Ecology and Environment ›› 2022, Vol. 31 ›› Issue (6): 1244-1252.DOI: 10.16258/j.cnki.1674-5906.2022.06.021
• Research Articles • Previous Articles Next Articles
HUANG Min1(), ZHAO Xiaofeng1, LIANG Rongxiang2, WANG Pengzhong1, DAI Anran1, HE Xiaoman1
Received:
2022-02-10
Online:
2022-06-18
Published:
2022-07-29
黄敏1(), 赵晓峰1, 梁荣祥2, 王鹏忠1, 戴安然1, 何晓曼1
作者简介:
黄敏(1973年生),女,副教授,博士,主要从事土壤环境与区域生态方面的研究。E-mail: huangmin@whut.edu.cn
基金资助:
CLC Number:
HUANG Min, ZHAO Xiaofeng, LIANG Rongxiang, WANG Pengzhong, DAI Anran, HE Xiaoman. Comparison of Three Chelating Agents to Remove the Cd and Cu in Contaminated Soil[J]. Ecology and Environment, 2022, 31(6): 1244-1252.
黄敏, 赵晓峰, 梁荣祥, 王鹏忠, 戴安然, 何晓曼. 3种螯合剂对Cd、Cu复合污染土壤淋洗修复的对比研究[J]. 生态环境学报, 2022, 31(6): 1244-1252.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2022.06.021
类型 Soil type | 质地 Soil texture | pH | 阳离子交换量 Cation exchange capacity/ (cmol∙kg-1) | 有机碳质量分数 w(soil organic carbon)/ (g∙kg-1) | Cd质量分数 w(Cd)/ (mg∙kg-1) | Cu质量分数 w(Cu)/ (mg∙kg-1) | Zn质量分数 w(Zn)/ (mg∙kg-1) | As质量分数 w(As)/ (mg∙kg-1) |
---|---|---|---|---|---|---|---|---|
黄棕壤 Yellow brown soil | 砂壤土Sandy loam | 5.66 | 10.0 | 12.6 | 14.01 | 1370 | 180 | 145 |
Table 1 Basic characteristics of the tested soil
类型 Soil type | 质地 Soil texture | pH | 阳离子交换量 Cation exchange capacity/ (cmol∙kg-1) | 有机碳质量分数 w(soil organic carbon)/ (g∙kg-1) | Cd质量分数 w(Cd)/ (mg∙kg-1) | Cu质量分数 w(Cu)/ (mg∙kg-1) | Zn质量分数 w(Zn)/ (mg∙kg-1) | As质量分数 w(As)/ (mg∙kg-1) |
---|---|---|---|---|---|---|---|---|
黄棕壤 Yellow brown soil | 砂壤土Sandy loam | 5.66 | 10.0 | 12.6 | 14.01 | 1370 | 180 | 145 |
淋洗时间 Leaching time/h | 重金属与螯合剂物质的量比a Ratio of amount of substance of heavy metal to chelating agent | 淋洗剂pH pH of leaching agent | 体系固液比 Ratio of solid to liquid | IDS与GLDA复配比例b Mixing ratio of IDS to GLDA | 淋洗次数c Leaching times | ||
---|---|---|---|---|---|---|---|
单一 淋洗 Single leaching | 淋洗时间 Leaching time/h | 1-36 | 1:1 | 7 | 1:10 | — | 1 |
重金属与螯合剂物质的量比 Ratio of amount of substance of heavy metal to chelating agent | 8 | 1:10-1:1 | 7 | 1:10 | — | 1 | |
淋洗剂pH pH of leaching agent | 8 | 1:1 | 4-10 | 1:10 | — | 1 | |
体系固液比 Ratio of solid to liquid | 8 | 1:1 | 7 | 1:25-1:5 | — | 1 | |
复配 淋洗 Mixing leaching | 复配比例 Mixing ratio of IDS to GLDA | 8 | 1:10 | 7 | 1:10 | 1:9-5:5 | 1 |
淋洗次数 Leaching times | 8 | 1:10 | 7 | 1:10 | 4:6 | 1-4 |
Table 2 Treatment design for the leaching experiment
淋洗时间 Leaching time/h | 重金属与螯合剂物质的量比a Ratio of amount of substance of heavy metal to chelating agent | 淋洗剂pH pH of leaching agent | 体系固液比 Ratio of solid to liquid | IDS与GLDA复配比例b Mixing ratio of IDS to GLDA | 淋洗次数c Leaching times | ||
---|---|---|---|---|---|---|---|
单一 淋洗 Single leaching | 淋洗时间 Leaching time/h | 1-36 | 1:1 | 7 | 1:10 | — | 1 |
重金属与螯合剂物质的量比 Ratio of amount of substance of heavy metal to chelating agent | 8 | 1:10-1:1 | 7 | 1:10 | — | 1 | |
淋洗剂pH pH of leaching agent | 8 | 1:1 | 4-10 | 1:10 | — | 1 | |
体系固液比 Ratio of solid to liquid | 8 | 1:1 | 7 | 1:25-1:5 | — | 1 | |
复配 淋洗 Mixing leaching | 复配比例 Mixing ratio of IDS to GLDA | 8 | 1:10 | 7 | 1:10 | 1:9-5:5 | 1 |
淋洗次数 Leaching times | 8 | 1:10 | 7 | 1:10 | 4:6 | 1-4 |
淋洗剂 Leaching agent | Cd 洗脱率 Removal rate of Cd/% | Cu 洗脱率 Removal rate of Cu/% | 综合毒性消减指数 Total toxicity reduction index |
---|---|---|---|
EDTA | 68.35 | 39.51 | 1757 |
IDS | 21.75 | 34.65 | 608 |
GLDA | 66.32 | 33.30 | 1694 |
IDS:GLDA=5:5 | 61.70 | 33.77 | 1582 |
IDS:GLDA=4:6 | 71.75 | 33.61 | 1827 |
IDS:GLDA=3:7 | 65.63 | 35.06 | 1681 |
IDS:GLDA=2:8 | 68.24 | 34.57 | 1743 |
IDS:GLDA=1:9 | 65.00 | 33.82 | 1663 |
Table 3 Total toxicity reduction index of the leached soil with mixed agents under different mixture ratio
淋洗剂 Leaching agent | Cd 洗脱率 Removal rate of Cd/% | Cu 洗脱率 Removal rate of Cu/% | 综合毒性消减指数 Total toxicity reduction index |
---|---|---|---|
EDTA | 68.35 | 39.51 | 1757 |
IDS | 21.75 | 34.65 | 608 |
GLDA | 66.32 | 33.30 | 1694 |
IDS:GLDA=5:5 | 61.70 | 33.77 | 1582 |
IDS:GLDA=4:6 | 71.75 | 33.61 | 1827 |
IDS:GLDA=3:7 | 65.63 | 35.06 | 1681 |
IDS:GLDA=2:8 | 68.24 | 34.57 | 1743 |
IDS:GLDA=1:9 | 65.00 | 33.82 | 1663 |
淋洗剂 Leaching agent | 土壤利用方式及其Cd、Cu洗脱率 Utilization mode of soil and removal rate of Cd and Cu | 参考文献 References |
---|---|---|
IDS与GLDA复配 IDS and GLDA compound | 冶炼厂附近农田土壤,Cd、Cu的洗脱率分别为82.71%和41.36% | 本研究 |
EDTA | 冶炼厂附近农田土壤,Cd、Cu的洗脱率分别为68.35%和39.51% | 本研究 |
EDTA | 工业场地土壤,Cd、Cu的洗脱率分别为56.99%和72.98% | Zou et al., |
衣康酸-丙烯酸共聚物(IA-AA) Itaconic-acrylic acid copolymer | 矿区土壤,Cd的洗脱率为65.65% | 姚瑶等, |
柠檬酸与氯化铁复配 The citric acid and ferric chloride compound | 稻田土壤,Cd的洗脱率达74.50% | 曹坤坤等, |
磷酸氨基酸盐 Phosphate amino acid salt | 稻田土壤,Cd的洗脱率为55.40% | 季蒙蒙等, |
柠檬酸 The citric acid | 矿场附近旱地土壤,Cu的洗脱率为37.65% | 易龙生等, |
Table 4 Comparison of leaching effects on heavy metal in contaminated soil under optimal conditions in similar studies
淋洗剂 Leaching agent | 土壤利用方式及其Cd、Cu洗脱率 Utilization mode of soil and removal rate of Cd and Cu | 参考文献 References |
---|---|---|
IDS与GLDA复配 IDS and GLDA compound | 冶炼厂附近农田土壤,Cd、Cu的洗脱率分别为82.71%和41.36% | 本研究 |
EDTA | 冶炼厂附近农田土壤,Cd、Cu的洗脱率分别为68.35%和39.51% | 本研究 |
EDTA | 工业场地土壤,Cd、Cu的洗脱率分别为56.99%和72.98% | Zou et al., |
衣康酸-丙烯酸共聚物(IA-AA) Itaconic-acrylic acid copolymer | 矿区土壤,Cd的洗脱率为65.65% | 姚瑶等, |
柠檬酸与氯化铁复配 The citric acid and ferric chloride compound | 稻田土壤,Cd的洗脱率达74.50% | 曹坤坤等, |
磷酸氨基酸盐 Phosphate amino acid salt | 稻田土壤,Cd的洗脱率为55.40% | 季蒙蒙等, |
柠檬酸 The citric acid | 矿场附近旱地土壤,Cu的洗脱率为37.65% | 易龙生等, |
[1] | CHULSUNG K, YONGWOO L, SAY K O, 2003. Factors affecting EDTA extraction of lead from lead-contaminated soils[J]. Chemosphere, 51(9): 845-853. |
[2] | DOROTA K, 2011. Cu(II), Zn(II), Co(II) and Pb(II) removal in the presence of the complexing agent of a new generation[J]. Desalination, 267(2): 175-183. |
[3] | FERNANDES M C, COX L, HERMOSIN M C, et al., 2003. Adsorption-desorption of metalaxyl as affecting dissipation and leaching in soils: role of mineral and organic components[J]. Pest Management Science, 59(5): 545-552. |
[4] | GHESTEM J P, BERMOND A, 1998. EDTA extractability of trace metals in polluted soils: A chemical-physical study[J]. Environmental Technology, 19(4): 409-416. |
[5] | GUO X F, ZHAO G H, ZHANG G X, et al., 2018. Effect of mixed chelators of EDTA, GLDA, and citric acid on bioavailability of residual heavy metals in soils and soil properties[J]. Chemosphere, 209: 776-782. |
[6] | HAKANSON L, 1980. An ecological risk index for aquatic pollution control: a sedimentological approach[J]. Water Research, 14(8): 975-1001. |
[7] | HAUTHAL H G, 2009. Sustainable detergents and cleaners, progress on ingredients, nanoparticles, analysis, environment[J]. Tenside Surfactants Detergents, 46(1): 53-62. |
[8] | HYVONEN H, ORAMA M, SAARINEN H, et al., 2003 Studies on biodegradable chelating ligands: complexation of iminodisuccinic acid (ISA) with Cu(II), Zn(II), Mn(II) and Fe(Ⅲ) ions in aqueous solution[J]. Green Chemistry, 5(4): 410-414. |
[9] | LUO J, CAI L M, QI S H, et al., 2018. The interactive effects between chelator and electric fields on the leaching risk of metals and the phytoremediation efficiency of Eucalyptus globulus[J]. Journal of Cleaner Production, 202: 830-837. |
[10] | MAKINO T, SUGAHARA K, SAKURAI Y, et al., 2006. Remediation of cadmium contamination in paddy soils by washing with chemicals: Selection of washing chemicals[J]. Environmental Pollution, 144(1): 2-10. |
[11] | POLETTINI A, POMI R, ROLLE E, 2007. The effect of operating variables on chelant-assisted remediation of contaminated dredged sediment[J]. Chemosphere, 66(5): 866-77. |
[12] | SIMON G, ANELA K, DOMEN L, 2020. Soil washing with biodegradable chelating agents and EDTA: Technological feasibility, remediation efficiency and environmental sustainability[J]. Chemosphere, 257: 1-8. |
[13] | SUANON F, SUN Q, DIMON B, et al., 2016. Heavy metal removal from sludge with organic chelators: Comparative study of N, N-bis (carboxymethyl) glutamic acid and citric acid[J]. Journal of Environmental Management, 166: 341-347. |
[14] | TANDY S, BOSSART K, MUELLER R, et al., 2004. Extraction of heavy metals from soils using biodegradable chelating agents[J]. Environmental Science and Technology, 38(3): 937-944. |
[15] | WANG K, LIU Y H, SONG Z G, et al., 2019. Effects of biodegradable chelator combination on potentially toxic metals leaching efficiency in agricultural soils[J]. Ecotoxicology and Environmental Safety, 182: 1-8. |
[16] | WASAY S A, BARRINGTON S F, TOKUNAGA S, 1998. Remediation of soils polluted by heavy metals using salts of organic acids and chelating agents[J]. Environmental Technology, 19(4): 369-379. |
[17] | WU Q, DUAN G Q, CUI Y R, et al., 2015. Removal of heavy metal species from industrial sludge with the aid of biodegradable iminodisuccinic acid as the chelating ligand[J]. Environmental Science and Pollution Research, 22(2): 1144-1150. |
[18] | ZINNAT A B, ISMAIL M R, HIKARU S, et al., 2013. Effect of extraction variables on the biodegradable chelant-assisted removal of toxic metals from artificially contaminated European reference soils[J]. Water, Air, and Soil Pollution, 224(3): 1-21. |
[19] | ZOU Z L, QIU R L, ZHANG W H, et al., 2009. The study of operating variables in soil washing with EDTA[J]. Environmental Pollution, 157(1): 229-236. |
[20] | 曹坤坤, 张沙沙, 胡学玉, 等, 2022. 复合淋洗条件下农用地耕作层土壤去镉效率及其功能调节[J]. 环境科学, 43(2): 1023-1030. |
CAO K K, ZHANG S S, HU X Y, et al., 2022. Effect of composite leaching on cadmium removal efficiency in plow layer soil of agricultural land and its functional regulation[J]. Environmental Science, 43(2): 1023-1030. | |
[21] | 陈志良, 雷国建, 苏耀明, 等, 2015. 茶皂素与EDTA淋洗对土壤中铅、锌形态的影响[J]. 生态环境学报, 24(8): 1394-1398. |
CHEN Z L, LEI G J, SU Y M, et al., 2015. Effects of EDTA, saponin on the speciation of the metal forms of Pb and Zn in complexly-contaminated soils[J]. Ecology and Environmental Sciences, 24(8): 1394-1398. | |
[22] | 冯俊生, 张俏晨, 2014. 土壤原位修复技术研究与应用进展[J]. 生态环境学报, 23(11): 1861-1867. |
FENG J S, ZHANG Q C, 2014. A review on the study on practice of soil remediation in situ[J]. Ecology and Environmental Sciences, 23(11): 1861-1867. | |
[23] | 环境保护部, 国土资源部, 2014. 全国土壤污染状况调查公报[EB/OL]. 北京: 生态环境部, [2021-09-18]. http://www.gov.cn/foot/2014-04/17/content_2661768.htm. |
Environmental Protection Department, The Ministry of Land and Resources, 2014. Report on the national general survey of soil contamination[EB/OL]. Beijing: Ministry of Ecological Environment, [2021-09-18]. http://www.gov.cn/foot/2014-04/17/content_2661768.htm. | |
[24] | 季蒙蒙, 王星星, 马欢欢, 等, 2021. 磷酸氨基酸盐对Cd污染土壤的淋洗效果[J]. 农业环境科学学报, 40(2): 329-337. |
JI M M, WANG X X, MA H H, et al., 2021. Removal of Cd from contaminated soil using amino acid salt[J]. Journal of Agro-Environment Science, 40(2): 329-337. | |
[25] | 罗璐瑕, 胡忻, 2008. 利用生物可降解螯合剂[S,S]-乙二胺二琥珀酸浸提沉积物中重金属的影响因素研究[J]. 农业环境科学学报, 27(3): 932-936. |
LUO L X, HU X, 2008. Factors affecting the extraction of heavy metals in sediments using biodegradable [S,S]- ethylene diamine disuccinic acid[J]. Journal of Agro-Environment Science, 27(3): 932-936. | |
[26] | 覃建军, 唐盛爽, 蒋凯, 等, 2020. 螯合剂GLDA对象草修复镉污染农田的影响[J]. 环境科学, 41(8): 3862-3869. |
TAN J J, TANG S S, JIANG K, et al., 2020. Effects of chelate GLDA on the remediation of cadmium contaminated farmland by pennisetum purpureum schum[J]. Environmental Science, 41(8): 3862-3869. | |
[27] | 吴青, 崔延瑞, 汤晓晓, 等, 2015. 生物可降解螯合剂谷氨酸N,N-二乙酸四钠对污泥中重金属萃取效率的研究[J]. 环境科学, 36(5): 1733-1738. |
WU Q, CUI Y R, TANG X X, et al., 2015. Extraction of heavy metals from sludge using biodegradable chelating agent N,N-bis (carboxymethyl) glutamic acid tetrasodium[J]. Environmental Science, 36(5): 1733-1738. | |
[28] | 吴长彧, 王亚权, 李静, 2007. 绿色螯合剂亚氨基二琥珀酸的合成及螯合性能[J]. 化学工业与工程, 24(2): 121-124. |
WU Z Y, WANG Y Q, LI J, 2007. Synthesis of iminodisuccinic acid and its chelating ability[J]. Chemical Industry and Engineering, 24(2): 121-124. | |
[29] | 徐雷, 代惠萍, 魏树和, 2021. 淋洗剂在重金属污染土壤修复中的研究进展[J]. 中国环境科学, 41(11): 5237-5244. |
XU L, DAI H P, WEI S H, 2021. Advances of washing agents in remediation of heavy metal contaminated soil[J]. China Environmental Science, 41(11): 5237-5244. | |
[30] | 姚瑶, 张世熔, 王怡君, 等, 2018. 3种环保型淋洗剂对重金属污染土壤的淋洗效果[J]. 环境工程学报, 12(7): 2039-2046. |
YAO Y, ZHANG S R, WANG Y J, et al., 2018. Effects of different environmentally friendly washing agents on removal of soilheavy metals[J]. Chinese Journal of Environmental Engineering, 12(7): 2039-2046. | |
[31] | 易龙生, 王文燕, 刘阳, 等, 2014. 柠檬酸、EDTA和茶皂素对重金属污染土壤的淋洗效果[J]. 安全与环境学报, 14(1): 225-228. |
YI L S, WANG W Y, LIU Y, et al., 2014. Removal effects of the citric acid, EDTA and saponin on heavy metal contaminated soil[J]. Journal of Safety and Environment, 14(1): 225-228. | |
[32] | 尹雪, 陈家军, 吕策, 2014. 螯合剂复配对实际重金属污染土壤洗脱效率影响及形态变化特征[J]. 环境科学, 35(2): 733-739. |
YIN X, CHEN J J, LÜ C, 2014. Impact of compounded chelants on removal of heavy metals and characteristics of morphologic change in soil from heavy metals contaminated sites[J]. Environmental Science, 35(2): 733-739. | |
[33] | 张金永, 朱玉婷, 王明新, 等, 2020. 还原增溶强化EGTA淋洗修复重金属污染土壤[J]. 环境科学, 41(5): 2390-2397. |
ZHANG J Y, ZHU Y T, WANG M X, et al., 2020. Remediation of heavy metal contaminated soil by EGTA washing enhanced with reduction solubilization[J]. Environmental Science, 41(5): 2390-2397. | |
[34] | 赵小健, 2013. 基于Hakanson潜在生态风险指数的某垃圾填埋场土壤重金属污染评价[J]. 环境监控与预警, 5(4): 43-44. |
ZHAO X J, 2013. Pollution evaluation of heavy metals in soil of landfill site based on the potential ecological risk index proposed by Hakanson[J]. Environmental Monitoring and Forewarning, 5(4): 43-44. | |
[35] | 中国环境监测总站, 1990. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社: 334-346. |
China National Environmental Monitoring Centre, 1990. The element background values of Chinese soil[M]. Beijing: China Environmental Science Press: 334-346. | |
[36] | 中华人民共和国生态环境部, 2018. 土壤环境质量农用地土壤污染风险管控标准 (试行): GB 15618-2018[S]. 北京: 中国标准出版社. |
Ministry of Ecological and Environmental, PRC, 2018. Soil environmental quality, agricultural land, soil pollution risk management and control standards (on trial): GB 15618-2018[S]. Beijing: China Standards Press. | |
[37] | 朱光旭, 郭庆军, 杨俊兴, 等, 2013. 淋洗剂对多金属污染尾矿土壤的修复效应及技术研究[J]. 环境科学, 34(9): 3690-3696. |
ZHU G X, GUO Q J, YANG J X, et al., 2013. Research on the effect and technique of remediation for multi-metal contaminated tailing soils[J]. Environmental Science, 34(9): 3690-3696. |
[1] | DU Dandan, GAO Ruizhong, FANG Lijing, XIE Longmei. Spatial Variation of Soil Heavy Metals and Their Responses to Physicochemical Factors of Salt Lake Basin in Arid Area [J]. Ecology and Environment, 2023, 32(6): 1123-1132. |
[2] | ZHAO Liangxia, GAO Kun, HUANG Tingting, GAO Ye, JU Tangdan, JIANG Qiuyang, JIN Heng, XIONG Lei, TANG Zailin, GAO Canhong. The Cadmium Accumulation Characteristics of Maize Inbred Lines with High/Low Grain Cadmium Accumulation at Different Growth Stages [J]. Ecology and Environment, 2023, 32(4): 766-775. |
[3] | FENG Shuna, LÜ Jialong, HE Hailong. Effect of KI Leaching on the Hg (Ⅱ) Removal of Loess Soil and the Physicochemical Properties of the Soil [J]. Ecology and Environment, 2023, 32(4): 776-783. |
[4] | CHEN Minyi, ZHU Hanghai, SHE Weiduo, YIN Guangcai, HUANG Zuzhao, YANG Qiaoling. Health Risk Assessment and Source Apportionment of Soil Heavy Metals at A Legacy Shipyard Site in Pearl River Delta [J]. Ecology and Environment, 2023, 32(4): 794-804. |
[5] | YANG Yaodong, CHEN Yumei, TU Pengfei, ZENG Qingru. Phytoremediation Potential of Economic Crop Rotation Patterns for Cadmium-polluted Farmland [J]. Ecology and Environment, 2023, 32(3): 627-634. |
[6] | LIU Kanghan, ZHENG Liugen, ZHANG Liqun, DING Dan, SHAN Shifeng. Effect of Complex Plant Derived Activator on the Remediation of As Contaminated Soil by Pteris vittata [J]. Ecology and Environment, 2023, 32(3): 635-642. |
[7] | XIAO Jieyun, ZHOU Wei, SHI Peiqi. Hyperspectral Inversion of Soil Heavy Metals [J]. Ecology and Environment, 2023, 32(1): 175-182. |
[8] | HUA Li, CHENG Taozhi, LIANG Zhiyong. Remediation Effect of Petroleum-Contaminated Soil by Immobilized Mixed Bacteria in Northern Shaanxi Province of China [J]. Ecology and Environment, 2022, 31(8): 1610-1615. |
[9] | TAO Ling, HUANG Lei, ZHOU Yilei, LI Zhongxing, REN Jun. Influences of Biochar Prepared by Co-pyrolysis with Sludge and Attapulgite on Bioavailability and Environmental Risk of Heavy Metals in Mining Soil [J]. Ecology and Environment, 2022, 31(8): 1637-1646. |
[10] | FANG Xianbao, ZHANG Zhijun, LAI Yangqing, YE Mai, DIAO Zenghui. Remediation of Heavy Metals Cr and Cd in Soil by A Novel Sludge-derived Biochar [J]. Ecology and Environment, 2022, 31(8): 1647-1656. |
[11] | LUO Songying, LI Qiuxia, QIU Jinkun, DENG Suyan, LI Yifeng, CHEN Bishan. Speciation Characteristics, Migration and Transformation of Heavy Metals in Mangrove Soil-plant System in Nansan Island [J]. Ecology and Environment, 2022, 31(7): 1409-1416. |
[12] | PENG Hongli, TAN Haixia, WANG Ying, WEI Jianmei, FENG Yang. The Discrepancy of Heavy Metals Morphological Distribution in Soil and Its Associated Ecological Risk Evaluation under Different Planting Patterns [J]. Ecology and Environment, 2022, 31(6): 1235-1243. |
[13] | ZHU Li'an, ZHANG Huihua, CHENG Jiong, LI Ting, LIN ZI, LI Junjie. Potential Ecological Risk Pattern Analysis of Heavy Metals in Soil of Forestry Land in The Pearl River Delta [J]. Ecology and Environment, 2022, 31(6): 1253-1262. |
[14] | SHI Jianfei, JIN Zhengzhong, ZHOU Zhibin, WANG Xin. Evaluation of Heavy Metal Pollution in the Soil Around A Typical Tailing Reservoir in Irtysh River Basin [J]. Ecology and Environment, 2022, 31(5): 1015-1023. |
[15] | SU Yan, QUAN Yanhong, HUAN Ziyan, YAO Jia, SU Xiaojuan. Effect of phosphate-modified Biochar on Remediation of Pb- and Zn-polluted Farmlands Around A Pb/Zn Mine in Yunnan Province, China [J]. Ecology and Environment, 2022, 31(3): 593-602. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn