸酶 | 吸附 | 扫描电子显微镜、 透射电子显微镜和 N2吸附-解吸 | - | 237 | 9.53 | 酶吸附在介孔二氧化硅 载体微孔通道内 | Xin et al., |
黑曲霉 A. niger | 吸附 | N2吸附-解吸 | - | 6.3 | 8000 | Trouillefou et al., | ||
藻酸钙 | 酿酒酵母 Saccharomyces cerevisiae CY | 包埋 | 紫外-可见光谱 | 43 | 62 | 0.28 | 酶分子在溶液中是游离的, 将酶包封在不溶性藻酸钙凝胶中 | In et al., |
成团泛菌 Pantoea agglomerans | 包埋 | 紫外-可见光谱 | 82.3 | - | 0.022 | Greiner, | ||
地芽孢杆菌 Geobacillus sp.TF16 | 包埋 | - | 42 | - | 5.01 | Tan et al., | ||
环氧树脂 | 鳄梨 Persea americana Mill | 吸附、共价结合 | 化学表征 | 70.8 | 0.3 | 0.1 | 酶以高的离子强度疏水 吸附在疏水载体上, 再与 载体之间进行共价反应 | Çelem et al., |
功能化多壁碳纳米管 | 商业植酸酶 | 共价 结合 | 扫描电子显微镜、圆二色性光谱、zeta电位测量和傅里叶红外光谱 | 62 | 110 | - | 纳米管侧壁的羧酸基团与 酶表面的游离胺基结合 | Naghshbandi et al., |
Table 2 Synthesis techniques, loading ratio and mechanisms of different immobilized phytases
载体 | 植酸酶来源 | 固定化技术 | 表征技术 | 负载率/ % | 负载量/ (mg∙g−1) | 固定化酶活性/ (U∙g−1) | 固定化机理 | 参考文献 |
---|---|---|---|---|---|---|---|---|
壳聚糖 | 商业植酸酶 | 离子 凝胶 | 傅里叶红外光谱、 差示扫描量热法 | 69.2 | 18 | - | 壳聚糖阳离子与带负电荷的小分子或聚合物进行静电相互作用 (分子间和分子内交联) | 钱浩, |
地芽孢杆菌 Geobacillus sp. TF16 | 共价 结合 | - | 38 | - | 3.4 | 酶利用其蛋白质或碳水 化合物部分与壳聚糖结合 | Sirin et al., | |
赤小豆 Vigna umbellata Thunb | 交联 | 扫描电子显微镜、 傅里叶红外光谱 | 77.5 | - | - | 壳聚糖的D-葡糖胺-NH2与 戊二醛的-CHO交联反应, 将酶其固定到壳聚糖载体上 | Belho et al., | |
辣乳菇 Lactarius piperatus | 共价 结合 | X射线衍射、 傅里叶红外光谱 | 87 | - | 1.42 | 植酸酶以共价形式与载体表面弱键和游离键结合 | Onem et al., | |
羟基磷灰石 | 黑曲霉 A. niger | 共沉淀 | X射线衍射、 扫描电子显微镜 | 70 | 6 | 118 | 羟基磷灰石在氨基功能化后产生共价相互作用, 与酶氨基酸中羧基螯合反应 | Coutinho et al., |
黑曲霉 A. niger | 吸附 | 傅里叶红外光谱 | 100 | 5 | - | 羟基磷灰石纳米颗粒上Ca2+和植酸酶氨基酸残基在羟基磷灰石和COO−上形成离子和配位键 | Coutinho et al., | |
氧化石墨烯 | 枯草芽孢杆菌 Bacillus subtilis | 吸附- 交联 | 紫外-可见光谱 | 74.2 | - | 3.3 | 氧化石墨烯的含氧基团, 对酶进行氨氧化 | Sun et al., |
介孔二氧 化硅 | 商业植酸酶 | 吸附 | 扫描电子显微镜、 透射电子显微镜和 N2吸附-解吸 | - | 237 | 9.53 | 酶吸附在介孔二氧化硅 载体微孔通道内 | Xin et al., |
黑曲霉 A. niger | 吸附 | N2吸附-解吸 | - | 6.3 | 8000 | Trouillefou et al., | ||
藻酸钙 | 酿酒酵母 Saccharomyces cerevisiae CY | 包埋 | 紫外-可见光谱 | 43 | 62 | 0.28 | 酶分子在溶液中是游离的, 将酶包封在不溶性藻酸钙凝胶中 | In et al., |
成团泛菌 Pantoea agglomerans | 包埋 | 紫外-可见光谱 | 82.3 | - | 0.022 | Greiner, | ||
地芽孢杆菌 Geobacillus sp.TF16 | 包埋 | - | 42 | - | 5.01 | Tan et al., | ||
环氧树脂 | 鳄梨 Persea americana Mill | 吸附、共价结合 | 化学表征 | 70.8 | 0.3 | 0.1 | 酶以高的离子强度疏水 吸附在疏水载体上, 再与 载体之间进行共价反应 | Çelem et al., |
功能化多壁碳纳米管 | 商业植酸酶 | 共价 结合 | 扫描电子显微镜、圆二色性光谱、zeta电位测量和傅里叶红外光谱 | 62 | 110 | - | 纳米管侧壁的羧酸基团与 酶表面的游离胺基结合 | Naghshbandi et al., |
纳米载体 | 植酸酶来源 | 水解底物/ 作物 | 游离酶 | 固定化酶 | 应用领域 | 参考文献 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Km/ μM | 水解效率/ 释磷量 | pH | 温度/ ℃ | Km/ μM | 水解效率/ 释磷量 | pH | 温度/ ℃ | ||||||
聚乙烯醇壳 聚糖 | 豇豆 V. unguiculata | 植酸钠 | 460 | - | 5.0 | 45 | 13430 | - | 6.0 | 65 | 动物饲料、农业和食品工业 | Kamaci et al., | |
聚乙烯醇 | 豇豆 V. unguiculata | 植酸钠 | 460 | - | 5.0 | 45 | 1170 | - | 5.0 | 65 | 农业、医疗和食品工业 | Duru et al., | |
壳聚糖 | 商业植酸酶 | 植酸钠 | 446 | 1.03 mg | 5.0 | 40 | 1375 | 1.86 mg | 5.0 | 50 | 动物饲料 | 钱浩, | |
磁铁矿- 壳聚糖 | 辣乳菇 L. piperatus | 植酸钠 | - | - | 5.0 | 50 | - | - | 4.0 | 50 | 食品和动物饲料行业 | Onem et al., | |
绿色小扁豆 | 36.5% | 48.2% | |||||||||||
红色小扁豆 | 35.9% | 49.1% | |||||||||||
豌豆 | 56.8% | 69.0% | |||||||||||
青豆 | 53.0% | 65.8% | |||||||||||
黄豆 | 62.7% | 68.5% | |||||||||||
芸苔属植物 | 32.7% | 43.5% | |||||||||||
玉米 | 47.1% | 53.3% | |||||||||||
干玉米 | 26.3% | 35.5% | |||||||||||
燕麦 | 26.4% | 36.4% | |||||||||||
黑麦 | 64.6% | 68.7% | |||||||||||
小麦 | 65.7% | 75.0% | |||||||||||
蚕豆 | 45.5% | 58.4% | |||||||||||
鹰嘴豆 | 51.6% | 63.0% | |||||||||||
花生 | 67.5% | 75.4% | |||||||||||
羟基磷灰石 | 黑曲霉 A. niger | 植酸 | - | 7.35 μmol∙mL−1 | 5.0 | 60 | - | 7.92 μmol∙mL−1 | 5.0 | 60 | 动物饲料 | Coutinho et al., | |
介孔二氧化硅 | 黑曲霉 A. niger | 植酸钠 | - | 0.68 μmol | 5.0-5.5 | 55 | - | 219 μmol | 5.0-5.5 | 55 | 植物肥料 | Trouillefou et al., | |
蒺藜苜蓿 | 4.7 μmol | 154 μmol | |||||||||||
环氧树脂 | 鳄梨 P. americana Mill | 植酸钠 | 5000 | - | 4.0 | 55 | 12500 | - | 5.5 | 55 | 豆类产品水解酶 | Çelem et al., | |
豆浆植酸 | 56% | 65% | Çelem et al., | ||||||||||
藻酸盐 | 克雷伯氏菌 Klebsiella | 植酸 | - | - | 5.0 | 37 | - | - | 6.0 | 70 | 动物饲料 | Hidayatullah et al., | |
藻酸钙 | 米曲霉 Aspergillus oryzae | 植酸钙 | 200 | - | 5.0 | 50 | 660 | - | 5.0 | 50 | 食品添加剂 | Sharma et al., | |
藻酸盐 | 紫原青霉 P. purpurogenu | 植酸钠 | - | - | 5.5 | 37 | - | - | 4.0 | 45 | 环境修复 | Awad et al., | |
藻酸钠 | 豇豆种子 V. unguiculata | 植酸钠 | 460 | - | 5.0 | 45 | 4660 | - | 6.0 | 55 | 生物技术、生物医学 | Duru et al., | |
Fe3O4磁性 纳米颗粒 | 黑麦 Secale cereale | 植酸 | 307 | - | 6.0 | 45 | 455 | - | 6.0 | 60 | 生产肌醇磷酸 | Greiner et al., | |
黑曲霉 A. niger | 54 | - | 5.0 | 55 | 95 | - | 5.0 | 65 | |||||
艾伯特埃希菌 E. albertii | 133 | - | 4.5 | 65 | 220 | - | 4.5 | 70 | |||||
羧化多壁 碳纳米管 | 大肠杆菌 E. coli | 植酸钠 | - | - | 5.5 | 55 | - | - | 6.5 | 55 | 动物饲料 | Naghshbandi et al., | |
氨基多壁 碳纳米管 | 耶尔森氏菌 Yersinia intermedia | 植酸 | 0.13 | - | 5.0 | 50 | 0.33 | - | 5.7 | 70 | 饲料研制 | Lahiji et al., |
Table 3 Michaelis-Menten constant (Km), hydrolysis efficiency, optimum pH, temperature and application of immobilized and mobile phytase
纳米载体 | 植酸酶来源 | 水解底物/ 作物 | 游离酶 | 固定化酶 | 应用领域 | 参考文献 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Km/ μM | 水解效率/ 释磷量 | pH | 温度/ ℃ | Km/ μM | 水解效率/ 释磷量 | pH | 温度/ ℃ | ||||||
聚乙烯醇壳 聚糖 | 豇豆 V. unguiculata | 植酸钠 | 460 | - | 5.0 | 45 | 13430 | - | 6.0 | 65 | 动物饲料、农业和食品工业 | Kamaci et al., | |
聚乙烯醇 | 豇豆 V. unguiculata | 植酸钠 | 460 | - | 5.0 | 45 | 1170 | - | 5.0 | 65 | 农业、医疗和食品工业 | Duru et al., | |
壳聚糖 | 商业植酸酶 | 植酸钠 | 446 | 1.03 mg | 5.0 | 40 | 1375 | 1.86 mg | 5.0 | 50 | 动物饲料 | 钱浩, | |
磁铁矿- 壳聚糖 | 辣乳菇 L. piperatus | 植酸钠 | - | - | 5.0 | 50 | - | - | 4.0 | 50 | 食品和动物饲料行业 | Onem et al., | |
绿色小扁豆 | 36.5% | 48.2% | |||||||||||
红色小扁豆 | 35.9% | 49.1% | |||||||||||
豌豆 | 56.8% | 69.0% | |||||||||||
青豆 | 53.0% | 65.8% | |||||||||||
黄豆 | 62.7% | 68.5% | |||||||||||
芸苔属植物 | 32.7% | 43.5% | |||||||||||
玉米 | 47.1% | 53.3% | |||||||||||
干玉米 | 26.3% | 35.5% | |||||||||||
燕麦 | 26.4% | 36.4% | |||||||||||
黑麦 | 64.6% | 68.7% | |||||||||||
小麦 | 65.7% | 75.0% | |||||||||||
蚕豆 | 45.5% | 58.4% | |||||||||||
鹰嘴豆 | 51.6% | 63.0% | |||||||||||
花生 | 67.5% | 75.4% | |||||||||||
羟基磷灰石 | 黑曲霉 A. niger | 植酸 | - | 7.35 μmol∙mL−1 | 5.0 | 60 | - | 7.92 μmol∙mL−1 | 5.0 | 60 | 动物饲料 | Coutinho et al., | |
介孔二氧化硅 | 黑曲霉 A. niger | 植酸钠 | - | 0.68 μmol | 5.0-5.5 | 55 | - | 219 μmol | 5.0-5.5 | 55 | 植物肥料 | Trouillefou et al., | |
蒺藜苜蓿 | 4.7 μmol | 154 μmol | |||||||||||
环氧树脂 | 鳄梨 P. americana Mill | 植酸钠 | 5000 | - | 4.0 | 55 | 12500 | - | 5.5 | 55 | 豆类产品水解酶 | Çelem et al., | |
豆浆植酸 | 56% | 65% | Çelem et al., | ||||||||||
藻酸盐 | 克雷伯氏菌 Klebsiella | 植酸 | - | - | 5.0 | 37 | - | - | 6.0 | 70 | 动物饲料 | Hidayatullah et al., | |
藻酸钙 | 米曲霉 Aspergillus oryzae | 植酸钙 | 200 | - | 5.0 | 50 | 660 | - | 5.0 | 50 | 食品添加剂 | Sharma et al., | |
藻酸盐 | 紫原青霉 P. purpurogenu | 植酸钠 | - | - | 5.5 | 37 | - | - | 4.0 | 45 | 环境修复 | Awad et al., | |
藻酸钠 | 豇豆种子 V. unguiculata | 植酸钠 | 460 | - | 5.0 | 45 | 4660 | - | 6.0 | 55 | 生物技术、生物医学 | Duru et al., | |
Fe3O4磁性 纳米颗粒 | 黑麦 Secale cereale | 植酸 | 307 | - | 6.0 | 45 | 455 | - | 6.0 | 60 | 生产肌醇磷酸 | Greiner et al., | |
黑曲霉 A. niger | 54 | - | 5.0 | 55 | 95 | - | 5.0 | 65 | |||||
艾伯特埃希菌 E. albertii | 133 | - | 4.5 | 65 | 220 | - | 4.5 | 70 | |||||
羧化多壁 碳纳米管 | 大肠杆菌 E. coli | 植酸钠 | - | - | 5.5 | 55 | - | - | 6.5 | 55 | 动物饲料 | Naghshbandi et al., | |
氨基多壁 碳纳米管 | 耶尔森氏菌 Yersinia intermedia | 植酸 | 0.13 | - | 5.0 | 50 | 0.33 | - | 5.7 | 70 | 饲料研制 | Lahiji et al., |
[1] |
AN L, LI W, XU Y, et al., 2016. Controlled additive-free hydrothermal synthesis and characterization of uniform hydroxyapatite nanobelts[J]. Ceramics International, 42(2): 3104-3112.
DOI URL |
[2] |
AWAD G, ESAWY M, EL-GAMMAL E, et al., 2015. Comparative studies of free and immobilized phytase, produced by Penicillium purpurogenu GE1, using grafted alginate/carrageenan beads[J]. Egyptian Pharmaceutical Journal, 14(2): 87-93.
DOI URL |
[3] | BELHO K, AMBASHT K P, 2021. Immobilization of phytase from rice bean (Vigna umbellata Thunb.) on glutaraldehyde activated chitosan microspheres[J]. Journal of Scientific Research, 65(1): 111-119. |
[4] |
BOHN L, MEYER A S, RASMUSSEN S K, 2008. Phytate: Impact on environment and human nutrition. A challenge for molecular breeding[J]. Journal of Zhejiang University Science B, 9(3): 165-191.
DOI PMID |
[5] |
CENGIZ B, GOKCE Y, YILDIZ N, et al., 2008. Synthesis and characterization of hydroxyapatite nanoparticles[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 322(1): 29-33.
DOI URL |
[6] |
CHANDRA HEMBRAM K, PRABHA S, CHANDRA R, et al., 2016. Advances in preparation and characterization of chitosan nanoparticles for therapeutics[J]. Artificial Cells, Nanomedicine, and Biotechnology, 44(1): 305-314.
DOI URL |
[7] |
ÇELEM E B, ÖNAL SJAC, 2009a. Immobilization of avocado phytase on epoxy-activated Sepabead EC-EP and its application in soymilk phytate hydrolysis[J]. Artificial Cells, Blood Substitutes, and Biotechnology, 37(5): 195-202.
DOI URL |
[8] |
ÇELEM EB, ÖNAL SJJOMCBE, 2009b. Immobilization of phytase on epoxy-activated Sepabead EC-EP for the hydrolysis of soymilk phytate[J]. Journal of Molecular Catalysis B: Enzymatic, 61(3-4): 150-156.
DOI URL |
[9] |
CHE MAN S, THICKETT S C, WHITTAKER M R, et al., 2013. Synthesis of polystyrene nanoparticles “armoured” with nanodimensional graphene oxide sheets by miniemulsion polymerization[J]. Journal of Polymer Science Part A: Polymer Chemistry, 51(1): 47-58.
DOI URL |
[10] |
CIPOLATTI E P, SILVA M J A, KLEIN M, et al., 2014. Current status and trends in enzymatic nanoimmobilization[J]. Journal of Molecular Catalysis B: Enzymatic, 99: 56-67.
DOI URL |
[11] |
COTA‐ARRIOLA O, ONOFRE CORTEZ-ROCHA M, BURGOS-HERNÁNDEZ A, et al., 2013. Controlled release matrices and micro/nanoparticles of chitosan with antimicrobial potential: Development of new strategies for microbial control in agriculture[J]. Journal of the Science of Food and Agriculture, 93(7): 1525-1536.
DOI URL |
[12] | COUTINHO T C, 2020b. Immobilization of enzymes of agroindustrial interest on hydroxyapatite nanoparticles: β-glucosidase, xylase and phytase[D]. São Carlos: Federal University. |
[13] |
COUTINHO T C, MALAFATTI J O, PARIS E C, et al., 2020c. Hydroxyapatite-CoFe2O4 magnetic nanoparticle composites for industrial enzyme immobilization, use, and recovery[J]. Acs Applied Nano Materials, 3(12): 12334-12345.
DOI URL |
[14] |
COUTINHO T C, ROJAS M J, TARDIOLI P W, et al., 2018. Nanoimmobilization of β-glucosidase onto hydroxyapatite[J]. International Journal of Biological Macromolecules, 119: 1042-1051.
DOI PMID |
[15] |
COUTINHO T C, TARDIOLI P W, FARINAS C S, 2020a. Hydroxyapatite nanoparticles modified with metal ions for xylanase immobilization[J]. International Journal of Biological Macromolecules, 150: 344-353.
DOI URL |
[16] |
COUTINHO T C, TARDIOLI P W, FARINAS CSJAB, et al., 2020d. Phytase immobilization on hydroxyapatite nanoparticles improves its properties for use in animal feed[J]. Applied Biochemistry and Biotechnology, 190(1): 270-292.
DOI |
[17] |
CUI Q, CHAO S J, BAI Z Y, et al., 2014. Based on a new support for synthesis of highly efficient palladium/hydroxyapatite catalyst for ethanol electrooxidation[J]. Electrochimica Acta, 132: 31-36.
DOI URL |
[18] |
DURU KAMACI Ü, PEKSEL A, 2022. Poly (vinyl alcohol)-based Electrospun Nanofibers: Characterization and Phytase Immobilization[J]. Biointerface Research in Applied Chemistry, 12(6): 7573-7583.
DOI URL |
[19] |
DURU KAMACI U, PEKSEL AJCL, 2021. Enhanced catalytic activity of immobilized phytase into polyvinyl alcohol-sodium alginate based electrospun nanofibers[J]. Catalysis Letters, 151(3): 821-831.
DOI |
[20] |
DUTTA N, RAJ D, BISWAS N, et al., 2017. Nanoparticle assisted activity optimization and characterization of a bacterial phytase immobilized on single layer graphene oxide[J]. Biocatalysis and Agricultural Biotechnology, 9: 240-247.
DOI URL |
[21] | DWEVEDI A, DWEVEDI A, 2016. Basics of enzyme immobilization[J]. Enzyme Immobilization: Advances in Industry, Agriculture, Medicine, and the Environment, 21-44. |
[22] |
ELIAS N, CHANDREN S, ATTAN N, et al., 2017. Structure and properties of oil palm-based nanocellulose reinforced chitosan nanocomposite for efficient synthesis of butyl butyrate[J]. Carbohydrate Polymers, 176: 281-292.
DOI PMID |
[23] |
FANG X L, CHEN C, LIU Z H, et al., 2011. A cationic surfactant assisted selective etching strategy to hollow mesoporous silica spheres[J]. Nanoscale, 3(4): 1632-1639.
DOI PMID |
[24] |
Greiner R, Konietzny U, Blackburn D M, et al. 2013. Production of partially phosphorylated myo-inositol phosphates using phytases immobilised on magnetic nanoparticles[J]. Bioresource Technology, 142: 375-383.
DOI PMID |
[25] |
GREINER R, 2017. Activity of Escherichia coli, Aspergillus niger, and Rye phytase toward partially phosphorylated myo-inositol phosphates[J]. Journal of Agricultural and Food Chemistry, 65(44): 9603-9607.
DOI PMID |
[26] |
GREINER R, 2008. Production of D-myo-inositol (1, 2, 4, 5, 6) pentakisphosphate using alginate-entrapped recombinant Pantoea agglomerans glucose-phosphatase[J]. Brazilian Archives of Biology and Technology, 51(2): 235-246.
DOI URL |
[27] | GUO K W, 2019. Immobilization methods of enzymes: Part I[J]. Approaches to Enhance Industrial Production of Fungal Cellulases, 127-136. |
[28] | HAMADA Y Z, 2016. Metal ions role in biological systems[J]. Electronic Journal of Biology, 2: 1-1. |
[29] |
HANEFELD U, CAO L, MAGNER E, 2013. Enzyme immobilisation: fundamentals and application[J]. Chemical Society Reviews, 42(15): 6211-6212.
DOI PMID |
[30] |
HAN Y Q, WU Y, SHEN M X, et al., 2013. Preparation and properties of polystyrene nanocomposites with graphite oxide and graphene as flame retardants[J]. Journal of Materials Science, 48: 4214-4222.
DOI URL |
[31] | HIDAYATULLAH M E, SUSILOWATI A, MKUMBE B S, et al., 2020. Biochemical characterization of recombinant phytase enzyme (phyk) from Klebsiella sp. ASR1 encapsulated with alginate[J]. Jurnal Bioteknologi & Biosains Indonesia, 7(1): 10513. |
[32] | HOARAU M, BADIEYAN S, MARSH E N G J, 2017. Immobilized enzymes: understanding enzyme-surface interactions at the molecular level[J]. Organic & Biomolecular Chemistry, 15(45): 9539-9551. |
[33] |
IN M J, KIM K H, OH N-S J B, et al., 2007. Phytate degradation by immobilized Saccharomyces cerevisiae phytase in soybean-curd whey[J]. Biotechnology and Bioprocess Engineering, 12(4): 348-353.
DOI URL |
[34] |
JAIN J, SINGH B J P B, 2016. Characteristics and biotechnological applications of bacterial phytases[J]. Process Biochemistry, 51(2): 159-169.
DOI URL |
[35] |
JIN X Y, CHEN X H, CHENG Y T, et al., 2015. Effects of hydrothermal temperature and time on hydrothermal synthesis of colloidal hydroxyapatite nanorods in the presence of sodium citrate[J]. Journal of Colloid and Interface Science, 450: 151-158.
DOI PMID |
[36] |
KAMACI U D, PEKSEL A, 2020. Fabrication of PVA-chitosan-based nanofibers for phytase immobilization to enhance enzymatic activity[J]. International Journal of Biological Macromolecules, 164: 3315-3322.
DOI PMID |
[37] | KAMAT V, MARATHE I, GHORMADE V, et al., 2015. Synthesis of monodisperse chitosan nanoparticles and in situ drug loading using active microreactor[J]. Acs Applied Materials & Interfaces, 7(41): 22839-22847. |
[38] |
KAO K C, LIN T S, MOU C Y, 2014. Enhanced activity and stability of lysozyme by immobilization in the matching nanochannels of mesoporous silica nanoparticles[J]. The Journal of Physical Chemistry C, 118(13): 6734-6743.
DOI URL |
[39] |
KIM I S, KUMTA P N, 2004. Sol-gel synthesis and characterization of nanostructured hydroxyapatite powder[J]. Materials Science and Engineering: B, 111(2-3): 232-236.
DOI URL |
[40] |
LIAO Y, LI H X, SHU R, et al., 2020. Mesoporous hydroxyapatite/chitosan loaded with recombinant-human amelogenin could enhance antibacterial effect and promote periodontal regeneration[J]. Frontiers in Cellular and Infection Microbiology, 10: 180.
DOI PMID |
[41] |
LAHIJI S, HEMMATI R, HOMAEI A, et al., 2021. Improved thermal stability of phytase from Yersinia intermedia by physical adsorption immobilization on amino-multiwalled carbon nanotubes[J]. Bioprocess and Biosystems Engineering, 44(10): 2217-2228.
DOI PMID |
[42] |
LI C Y, WANG Z Y, BAKSHI S, et al., 2021. Evaluation of select biochars and clays as supports for phytase to increase the fertilizer potential of animal wastes[J]. Science of the Total Environment, 787: 147720.
DOI URL |
[43] |
LIU X, FENG H Y, FU J W, et al., 2018. Phytate promoted arsenic uptake and growth in arsenic-hyperaccumulator Pteris vittata by upregulating phosphorus transporters[J]. Environmental Pollution, 241: 240-246.
DOI URL |
[44] |
LIU X, HAN R, CAO Y, et al., 2022. Enhancing phytate availability in soils and phytate-p acquisition by plants: A review[J]. Environmental Science & Technology, 56(13): 9196-9219.
DOI URL |
[45] |
MACDONALD G K, BENNETT E M, POTTER P A, et al., 2011. Agronomic phosphorus imbalances across the world’s croplands[J]. Proceedings of the National Academy of Sciences, 108(7): 3086-3091.
DOI URL |
[46] |
MAITY A, POLSHETTIWAR V, 2017. Dendritic fibrous nanosilica for catalysis, energy harvesting, carbon dioxide mitigation, drug delivery, and sensing[J]. Chemsuschem, 10(20): 3866-3913.
DOI PMID |
[47] | MAO Y M, ZHAO M, GE Y B, et al., 2016. Novel alginate-chitosan composite microspheres for implant delivery of vancomycin and in vivo evaluation[J]. Chemical Biology & Drug Design, 88(3): 434-440. |
[48] |
MENEZES-BLACKBURN D, JORQUERA M, GIANFREDA L, et al., 2011. Activity stabilization of Aspergillus niger and Escherichia coli phytases immobilized on allophanic synthetic compounds and montmorillonite nanoclays[J]. Bioresource Technology, 102(20): 9360-9367.
DOI URL |
[49] |
MOBASHERPOUR I, HESHAJIN M S, KAZEMZADEH A, et al., 2007. Synthesis of nanocrystalline hydroxyapatite by using precipitation method[J]. Journal of Alloys and Compounds, 430(1): 330-333.
DOI URL |
[50] | MOHAMAD N R, MARZUKI N H, BUANG N A, et al., 2015. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes[J]. Biotechnology & Biotechnological Equipment, 29(2): 205-220. |
[51] | NAGHSHBANDI M P, MOGHIMI H, LATIF B, 2018. Covalent immobilization of phytase on the multi-walled carbon nanotubes via diimide-activated amidation: structural and stability study[J]. Artificial Cells, Nanomedicine, and Biotechnology, 46(sup1): 763-772. |
[52] |
ONEM H, CICEK S, NADAROGLU HJC-JOF, 2016. Immobilization of a thermostable phytase from Pinar melkior (Lactarius piperatus) onto magnetite chitosan nanoparticles[J]. Cyta-journal of Food, 14(1): 74-83.
DOI URL |
[53] |
OZHUKIL KOLLATH V, VAN DEN BROECK F, FEHÉR K, et al., 2015. A modular approach to study protein adsorption on surface modified hydroxyapatite[J]. Chemistry-A European Journal, 21(29): 10497-10505.
DOI PMID |
[54] |
PATEL K G, SHETTIGAR R R, MISRA N M, 2017. Recent advance in silica production technologies from agricultural waste stream[J]. Journal of Advanced Agricultural Technologies, 4(3): 274-279.
DOI URL |
[55] |
POPAT A, HARTONO S B, STAHR F, et al., 2011. Mesoporous silica nanoparticles for bioadsorption, enzyme immobilisation, and delivery carriers[J]. Nanoscale, 3(7): 2801-2818.
DOI PMID |
[56] |
PRAGYA, SHARMA K K, KUMAR A, et al., 2023. Immobilized phytases: an overview of different strategies, support material, and their applications in improving food and feed nutrition[J]. Critical Reviews in Food Science and Nutrition, 63(22): 5465-5487.
DOI URL |
[57] | QAMAR M, BASHARAT A, QAMAR S A, et al., 2022. Enzyme-loaded nanostructured materials for the degradation of environmental pollutants[J]. Current Opinion in Environmental Science & Health, 30: 100400. |
[58] | RAHIMI M, EMAMGHOLI A, TABAEI S J S, et al., 2019. Perspectives of chitosan nanofiber/film scaffolds with bone marrow stromal cells in tissue engineering and wound dressing[J]. Nanomedicine Journal, 6(1): 27-34. |
[59] |
RATHNAYAKE U A, SENAPATHI T, SANDARUWAN C, et al., 2018. Rice bran nanofiber composites for stabilization of phytase[J]. Chemistry Central Journal, 12(1): 1-7.
DOI |
[60] |
RIEGGER B R, BAURER B, MIRZAYEVA A, et al., 2018. A systematic approach of chitosan nanoparticle preparation via emulsion crosslinking as potential adsorbent in wastewater treatment[J]. Carbohydrate Polymers, 180: 46-54.
DOI PMID |
[61] |
ROUSSEAU S, KYOMUGASHO C, CELUS M, et al., 2020. Barriers impairing mineral bioaccessibility and bioavailability in plant-based foods and the perspectives for food processing[J]. Critical Reviews in Food Science and Nutrition, 60(5): 826-843.
DOI PMID |
[62] |
SAPAWE N, OSMAN N S, ZAKARIA M Z, et al., 2018. Synthesis of green silica from agricultural waste by sol-gel method[J]. Materials Today: Proceedings, 5(10): 21861-21866.
DOI URL |
[63] | SHARMA K K, KUMAR S, SINGH D, et al., 2023. Enhanced production and immobilization of phytase from Aspergillus oryzae: A safe and ideal food supplement for improving nutrition[J]. Letters in Applied Microbiology, 76(2): ovac077. |
[64] |
SINGH B, 2016. Myceliophthora thermophila syn. Sporotrichum thermophile: A thermophilic mould of biotechnological potential[J]. Critical Reviews in Biotechnology, 36(1): 59-69.
DOI URL |
[65] |
SIRIN Y, AKATIN M Y, COLAK A, et al., 2017. Dephytinization of food stuffs by phytase of Geobacillus sp. TF16 immobilized in chitosan and calcium-alginate[J]. International Journal of Food Properties, 20(12): 2911-2922.
DOI URL |
[66] |
SOLÍS-FERNÁNDEZ P, BISSETT M, AGO H J C S R, 2017. Synthesis, structure and applications of graphene-based 2D heterostructures[J]. Chemical Society Reviews, 46(15): 4572-4613.
DOI URL |
[67] |
SONG W, XU J, GAO L P, et al., 2021. Preparation of freeze-dried porous chitosan microspheres for the removal of hexavalent chromium[J]. Applied Sciences, 11(9): 4217.
DOI URL |
[68] |
SONG W, XU J, REN L, et al., 2020. Traditional sensory evaluation and bionic electronic nose as innovative tools for the packaging performance evaluation of chitosan film[J]. Polymers, 12(10): 2310.
DOI URL |
[69] |
SUN J P, ZHENG X Y, LI H, et al., 2017. Monodisperse selenium- substituted hydroxyapatite: Controllable synthesis and biocompatibility[J]. Materials Science and Engineering: C, 73: 596-602.
DOI URL |
[70] | SUN X T, FENG Z W, HOU T J, et al., 2014. Mechanism of graphene oxide as an enzyme inhibitor from molecular dynamics simulations[J]. Acs Applied Materials & Interfaces, 6(10): 7153-7163. |
[71] |
SUN R X, CHEN K Z, XU L, 2013. Preparation and characterization of hydroxyapatite/γ-Fe2O3 hybrid nanostructure[J]. Journal of Wuhan University of Technology-Materials Science Edition, 28(2): 215-219.
DOI URL |
[72] |
TAN L F, LIU T L, LI L L, et al., 2013. Uniform double-shelled silica hollow spheres: acid/base selective-etching synthesis and their drug delivery application[J]. Rsc Advances, 3(16): 5649-5655.
DOI URL |
[73] |
TROUILLEFOU C M, LE CADRE E, CACCIAGUERRA T, et al., 2015. Protected activity of a phytase immobilized in mesoporous silica with benefits to plant phosphorus nutrition[J]. Journal of Sol-gel Science and Technology, 74(1): 55-65.
DOI URL |
[74] |
URETA M M, MARTINS G N, FIGUEIRA O, et al., 2021. Recent advances in β-galactosidase and fructosyltransferase immobilization technology[J]. Critical Reviews in Food Science and Nutrition, 61(16): 2659-2690.
DOI URL |
[75] |
Ushasree M V, Gunasekaran P, Pandey A, 2012. Single-step purification and immobilization of MBP-phytase fusion on starch agar beads: Application in dephytination of soy milk[J]. Applied Biochemistry and Biotechnology, 167: 981-990.
DOI PMID |
[76] |
VANCE C P, 2001. Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources[J]. Plant Physiology, 127(2): 390-397.
PMID |
[77] |
VERMA A, PARASHAR A, 2018. Molecular dynamics based simulations to study the fracture strength of monolayer graphene oxide[J]. Nanotechnology, 29(11): 115706.
DOI URL |
[78] |
VERMA M L, KUMAR S, DAS A, et al., 2019. Chitin and chitosan-based support materials for enzyme immobilization and biotechnological applications[J]. Environmental Chemistry Letters, 18(2): 1-9.
DOI |
[79] |
VERMA M L, PURI M, BARROW C J, 2016. Recent trends in nanomaterials immobilised enzymes for biofuel production[J]. Critical Reviews in Biotechnology, 36(1): 108-119.
DOI PMID |
[80] |
WAHAB R A, ELIAS N, ABDULLAH F, et al., 2020. On the taught new tricks of enzymes immobilization: An all-inclusive overview[J]. Reactive and Functional Polymers, 152: 104613.
DOI URL |
[81] |
WANG A L, LIU D, YIN H, et al., 2007. Size-controlled synthesis of hydroxyapatite nanorods by chemical precipitation in the presence of organic modifiers[J]. Materials Science and Engineering: C, 27(4): 865-869.
DOI URL |
[82] |
WANG S S, LI S, LIU R, et al., 2022. Immobilization of interfacial activated candida rugosa lipase onto magnetic chitosan using dialdehyde cellulose as cross-linking agent[J]. Frontiers in Bioengineering and Biotechnology, 10: 946117.
DOI URL |
[83] |
WANG Y, LI Z H, WANG J, et al., 2011. Graphene and graphene oxide: Biofunctionalization and applications in biotechnology[J]. Trends in Biotechnology, 29(5): 205-212.
DOI PMID |
[84] |
WANG Z G, WAN L S, LIU Z M, et al., 2009. Enzyme immobilization on electrospun polymer nanofibers: An overview[J]. Journal of Molecular Catalysis B: Enzymatic, 56(4): 189-195.
DOI URL |
[85] | WARDHANI R A K, ASRI L A, RACHMAWATI H, et al., 2019. Stabilization of chitosan-polyethylene oxide electrospun nanofibrous containing Colocasia esculenta tuber protein[J]. Materials Research Express, 6(11): 1150f4. |
[86] |
WITHERS P J, SYLVESTER-BRADLEY R, JONES D L, et al., 2014. Feed the crop not the soil: Rethinking phosphorus management in the food chain[J]. Environmental Science Technology, 48(12): 6523-6530.
DOI URL |
[87] |
XIAO K, HARRISON M J, WANG Z Y, 2005. Transgenic expression of a novel M. truncatula phytase gene results in improved acquisition of organic phosphorus by Arabidopsis[J]. Planta, 222(1): 27-36.
DOI URL |
[88] |
XIE W L, ZANG X Z, 2017. Covalent immobilization of lipase onto aminopropyl-functionalized hydroxyapatite-encapsulated-γ-Fe2O3 nanoparticles: A magnetic biocatalyst for interesterification of soybean oil[J]. Food Chemistry, 227: 397-403.
DOI URL |
[89] |
XIN C L, WANG X, LIU L L, et al., 2020. Rational design of monodisperse mesoporous silica nanoparticles for phytase immobilization[J]. Acs Omega, 5(46): 30237-30242.
DOI PMID |
[90] |
XU L, KE C X, HUANG Y, et al., 2016. Immobilized Aspergillus niger lipase with SiO2 nanoparticles in sol-gel materials[J]. Catalysts, 6(10): 149.
DOI URL |
[91] |
YANG D, WANG X Y, AI Q H, et al., 2015. Performance comparison of immobilized enzyme on the titanate nanotube surfaces modified by poly (dopamine) and poly (norepinephrine)[J]. RSC Advances, 5(53): 42461-42467.
DOI URL |
[92] |
YEON K M, YOU J, ADHIKARI M D, et al., 2019. Enzyme-immobilized chitosan nanoparticles as environmentally friendly and highly effective antimicrobial agents[J]. Biomacromolecules, 20(7): 2477-2485.
DOI URL |
[93] |
YANG X M, SHANG S M, LI L, 2011. Layer-structured poly (vinyl alcohol)/graphene oxide nanocomposites with improved thermal and mechanical properties[J]. Journal of Applied Polymer Science, 120(3): 1355-1360.
DOI URL |
[94] |
ZHANG J L, ZHANG F, YANG H J, et al., 2010. Graphene oxide as a matrix for enzyme immobilization[J]. Langmuir, 26(9): 6083-6085.
DOI PMID |
[95] |
ZHANG W B, WEI L F, MA J Z, et al., 2020. Exfoliation and defect control of graphene oxide for waterborne electromagnetic interference shielding coatings[J]. Composites Part A: Applied Science and Manufacturing, 132: 105838.
DOI URL |
[96] |
ZHANG Y, WENG W, YANG J J, et al., 2019. Lithium-ion battery fiber constructed by diverse-dimensional carbon nanomaterials[J]. Journal of Materials Science, 54(1): 582-591.
DOI |
[97] |
ZIEGLER-BOROWSKA M, CHELMINIAK-DUDKIEWICZ D, SIÓDMIAK T, et al., 2017. Chitosan-collagen coated magnetic nanoparticles for lipase immobilization—new type of “enzyme friendly” polymer shell crosslinking with squaric acid[J]. Catalysts, 7(1): 26.
DOI URL |
[98] | 陈康, 王海洋, 蔡清, 等, 2022. 介孔二氧化硅的制备及应用进展[J]. 安徽化工, 48(6): 9-11. |
CHEN K, WANG H Y, CAI Q, et al., 2022. Progress in preparation and application of mesoporous silica[J]. Anhui Chemical Industry, 48(6): 9-11. | |
[99] | 郭效军, 严虎东, 王爱平, 等, 2012. 室温固相法制备羟基磷灰石粉体[J]. 硅酸盐通报, 31(6): 1453456. |
GUO X J, YAN H D, WANG A P, et al., 2012. Preparation of hydroxyapatite powders by solid-state reactionat room temperature[J]. Bulletin of the Chinese Ceramic Society, 31(6): 1453456. | |
[100] | 洪杰, 卢雅明, 龚春华, 等, 2021. 羟基磷灰石/壳聚糖复合微球的制备及其表征[J]. 广东药科大学学报, 37(5): 1-5. |
HONG J, LU Y M, GONG C H, et al., 2021. Preparation and characterization of hydroxyapatite/chitosan composite microspheres[J]. Journal of Guangdong Pharmaceutical University, 37(5): 1-5. | |
[101] | 黄龙霄, 陈瑞果, 朱英杰, 等, 2015. 溶胶-凝胶法制备羟基磷灰石及其第一原理研究[J]. 热处理技术与装备, 36(5): 76-81. |
HUANG L X, CHEN R G, ZHU Y J, et al., 2015. Preparation of hydroxyapatite with Sol-gel synthesisand its study on first principle[J]. Rechuli Jishu Yu Zhuangbei, 36(5): 76-81. | |
[102] | 刘雪, 2017. 抗砷细菌及根系有机酸对砷超富集植物蜈蚣草促生及吸砷机理研究[D]. 南京: 南京大学. |
LIU X, 2017. Arsenic resistant bacteria and root organic acid promoted plant growth and arsenic uptake in As-hyperaccumulator Pteris vittate[D]. Nanjing: Nanjing University. | |
[103] | 李旺, 2020. HPC-氧化石墨烯纳米水凝胶珠的制备及载药性能研究[D]. 哈尔滨: 哈尔滨工业大学. |
LI W, 2020. The synthesis and drug loading property of HPC-graphene oxide nano hydrogel beads[D]. Haerbin:Harbin Institute of Technology. | |
[104] | 李雨露, 龙妹, 唐佳斌, 等, 2022. 介孔二氧化硅纳米材料的制备方法及其在电化学方面的应用[J]. 应用技术学报, 22(2): 115-123, 143. |
LI Y L, LONG M, TANG J B, et al., 2022. Preparation of mesoporous silica nanomaterials and its applications in electrochemistry[J]. Journal of Technology, 22(2): 115-123, 143. | |
[105] | 鲁芳, 2020. 双功能域β-折叠桶植酸酶的特性及其在土壤与育苗中的应用研究[D]. 北京: 北京林业大学. |
LU F, 2020. Enzymatic properties of phyHT and its effect on phosphorus activation in rhizosphere soil of seedlings[D]. Beijing: Beijing Forestry University. | |
[106] | 罗华丽, 王琳玲, 2021. 壳聚糖微球在环境修复中的应用研究进展[J]. 环境科学与技术, 44(12): 23-29. |
LUO H L, WANG L L, 2021. Application ofchitosan microsphere in environmental remediation[J]. Environmental Science & Technology, 44(12):23-29. | |
[107] | 钱浩, 2021. 基于壳聚糖包埋的植酸酶纳米粒制备、特性及体外消化研究[D]. 咸阳: 西北农林科技大学. |
QIAN H, 2021. Preparation, characterization and in vitro digestion of phytase nanoparticle based on chitosan embedding[D]. Xianyang: Northwest A & F University. | |
[108] |
宋俊颖, 何绪文, 黄占斌, 2019. 壳聚糖及其衍生物对土壤重金属的稳定化效应[J]. 化工进展, 38(9): 4308-4319.
DOI |
SONG J Y, HE X W, HUANG Z B, 2019. Stabilization of heavy metals in soil by chitosan and its derivatives[J]. Chemical Industry and Engineering Progress, 38(9): 4308-4319.
DOI |
|
[109] | 孙临泉, 陈子学, 张洪立, 等, 2011. 微生物植酸酶对土壤有机磷组分含量及有效性的影响[J]. 天津师范大学学报(自然科学版), 31(2): 86-90. |
SUN L Q, CHEN Z X, ZHANG H L, et al., 2011. Effects of microbial phytase on soil organic phosphorus component and its availability[J]. Journal of Tianjin Normal University (Natural Science Edition), 31(2): 86-90. | |
[110] | 吴益栋, 沈志森, 王幸媛, 等, 2018. 壳聚糖基纳米载药系统的制备及其在肿瘤靶向治疗中的应用研究[J]. 药物生物技术, 25(4): 333-339. |
WU Y D, SHEN Z S, WANG X Y, et al., 2018. The Preparation and targeted therapy on tumor of chitosan-based nanoparticle drug system[J]. Pharmaceutical Biotechnology, 25(4): 333-339. | |
[111] | 杨晓莉, 曹兴圆, 吴博贤, 等, 2023. 土壤中微生物植酸酶的活性及其提高方法与应用[J]. 微生物学通报, 50(6): 2687-2708. |
YANG X L, CAO X Y, WU B X, et al., 2023. Microbial phytase activity in soils and methods to improve the activity and application: A review[J]. Microbiology China, 50(6): 2687-2708. | |
[112] | 曾洪亮, 王秋香, 温业成, 等, 2021. 石墨烯制备方法的研究进展[J]. 炭素技术, 40(5): 83. |
ZENG H L, WANG Q X, WEN Y C, et al., 2021. Research progress in preparationmethods of graphene[J]. Carbon Techniques, 40(5): 83. | |
[113] | 张峰, 2019. 磁性氧化石墨烯基非共价修饰纳米复合材料的制备及其在药物递送方面的应用[D]. 镇江: 江苏大学. |
ZHANG F, 2019. Preparation of non-covalently modified nanocomposites based on magnetic graphene oxide and its application in drug delivery[D]. Zhenjiang: Jiangsu University. | |
[114] | 张连科, 王洋, 王维大, 等, 2018. 磁性羟基磷灰石/生物炭复合材料的制备及对Pb2+的吸附性能[J]. 环境科学学报, 38(11): 4360-4370. |
ZHANG L K, WANG Y, WANG W D, et al., 2018. Preparation of magnetic hydroxyapatite/biochar composite and its adsorption behavior of Pb2+ and recycling performance[J]. Acta Scientiae Circumstantiae, 38(11): 4360-4370. | |
[115] | 张雷, 马建中, 张跃宏, 等, 2020. 聚合物基氧化石墨烯纳米复合材料研究进展[J]. 精细化工, 37(11): 2161-2171. |
ZHANG L, MA J Z, ZHANG Y H, et al., 2020. Research progress of polymer-based graphene oxide nanocomposites[J]. Fine Chemicals, 37(11): 2161-2171. |
[1] | LI Jianhui, DANG Zheng, CHEN Lin. Spatial-temporal Characteristics of PM2.5 and Its Influencing Factors in the Yellow River Jiziwan Metropolitan Area [J]. Ecology and Environment, 2023, 32(4): 697-705. |
[2] | ZHANG Lin, QI Shi, ZHOU Piao, WU Bingchen, ZHANG Dai, ZHANG Yan. Study on Influencing Factors of Soil Organic Carbon Content in Mixed Broad-leaved and Coniferous Forests Land in Beijing Mountainous Areas [J]. Ecology and Environment, 2023, 32(3): 450-458. |
[3] | HE Yanhu, GONG Zhenjie, WU Haibin, CAI Yanpeng, YANG Zhifeng, CHEN Xiaohong. Spatiotemporal Evolution of Urban Eco-efficiency and Its Influencing Factors in Guangdong-Hong Kong-Macao Greater Bay Area [J]. Ecology and Environment, 2023, 32(3): 469-480. |
[4] | HAO Jinhu, WEI Wei, LI Shengnan, MA Muyuan, LI Xiaoxia, YANG Hongguo, JIANG Qiyu, CHAI Peidong. GEE Based Evaluation of the Spatial-temporal Pattern and Drivers of Long-term Water Body in Beijing-Tianjin-Hebei [J]. Ecology and Environment, 2023, 32(3): 556-566. |
[5] | ZHANG Li, LI Cheng, TAN Haoze, WEI Jiayi, CHENG Jiong, PENG Guixiang. Reduction Effect and Influencing Factors of Typical Urban Woodlands on Atmospheric Particulate Matter in Guangzhou [J]. Ecology and Environment, 2023, 32(2): 341-350. |
[6] | ZHOU Yongkang, YU Shengpin, LI Jiale, DONG Yihui, WANG Meng, ZHAO Qiling, LI Yeyu. Research Progress on Adsorption Behavior and Mechanism of Antibiotics in Soil [J]. Ecology and Environment, 2023, 32(11): 2072-2082. |
[7] | ZHENG Xiaohao, CHEN Yingbiao, ZHENG Zihao, GUO Cheng, HUANG Zhounan, ZHOU Yongshi. Dynamic Changes of Ecosystem Service Value and Evolution of Its Influencing Factors in Hubei Province [J]. Ecology and Environment, 2023, 32(1): 195-206. |
[8] | YUAN Linjiang, LI Mengbo, LENG Gang, ZHONG Bingbing, XIA Dapeng, WANG Jinghua. Synergistic Effect of Sulfate Reduction and Ammonia Oxidation in Anaerobic Environment [J]. Ecology and Environment, 2023, 32(1): 207-214. |
[9] | SU Yongsong, SONG Song, CHEN Ye, YE Ziqiang, ZHONG Runfei, WANG Zhaoyao. Temporal and Spatial Characteristics of Net Anthropogenic Nitrogen Input and Its Influencing Factors in the Pearl River Delta [J]. Ecology and Environment, 2022, 31(8): 1599-1609. |
[10] | CHEN Wenyu, XIA Lihua, XU Guoliang, YU Shiqin, CHEN Hang, CHEN Jinfeng. Dynamic Variation of NDVI and Its Influencing Factors in the Pearl River Basin from 2000 to 2020 [J]. Ecology and Environment, 2022, 31(7): 1306-1316. |
[11] | JIANG Peng, QIN Mei’ou, LI Rongping, MENG Ying, YANG Feiyun, WEN Rihong, SUN Pei, FANG Yuan. Seasonal Variability of GPP and Its Influencing Factors in the Typical Ecosystems in China [J]. Ecology and Environment, 2022, 31(4): 643-651. |
[12] | DU Xue, WANG Haiyan, ZOU Jiahe, MENG Hai, ZHAO Han, CUI Xue, DONG Qiqi. Distribution Characteristics and Influencing Factors of Soil Organic Carbon in Spruce-fir broad-leaved Mixed Forest on North Slope of Changbai Mountains [J]. Ecology and Environment, 2022, 31(4): 663-669. |
[13] | LI Guangxuan, SHI An, ZHANG Liming, XING Shihe, YANG Wenhao. Effects of Biochar with Different Particle Sizes on Soil Heavy Metal Immobilization and Bacterial Community [J]. Ecology and Environment, 2022, 31(3): 583-592. |
[14] | ZHAO Anzhou, TIAN Xinle. Spatiotemporal Evolution and Influencing Factors of Vegetation Coverage in the Loess Plateau from 1986 to 2021 Based on GEE Platform [J]. Ecology and Environment, 2022, 31(11): 2124-2133. |
[15] | LI Liangliang, DAI Liangyu, GAO Weichang, ZHANG Shuyi, LIU Taoze. The Occurrence Characteristics and Influencing Factors of Residual Mulching Film of Typical Farmland with Plastic Film in Guizhou Province [J]. Ecology and Environment, 2022, 31(11): 2189-2197. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn