Ecology and Environment ›› 2022, Vol. 31 ›› Issue (10): 2089-2100.DOI: 10.16258/j.cnki.1674-5906.2022.10.017
• Reviews • Previous Articles
JIANG Jing1,2,*(), DENG Jingling2, SHENG Guangyao2
Received:
2022-05-20
Online:
2022-10-18
Published:
2022-12-09
Contact:
JIANG Jing
通讯作者:
姜晶
作者简介:
姜晶(1986年生),男,博士,讲师,研究方向为重金属污染修复研究。E-mail: jiangjing@usts.edu.cn
基金资助:
CLC Number:
JIANG Jing, DENG Jingling, SHENG Guangyao. A Review of Biochar Aging and Its Impact on the Adsorption of Heavy Metals[J]. Ecology and Environment, 2022, 31(10): 2089-2100.
姜晶, 邓精灵, 盛光遥. 生物炭老化及其对重金属吸附影响研究进展[J]. 生态环境学报, 2022, 31(10): 2089-2100.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2022.10.017
制备原材料 Sources | 老化方法 Aging methods | 目标污染 Target pollutants | 老化后生物炭理化性质变化 Changes in physicochemical properties | 重金属吸附量/生物有效性变化 Heavy metal adsorption/ bioavailability changes | 参考文献 References |
---|---|---|---|---|---|
小麦秸秆 Wheat straw | 光催化老化 | Cd | 比表面积增加了22.127 m2·g-1, C含量增加了25.23%, -COOH的相对吸收强度增强 | 吸附量增加了73 mg·g-1 | 2020 |
木屑 Sawdust | 冻融循环 干湿循环 | Cd | -OH峰强度分别增加了0.13和0.16, -C=O的峰强度增加了0.34和0.38; O/C比增加了0.12 | 最大吸附量分别增加了15.9%和14.6% | 2018 |
稻草 Rice straw | 冻融循环 干湿循环 | Cd | 生物炭pH值分别降低了2.5和2.9 | 镉生物有效性分别降低了54.6%和75.9% | 2020 |
苎麻渣 Rramie residue | 酸化氧化法 (HCl+H2O2) | Cd | 比表面积增加了38.193 mg·g-1; 平均孔径减小了5.16 nm; 羧基/内酯基和碱性官能团减少, 酚羟基增加; C-O降低了7.46% | 吸附量减少了50 mg·g-1 | 2021 |
稻草 Rice straw | 化学氧化 (HNO3/H2SO4) | Cd | -C=O和-COOH含量增加; O/C比增加 | 吸附量减小了20.09 mg·g-1 | 2015 |
小麦秸秆 Wheat straw | 热氧化与化学氧化相结合 (H2O2) | Cd | 灰分含量降低; 总碳含量增加, H/C比降低; 含氧官能团含量增加; 阳离子交换容量增加 | 最大吸附量减少了7% | 2020 |
花生秸秆 Peanut straw | 恒温培养 (25 ℃) | Cd | 表面负电荷增多; 含氧官能团含量增加; 阳离子交换容量从5.6 cmol·(ckg) -1增加到 9 cmol·(ckg)-1 | 吸附量从30 mmol·kg-1增加到67 mmol·kg-1 | 2013 |
油菜秸秆 Canola straw | 恒温培养 (25 ℃) | Cd | 比表面积增加; 阳离子交换容量从5.6 cmol·(ckg)-1增加到7.1 cmol·(ckg) -1 | 吸附量从19 mmol·kg-1增加到52 mmol·kg-1 | |
小麦秸秆 Wheat straw | 化学氧化 (60%HNO3/H2SO4) | Cd | 比表面积增加281%; C含量降低18.07%; O含量增加了1422%; 表面O/C比增加156% | 吸附量增加了21.2% | 2018 |
玉米秸秆 Maize stalk | 干湿循环 | Pb | 比表面积降低了14.04%; C-O含量增加了10.08%; C-C含量增加了17.35% | 吸附量减少了12.198 mg·g-1 | 2020 |
玉米秸秆 Maize stalk | 化学氧化 (15%H2O2) | Pb | 比表面积增加了17.24%; C-O含量增加了23.92%; C-C含量降低了18% | 吸附量增加了50.177 mg·g-1 | |
空心莲子草Alternanthera philoxeroides | 化学氧化 (HNO3/H2SO4) | Pb | N含量增加了3.26%; O含量和(O+N)/C比率和含氧官能团(羧基、羟基等)增加 | 吸附量分别降低了126.25 mg·g-1 | 2019 |
花生秸秆 Peanut straw | 恒温培养 (25 ℃) | Cu | 表面负电荷增多; 含氧官能团含量增加; 阳离子交换容量从5.6 cmol·kg-1增加到9 cmol·kg-1 | 吸附量从140 mmol·kg-1增加到191 mmol·kg-1 | 2013 |
油菜秸秆 Canola straw | 恒温培养 (25 ℃) | Cu | 比表面积增加; 阳离子交换容量从5.6 cmol·kg-1增加到7.1 cmol·ckg-1 | 吸附量从130 mmol·kg-1增加到210 mmol·kg-1 | |
花生秸秆 Peanut straw | 干湿循环 | Cu | 比表面积减小; 灰分含量增加6.57%; O/C和(O+N)/C比增加 | 吸附量减少了45.56% | 2017 |
棉花秸秆 Cotton straw | 干湿循环 | Cu | 比表面积增加; 灰分含量降低了25.31%; O/C和(O+N)/C比增加 | 吸附量增加了292% | |
稻壳 Rice husk | 黑暗恒温培养 (30±1) ℃ | Cu | 比表面积增加了25.8%; 阳离子交换容量减少; 含氧官能团增加; 外表面O/C比增加了4.564; 内表面O/C比增加了1.559 | 吸附量降低了31.60% | 2014 |
椰子壳 Coconut husk | 恒温培养 (25 ℃) | Cu | 阳离子交换容量增加; -C=O, -COOH 和-OH等官能团含量增加 | 铜的生物有效性降低了18.8% | 2020 |
竹子 Bamboo | 化学氧化 (20%H2O2) | Cu | 生物炭孔隙结构被破坏; C损失了33.44%; 比表面积降低了53.5% | 吸附量增加了58.8% | 2019 |
咖啡渣 Coffee grounds | 化学氧化 (15%H2O2) | Zn | 比表面积降低; 离子交换容量增加; 生物炭重量损失0.66% | 吸附量增加了16.53mg·g-1 | 2022 |
小麦秸秆 Wheat straw | 冻融循环 | Cd、Ni | pH值降低了0.19; O含量分别增加6.3%; C和N含量分别下降了6.0%和5.8%; 芳香性降低 | 镉的植物有效性分别降低了14.6%; 对镍的植物有效性无显著影响 | 2021 |
小麦秸秆 Wheat straw | 干湿循环 | Cd、Ni | O含量分别增加8.6%; C和N含量分别下降5.3%和1.7%; 比表面积显著增加;芳香性降低 | 镉的植物有效性降低了12.9%; 镍的植物有效性降低了17.0% |
Table 1 Effects of aging on physicochemical properties and heavy metal adsorption of biochar
制备原材料 Sources | 老化方法 Aging methods | 目标污染 Target pollutants | 老化后生物炭理化性质变化 Changes in physicochemical properties | 重金属吸附量/生物有效性变化 Heavy metal adsorption/ bioavailability changes | 参考文献 References |
---|---|---|---|---|---|
小麦秸秆 Wheat straw | 光催化老化 | Cd | 比表面积增加了22.127 m2·g-1, C含量增加了25.23%, -COOH的相对吸收强度增强 | 吸附量增加了73 mg·g-1 | 2020 |
木屑 Sawdust | 冻融循环 干湿循环 | Cd | -OH峰强度分别增加了0.13和0.16, -C=O的峰强度增加了0.34和0.38; O/C比增加了0.12 | 最大吸附量分别增加了15.9%和14.6% | 2018 |
稻草 Rice straw | 冻融循环 干湿循环 | Cd | 生物炭pH值分别降低了2.5和2.9 | 镉生物有效性分别降低了54.6%和75.9% | 2020 |
苎麻渣 Rramie residue | 酸化氧化法 (HCl+H2O2) | Cd | 比表面积增加了38.193 mg·g-1; 平均孔径减小了5.16 nm; 羧基/内酯基和碱性官能团减少, 酚羟基增加; C-O降低了7.46% | 吸附量减少了50 mg·g-1 | 2021 |
稻草 Rice straw | 化学氧化 (HNO3/H2SO4) | Cd | -C=O和-COOH含量增加; O/C比增加 | 吸附量减小了20.09 mg·g-1 | 2015 |
小麦秸秆 Wheat straw | 热氧化与化学氧化相结合 (H2O2) | Cd | 灰分含量降低; 总碳含量增加, H/C比降低; 含氧官能团含量增加; 阳离子交换容量增加 | 最大吸附量减少了7% | 2020 |
花生秸秆 Peanut straw | 恒温培养 (25 ℃) | Cd | 表面负电荷增多; 含氧官能团含量增加; 阳离子交换容量从5.6 cmol·(ckg) -1增加到 9 cmol·(ckg)-1 | 吸附量从30 mmol·kg-1增加到67 mmol·kg-1 | 2013 |
油菜秸秆 Canola straw | 恒温培养 (25 ℃) | Cd | 比表面积增加; 阳离子交换容量从5.6 cmol·(ckg)-1增加到7.1 cmol·(ckg) -1 | 吸附量从19 mmol·kg-1增加到52 mmol·kg-1 | |
小麦秸秆 Wheat straw | 化学氧化 (60%HNO3/H2SO4) | Cd | 比表面积增加281%; C含量降低18.07%; O含量增加了1422%; 表面O/C比增加156% | 吸附量增加了21.2% | 2018 |
玉米秸秆 Maize stalk | 干湿循环 | Pb | 比表面积降低了14.04%; C-O含量增加了10.08%; C-C含量增加了17.35% | 吸附量减少了12.198 mg·g-1 | 2020 |
玉米秸秆 Maize stalk | 化学氧化 (15%H2O2) | Pb | 比表面积增加了17.24%; C-O含量增加了23.92%; C-C含量降低了18% | 吸附量增加了50.177 mg·g-1 | |
空心莲子草Alternanthera philoxeroides | 化学氧化 (HNO3/H2SO4) | Pb | N含量增加了3.26%; O含量和(O+N)/C比率和含氧官能团(羧基、羟基等)增加 | 吸附量分别降低了126.25 mg·g-1 | 2019 |
花生秸秆 Peanut straw | 恒温培养 (25 ℃) | Cu | 表面负电荷增多; 含氧官能团含量增加; 阳离子交换容量从5.6 cmol·kg-1增加到9 cmol·kg-1 | 吸附量从140 mmol·kg-1增加到191 mmol·kg-1 | 2013 |
油菜秸秆 Canola straw | 恒温培养 (25 ℃) | Cu | 比表面积增加; 阳离子交换容量从5.6 cmol·kg-1增加到7.1 cmol·ckg-1 | 吸附量从130 mmol·kg-1增加到210 mmol·kg-1 | |
花生秸秆 Peanut straw | 干湿循环 | Cu | 比表面积减小; 灰分含量增加6.57%; O/C和(O+N)/C比增加 | 吸附量减少了45.56% | 2017 |
棉花秸秆 Cotton straw | 干湿循环 | Cu | 比表面积增加; 灰分含量降低了25.31%; O/C和(O+N)/C比增加 | 吸附量增加了292% | |
稻壳 Rice husk | 黑暗恒温培养 (30±1) ℃ | Cu | 比表面积增加了25.8%; 阳离子交换容量减少; 含氧官能团增加; 外表面O/C比增加了4.564; 内表面O/C比增加了1.559 | 吸附量降低了31.60% | 2014 |
椰子壳 Coconut husk | 恒温培养 (25 ℃) | Cu | 阳离子交换容量增加; -C=O, -COOH 和-OH等官能团含量增加 | 铜的生物有效性降低了18.8% | 2020 |
竹子 Bamboo | 化学氧化 (20%H2O2) | Cu | 生物炭孔隙结构被破坏; C损失了33.44%; 比表面积降低了53.5% | 吸附量增加了58.8% | 2019 |
咖啡渣 Coffee grounds | 化学氧化 (15%H2O2) | Zn | 比表面积降低; 离子交换容量增加; 生物炭重量损失0.66% | 吸附量增加了16.53mg·g-1 | 2022 |
小麦秸秆 Wheat straw | 冻融循环 | Cd、Ni | pH值降低了0.19; O含量分别增加6.3%; C和N含量分别下降了6.0%和5.8%; 芳香性降低 | 镉的植物有效性分别降低了14.6%; 对镍的植物有效性无显著影响 | 2021 |
小麦秸秆 Wheat straw | 干湿循环 | Cd、Ni | O含量分别增加8.6%; C和N含量分别下降5.3%和1.7%; 比表面积显著增加;芳香性降低 | 镉的植物有效性降低了12.9%; 镍的植物有效性降低了17.0% |
[1] |
BANDARA T, FRANKS A, XU J M, et al., 2021. Biochar aging alters the bioavailability of cadmium and microbial activity in acid contaminated soils[J]. Journal of Hazardous Materials, 420: 126666.
DOI URL |
[2] |
BEESLEY L, MORENO-JIMENEZ E, GOMEZ-EYLES J L, 2010. Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil[J]. Environmental pollution, 158(6): 2282-2287.
DOI PMID |
[3] |
BIAN R J, JOSEPH S, CUI L Q, et al., 2014. A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment[J]. Journal of Hazardous Materials, 272: 121-128.
DOI PMID |
[4] | CAO T, CHEN W F, YANG T X, et al., 2017. Surface characterization of aged biochar incubated in different types of soil[J]. BioResources, 12(3): 6366-6377. |
[5] |
CHEN D D, LIU W H, WANG Y X, et al., 2022. Effect of biochar aging on the adsorption and stabilization of Pb in soil[J]. Soils Sediments, 22(1): 56-66.
DOI URL |
[6] |
CHEN H M, PENG Y, TANG L Y, et al., 2022. Synergetic enhancement of Pb2+ and Zn2+ adsorption onto size-selective sludge biochar portions in multiple ion solution systems[J]. ACS Omega, 7(1): 496-503.
DOI URL |
[7] |
CHENG C H, LEHMANN J, ENGELHARD M H, 2008. Natural oxidation of black carbon in soils: Changes in molecular form and surface charge along a climosequence[J]. Geochimica et Cosmochimica Acta, 72(6): 1598-1610.
DOI URL |
[8] |
CHENG C H, LEHMANN J, THIES J E, et al., 2006. Oxidation of black carbon by biotic and abiotic processes[J]. Organic Geochemistry, 37(11): 1477-1488.
DOI URL |
[9] |
CHENG C H, LIN T P, LEHMANN J, et al., 2014. Sorption properties for black carbon (wood char) after long term exposure in soils[J]. Organic Geochemistry, 70: 53-61.
DOI URL |
[10] |
CUI H B, WANG Q Y, ZHANG X, et al., 2021. Aging reduces the bioavailability of copper and cadmium in soil immobilized by biochars with various concentrations of endogenous metals[J]. Science of The Total Environment, 797: 149136.
DOI URL |
[11] |
DENG Y Y, HUANG S, LAIRD D A, et al., 2019. Adsorption behavior and mechanisms of cadmium and nickel on rice straw biochars in single- and binary-metal systems[J]. Chemosphere, 218: 308-318.
DOI URL |
[12] |
DONG X L, LI G T, LIN Q M, et al., 2017. Quantity and quality changes of biochar aged for 5 years in soil under field conditions[J]. Catena, 159: 136-143.
DOI URL |
[13] |
DUAN P P, ZHANG X, ZHANG Q Q, et al., 2018. Field-aged biochar stimulated N2O production from greenhouse vegetable production soils by nitrification and denitrification[J]. Science of The Total Environment, 642(15): 1303-1310.
DOI URL |
[14] |
FAN Q Y, SUN J X, CHU L, et al., 2018. Effects of chemical oxidation on surface oxygen-containing functional groups and adsorption behavior of biochar[J]. Chemosphere, 207: 33-40.
DOI PMID |
[15] | GHAFFAR A, ABBAS G, 2016. Adsorption of phthalic acid esters (PAEs) on chemically aged biochars[J]. Green Processing and Synthesis, 5(4): 407-417. |
[16] |
GONZAGA M I S, MATIAS M I D A, ANDRADE K R, et al., 2020. Aged biochar changed copper availability and distribution among soil fractions and influenced corn seed germination in a copper-contaminated soil[J]. Chemosphere, 240: 124828.
DOI URL |
[17] |
GUO Y, TANG W, WU J G, et al., 2014. Mechanism of Cu(II) adsorption inhibition on biochar by its aging process[J]. Journal of Environmental Sciences, 26(10): 2123-2130.
DOI URL |
[18] |
HALE S, HANLEY K, LEHMANN J, et al., 2011. Effects of chemical, biological, and physical aging as well as soil addition on the sorption of pyrene to activated carbon and biochar[J]. Environmental Science & Technology, 45(24): 10445-10453.
DOI URL |
[19] |
HAMER U, MARSCHNER B, BRODOWSKI S, et al., 2004. Interactive priming of black carbon and glucose mineralization[J]. Organic Geochemistry, 35(7): 823-830.
DOI URL |
[20] |
HAO H, JING Y D, JU W L, et al., 2017. Different types of biochar: Effect of aging on the Cu(Ⅱ) adsorption behavior[J]. Desalination and Water Treatment, 95: 227-233.
DOI URL |
[21] |
HE E, YANG Y X, XU Z B, et al., 2019. Two years of aging influences the distribution and lability of metal(loid)s in a contaminated soil amended with different biochars[J]. Science of The Total Environment, 673: 245-253.
DOI URL |
[22] |
HE L, ZHONG H, LIU G X, et al., 2019. Remediation of heavy metal contaminated soils by biochar: Mechanisms, potential risks and applications in China[J]. Environmental Pollution, 252(Part A): 846-855.
DOI URL |
[23] |
HE Y, LIU C, TANG X Y, et al., 2019. Biochar impacts on sorption-desorption of oxytetracycline and florfenicol in an alkaline farmland soil as affected by field ageing[J]. Science of The Total Environment, 671: 928-936.
DOI URL |
[24] |
HILSCHER A, HEISTER K, SIEWERT C, et al., 2009. Mineralization and structural changes during the initial phase of microbial degradation of pyrogenic plant residues in soil[J]. Organic Geochemistry, 40(3): 332-342.
DOI URL |
[25] |
HUANG Z Q, HU L C, ZHOU Q, et al., 2018. Effect of aging on surface chemistry of rice husk-derived biochar[J]. Environmental Progress and Sustainable Energy, 37(1): 410-417.
DOI URL |
[26] |
IRFANV M, MUDASSIR M, KHAN M J, et al., 2021. Heavy metals immobilization and improvement in maize (Zea mays L.) growth amended with biochar and compost[J]. Scientific Reports, 11: 1-9.
DOI URL |
[27] |
JIANG T Y, JIANG J, XU R K, et al., 2012. Adsorption of Pb(Ⅱ) on variable charge soils amended with rice-straw derived biochar[J]. Chemosphere, 89(3): 249-256.
DOI URL |
[28] |
KE Y X, CUI S, FU Q, et al., 2022. Effects of pyrolysis temperature and aging treatment on the adsorption of Cd2+ and Zn2+ by coffee grounds biochar[J]. Chemosphere, 296: 134051.
DOI URL |
[29] |
KUMAR A, JOSEPH S, TSECHANSKY L, et al., 2018. Biochar aging in contaminated soil promotes Zn immobilization due to changes in biochar surface structural and chemical properties[J]. Science of The Total Environment, 626: 953-961.
DOI URL |
[30] |
KUZYAKOV Y, SUBBOTINA I, CHEN H Q, et al., 2009. Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling[J]. Soil Biology and Biochemistry, 41(2): 210-219.
DOI URL |
[31] |
KYPRITIDOU Z, El-BASSI L, JELLALI S, et al., 2022. Lead removal from aqueous solutions by olive mill wastes derived biochar: Batch experiments and geochemical modelling[J]. Journal of Environmental Management, 318: 115562.
DOI URL |
[32] |
LAWRINENKO M, LAIRD D A, JOHNSON R L, et al., 2016. Accelerated aging of biochars: Impact on anion exchange capacity[J]. Carbon, 103: 217-227.
DOI URL |
[33] |
LI H X, LU X Q, XU Y, et al., 2019. How close is artificial biochar aging to natural biochar aging in fields? A meta-analysis[J]. Geoderma, 352: 96-103.
DOI URL |
[34] |
LI H Y, YE X X, GENG Z G, et al., 2016. The influence of biochar type on long-term stabilization for Cd and Cu in contaminated paddy soils[J]. Journal of Hazardous Materials, 304: 40-48.
DOI PMID |
[35] |
LIAO W, ZHANG X, KE S J, et al., 2022. Effect of different biomass species and pyrolysis temperatures on heavy metal adsorption, stability and economy of biochar[J]. Industrial Crops and Products, 186: 115238.
DOI URL |
[36] |
LIN Q Y, LIN Z, MUHAMMAD R, et al., 2018. Assessing the potential of biochar and aged biochar to alleviate aluminum toxicity in an acid soil for achieving cabbage productivity[J]. Ecotoxicology and Environmental Safety, 161: 290-295.
DOI URL |
[37] |
LIU B L, TANG C Y, ZHAO Y, et al., 2022. Toxicological effect assessment of aged biochar on Escherichia coli[J]. Journal of Hazardous Materials, 436: 129242.
DOI URL |
[38] |
LIU L, YUAN M, WANG X, et al., 2021. Biochar aging: Properties, mechanisms, and environmental benefits for adsorption of metolachlor in soil[J]. Environmental Technology and Innovation, 24: 101841.
DOI URL |
[39] |
LIU Z L, DUGAN B, MASIELLO C A, et al., 2018. Effect of freeze-thaw cycling on grain size of biochar[J]. PLoS One, 13(1): e0191246.
DOI URL |
[40] |
MENG Z W, HUANG S, XU T, et al., 2020. Transport and transformation of Cd between biochar and soil under combined dry-wet and freeze-thaw aging[J]. Environmental Pollution, 263(Part B): 114449.
DOI URL |
[41] |
MIA S, DIJKSTRA F A, SINGH B, 2017. Aging induced changes in biochar’s functionality and adsorption behavior for phosphate and ammonium[J]. Environmental Science and Technology, 51(15): 8359-8367.
DOI URL |
[42] |
MIAO W, CHENG X Y, MENG J, et al., 2016. Aging of rice husk biochar along a freeze-thaw cycles[J]. MATEC Web of Conferences, 63: 04013.
DOI URL |
[43] |
MUKHERJEE A, ZIMMERMAN A R, HAMDAN R, et al., 2014. Physicochemical changes in pyrogenic organic matter (biochar) after 15 months of field aging[J]. Solid Earth, 5(2): 693-704.
DOI URL |
[44] |
MUKHERJEE S, THAKUR A K, GOSWAMI R, et al., 2021. Efficacy of agricultural waste derived biochar for arsenic removal: Tackling water quality in the Indo-Gangetic plain[J]. Journal of Environmental Management, 281: 111814.
DOI URL |
[45] |
NIE T H, YANG X, CHEN H B, et al., 2021. Effect of biochar aging and co-existence of diethyl phthalate on the mono-sorption of cadmium and zinc to biochar-treated soils[J]. Journal of Hazardous Materials, 408: 124850.
DOI URL |
[46] |
NIE T T, HAO P L, ZHAO Z D, et al., 2019. Effect of oxidation-induced aging on the adsorption and co-adsorption of tetracycline and Cu2+ onto biochar[J]. Science of The Total Environment, 673: 522-532.
DOI URL |
[47] |
PALANSOORIYA K N, LI J, DISSANAYAKE P D, et al., 2022. Prediction of soil heavy metal immobilization by biochar using machine learning[J]. Environmental Science and Technology, 56(7): 4187-4198.
DOI PMID |
[48] |
PUGA A P, ABREU C A, MELO L C A, et al., 2015. Biochar application to a contaminated soil reduces the availability and plant uptake of zinc, lead and cadmium[J]. Journal of Environmental Management, 159: 86-93.
DOI PMID |
[49] |
QI F J, KUPPUSAMY S, NAIDU R, et al., 2017. Pyrogenic carbon and its role in contaminant immobilization in soils[J]. Critical Reviews in Environmental Science and Technology, 47(10): 795-876.
DOI URL |
[50] |
QIAN L B, CHEN B L, 2014. Interactions of aluminum with biochars and oxidized biochars: Implications for the biochar aging process[J]. Journal of Agricultural and Food Chemistry, 62(2): 373-380.
DOI PMID |
[51] |
QIAN L B, CHEN M F, CHEN B L, 2015. Competitive adsorption of cadmium and aluminum onto fresh and oxidized biochars during aging processes[J]. Journal of Soils and Sediments, 15(5): 1130-1138.
DOI URL |
[52] |
QUAN G X, FAN Q Y, CUI L Q, et al., 2020. Simulated photocatalytic aging of biochar in soil ecosystem: Insight into organic carbon release, surface physicochemical properties and cadmium sorption[J]. Environmental Research, 183: 109241.
DOI URL |
[53] |
RAEISI S, MOTAGHIAN H, HOSSEINPUR A R, 2020. Effect of the soil biochar aging on the sorption and desorption of Pb2+ under competition of Zn2+ in a sandy calcareous soil[J]. Environmental Earth Sciences, 79(6): 148.
DOI URL |
[54] |
RATHNAYAKE D, REGO F, VAN-POUCKE R, et al., 2020. Chemical stabilization of Cd-contaminated soil using fresh and aged wheat straw biochar[J]. Environmental Science and Pollution Research, 28(8): 10155-10166.
DOI URL |
[55] |
REN X H, SUN H W, WANG F, et al., 2016. The changes in biochar properties and sorption capacities after being cultured with wheat for 3 months[J]. Chemosphere, 144: 2257-2263.
DOI PMID |
[56] |
REN X H, SUN H W, WANG F, et al., 2018. Effect of aging in field soil on biochar’s properties and its sorption capacity[J]. Environmental Pollution, 242(Part B): 1880-1886.
DOI URL |
[57] |
SOARES M B, CERRI C E P, DEMATTE J A M, et al., 2021. Biochar aging: Impact of pyrolysis temperature on sediment carbon pools and the availability of arsenic and lead[J]. Science of The Total Environment, 807(Part 3): 151001.
DOI URL |
[58] | SOHI S, LOPEZ-CAPEL E, KRULL E, et al., 2009. Biochar, climate change and soil: A review to guide future research[J]. Csiro Land and Water Science Report, 5(9): 17-31. |
[59] |
SU Y F, WEM Y J, YANG W J, et al., 2021. The mechanism transformation of ramie biochar’s cadmium adsorption by aging[J]. Bioresource Technology, 330: 124947.
DOI URL |
[60] |
TAN L S, MA Z H, YANG K Q, et al., 2020. Effect of three artificial aging techniques on physicochemical properties and Pb adsorption capacities of different biochars[J]. Science of The Total Environment, 699: 134223.
DOI URL |
[61] |
TAN X F, LIU Y G, ZENG G M, et al., 2015. Application of biochar for the removal of pollutants from aqueous solutions[J]. Chemosphere, 125: 70-85.
DOI PMID |
[62] |
TANG J C, ZHU W Y, KOOKANA R, et al., 2013. Characteristics of biochar and its application in remediation of contaminated soil[J]. Journal of Bioscience and Bioengineering, 116(6): 653-659.
DOI PMID |
[63] |
UCHIMIYA M, LIMA I M, KLASSON K T, et al., 2010. Immobilization of heavy metal ions (Cu-II, Cd-II, Ni-II, and Pb-II) by broiler litter-derived biochars in water and soil[J]. Journal of Agricultural and Food Chemistry, 58(9): 5538-5544.
DOI URL |
[64] |
WANG H, FENG M Y, ZHOU F S, et al., 2017. Effects of atmospheric ageing under different temperatures on surface properties of sludge-derived biochar and metal/metalloid stabilization[J]. Chemosphere, 184: 176-184.
DOI PMID |
[65] |
WANG H, ZHOU L, DAN Y T, et al., 2022. Impact of pyrolysis temperature and application amount of sewage sludge biochar on the speciation and bioavailability of Cd and Pb in paddy soil[J]. Water Air Soil Pollution, 233(6): 209.
DOI URL |
[66] |
WANG J, SHI L, ZHAI L L, et al., 2021. Analysis of the long-term effectiveness of biochar immobilization remediation on heavy metal contaminated soil and the potential environmental factors weakening the remediation effect: A review[J]. Ecotoxicology and Environmental Safety, 207: 111261.
DOI URL |
[67] |
WANG L W, O’CONNOR D, RINKLEBE J, et al., 2020. Biochar aging: Mechanisms, physicochemical changes, assessment, and implications for field applications[J]. Environmental Science and Technology, 54(23): 14797-14814.
DOI PMID |
[68] |
WANG L, WANG Y J, MA F, et al., 2019. Mechanisms and reutilization of modified biochar used for removal of heavy metals from wastewater: A review[J]. Science of The Total Environment, 668: 1298-1309.
DOI URL |
[69] |
WANG X, JING Y D, CAO Y Q et al., 2019. Effect of chemical aging of alternanthera philoxeroides-derived biochar on the adsorption of Pb(Ⅱ)[J]. Water Science and Technology, 80(2): 329-338.
DOI URL |
[70] |
WANG Y, ZHANG W, SHANG J Y, et al., 2019. Chemical aging changed aggregation kinetics and transport of biochar colloids[J]. Environmental Science and Technology, 53(14): 8136-8146.
DOI PMID |
[71] |
WANG Z, GENG C, BIAN Y, et al., 2022. Effect of oxidative aging of biochar on relative distribution of competitive adsorption mechanism of Cd2+ and Pb2+[J]. Scientific Reports, 12: 11308.
DOI URL |
[72] |
XIANG Y J, XU Z Y, WEI Y Y, et al., 2019. Carbon-based materials as adsorbent for antibiotics removal: Mechanisms and influencing factors[J]. Journal of Environmental Management, 237: 128-138.
DOI PMID |
[73] |
XU R K, ZHAO A Z, 2013. Effect of biochars on adsorption of Cu(II), Pb(II) and Cd(II) by three variable charge soils from southern China[J]. Environmental Science and Pollution Research, 20(12): 8491-8501.
DOI URL |
[74] |
XU Z B, XU X Y, TSANG D C W, et al., 2018. Contrasting impacts of pre- and post- application aging of biochar on the immobilization of Cd in contaminated soils[J]. Environmental Pollution, 242(Part B): 1362-1370.
DOI URL |
[75] |
XUE C, ZHU L, LEI S C, et al., 2020. Lead competition alters the zinc adsorption mechanism on animal-derived biochar[J]. Science of The Total Environment, 713: 136395.
DOI URL |
[76] |
YADAV V, JAIN S, MISHRA P, et al., 2019. Amelioration in nutrient mineralization and microbial activities of sandy loam soil by short term field aged biochar[J]. Applied Soil Ecology, 138: 144-155.
DOI URL |
[77] |
YANG K, WANG X L, CHENG H F, 2022. Enhanced immobilization of cadmium and lead adsorbed on crop straw biochars by simulated aging processes[J]. Environmental Pollution, 302: 119064.
DOI URL |
[78] |
YANG K, WANG X L, CHENG H F, et al., 2021. Effect of aging on stabilization of Cd and Ni by biochars and enzyme activities in a historically contaminated alkaline agricultural soil simulated with wet-dry and freeze-thaw cycling[J]. Environmental Pollution, 268(Part A): 115846.
DOI URL |
[79] |
YAO F X, ARBESTAIN M C, VRIGEL S, et al., 2010. Simulated geochemical weathering of a mineral ash-rich biochar in a modified Soxhlet reactor[J]. Chemosphere, 80(7): 724-732.
DOI PMID |
[80] |
YUAN C P, GAO B L, PENG Y T, et al., 2021. A meta-analysis of heavy metal bioavailability response to biochar aging: Importance of soil and biochar properties[J]. Science of The Total Environment, 756: 144058.
DOI URL |
[81] |
ZHANG H H, LIN K D, WANG H L, et al., 2010. Effect of pinus radiata derived biochars on soil sorption and desorption of phenanthrene[J]. Environmental Pollution, 158(9): 2821-2825.
DOI PMID |
[82] |
ZHANG K K, SUN P, KHAN A, et al., 2021. Photochemistry of biochar during ageing process: Reactive oxygen species generation and benzoic acid degradation[J]. Science of the Total Environment, 765: 144630.
DOI URL |
[83] |
ZHANG S Q, YANG X, JU M T, et al., 2019. Mercury adsorption to aged biochar and its management in China[J]. Environmental Science and Pollution Research, 26(5): 4867-4877.
DOI |
[84] |
ZHAO R D, COLES N, KONG Z, et al., 2015. Effects of aged and fresh biochars on soil acidity under different incubation conditions[J]. Soil and Tillage Research, 146(Part B): 133-138.
DOI URL |
[85] |
ZIMMERMAN, ANDREW R, 2010. Abiotic and microbial oxidation of laboratory-produced black carbon (biochar)[J]. Environmental Science and Technology, 44(4): 1295-1301.
DOI PMID |
[86] | 陈昱, 梁媛, 郑章琪, 等, 2016. 浮萍生物炭的老化作用对其性质及对Cd(Ⅱ)吸附的影响[J]. 环境工程, 34(10): 60-64. |
CHEN Y, LIANG Y, ZHENG Z Q, et al., 2016. Influence of biochar aging on its properties and Cd(II) adsorption[J]. Environmental Engineering, 34(10): 60-64. | |
[87] | 程文远, 李法云, 吕建华, 等, 2022. 碱改性向日葵秸秆生物炭对多环芳烃菲吸附特性研究[J]. 生态环境学报, 31(4): 824-834. |
CHENG W Y, LI F Y, LÜ J H, et al., 2022. Sorption characteristics of polycyclic aromatic hydrocarbons phenanthrene on sunflower straw biochar modified with alkali[J]. Ecology and Environmental Sciences, 31(4): 824-834. | |
[88] | 邓晓, 武春媛, 杨桂生, 等, 2022. 椰壳生物炭对海南滨海土壤的改良效果[J]. 生态环境学报, 31(4): 723-731. |
DENG X, WU C Y, YANG G S, et al., 2022. Improvement effect of coconut-shell biochar on coastal soil in Hainan[J]. Ecology and Environmental Sciences, 31(4): 723-731. | |
[89] | 何玉垒, 宋宁宁, 林大松, 等, 2021. 氧化老化过程对生物炭吸附镉的影响及机制[J]. 农业环境科学学报, 40(9): 1877-1887. |
HE Y L, SONG N N, LIN D S, et al., 2021. Oxidative aging process of biochar and its adsorption mechanism for cadmium[J]. Journal of Agro-Environment Science, 40(9): 1877-1887. | |
[90] | 黄晓雅, 李莲芳, 朱昌雄, 2022. 生物炭老化对土壤重金属的固定效应研究进展[J]. 农业资源与环境学报, 39(1): 157-164. |
HUANG X Y, LI L F, ZHU C X, 2022. Research progress on the fixation effect of biochar aging on heavy metals in soil[J]. Journal of Agricultural Resources and Environment, 39(1): 157-164. | |
[91] | 简敏菲, 高凯芳, 余厚平, 等, 2015. 不同温度生物炭酸化前后的表面特性及镉溶液吸附能力比较[J]. 生态环境学报, 24(8): 1375-1380. |
JIAN M F, GAO K F, YU H P, et al., 2015. Comparison of surface characteristics and cadmium solution adsorption capacity of un-acidified or acidified bio-chars prepared from rice straw under different temperatures[J]. Ecology and Environmental Sciences, 24(8): 1375-1380. | |
[92] | 林庆毅, 张梦阳, 张林, 等, 2018. 老化生物炭对红壤铝形态影响的潜在机制[J]. 生态环境学报, 27(3): 491-497. |
LIN Q Y, ZHANG M Y, ZHANG L, et al., 2018. The potential mechanism of the effect of aging biochar on the aluminum morphology in red soil[J]. Ecology and Environmental Sciences, 27(3): 491-497. | |
[93] | 刘文慧, 王昱璇, 陈丹丹, 等, 2021. 老化作用对生物炭理化特性的影响[J]. 工程热物理学报, 42(6): 1575-1582. |
LIU W H, WANG Y X, CHENG D D, et al., 2021. Effect of aging on physicochemical properties of biochars[J]. Journal of Engineering Thermophysics, 42(6): 1575-1582. | |
[94] | 梅闯, 蔡昆争, 黎紫珊, 等, 2022. 稻秆生物炭对稻田土壤Cd形态转化和微生物群落的影响[J]. 生态环境学报, 31(2): 380-390. |
MEI C, CAI K Z, LI Z S, et al., 2022. Effects of rice-straw biochar on the transformation of cadmium fractions and microbial community in paddy soils[J]. Ecology and Environmental Sciences, 31(2): 380-390. | |
[95] | 蒲生彦, 上官李想, 刘世宾, 等, 2019. 生物炭及其复合材料在土壤污染修复中的应用研究进展[J]. 生态环境学报, 28(3): 629-635. |
PU S Y, SHANGGUAN L X, LIU S B, et al., 2019. A Review of the application of biochar and its composites in soil remediation[J]. Ecology and Environmental Sciences, 28(3): 629-635. | |
[96] | 秦坤, 王志康, 王章鸿, 等, 2022. 木质素-聚乙烯共热解生物炭对Cd(II)的吸附性能[J]. 生态环境学报, 31(2): 344-353. |
QIN K, WANG Z K, WANG Z H, et al., 2022. Cd(II) adsorption capability of the biochar derived from co-pyrolysis of lignin and polyethylene[J]. Ecology and Environmental Sciences, 31(2): 344-353. | |
[97] | 汪艳如, 侯杰发, 郭建华, 等, 2017. 冻融循环对牦牛粪生物炭吸附氨氮的影响[J]. 农业环境科学学报, 36(3): 566-573. |
WANG Y R, HOU J F, GUO J H, et al., 2017. Effects of freeze-thaw cycles on ammonium-nitrogen adsorption of yak dung biochar[J]. Journal of Agro-Environment Science, 36(3): 566-573. | |
[98] | 王朝旭, 陈绍荣, 张峰, 等, 2018. 老化玉米秸秆生物炭对碱性农田土壤氨氧化作用的影响[J]. 生态环境学报, 27(1): 31-39. |
WANG Z X, CHENG S R, ZHANG F, et al., 2018. Effects of aged maize straw-derived biochars on ammonia oxidation in an alkaline farmland soil[J]. Ecology and Environmental Sciences, 27(1): 31-39. | |
[99] | 谢言兰, 张润花, 黄兴学, 等, 2022. 生物炭田间老化后理化性质的变化[J]. 湖南农业科学, 437(2): 106-110. |
XIE Y L, ZHANG R H, HUANG X Y, et al., 2022. Physicochemical properties changes of field-aged biochar[J]. Hunan Agricultural Sciences, 437(2): 106-110. | |
[100] | 张苏明, 张建强, 周凯, 等, 2021. 铁基改性椰壳生物炭对砷的吸附效果及机制研究[J]. 生态环境学报, 30(7): 1503-1512. |
ZHANG S M, ZHANG J Q, ZHOU K, et al., 2021. Adsorption effect and mechanism of iron-based modified coconut shell biochar to arsenic[J]. Ecology and Environment, 30(7): 1503-1512. | |
[101] | 赵超凡, 周丹丹, 孙建财, 等, 2022. 生物炭中可溶性组分对其吸附镉的影响[J]. 生态环境学报, 31(4): 814-823. |
ZHAO C F, ZHOU D D, SUN J C, et al., 2022. The effect of soluble components on the adsorption of cadmium on biochar[J]. Ecology and Environmental Sciences, 31(4): 814-823. | |
[102] | 周丹丹, 王薇, 张军, 等, 2019. 生物炭中溶解性有机质对污染物环境行为的影响[J]. 生态环境学报, 28(7): 1492-1498. |
ZHOU D D, WANG W, ZHANG J, et al., 2019. Effect of biochar-derived dissolved organic matter on environmental behavior of pollutants[J]. Ecology and Environmental Sciences, 28(7): 1492-1498. |
[1] | DU Dandan, GAO Ruizhong, FANG Lijing, XIE Longmei. Spatial Variation of Soil Heavy Metals and Their Responses to Physicochemical Factors of Salt Lake Basin in Arid Area [J]. Ecology and Environment, 2023, 32(6): 1123-1132. |
[2] | ZHAO Weibin, TANG Li, WANG Song, LIU Lingling, WANG Shufeng, XIAO Jiang, CHEN Guangcai. Improvement Effect of Two Biochars on Coastal Saline-Alkaline Soil [J]. Ecology and Environment, 2023, 32(4): 678-686. |
[3] | FENG Shuna, LÜ Jialong, HE Hailong. Effect of KI Leaching on the Hg (Ⅱ) Removal of Loess Soil and the Physicochemical Properties of the Soil [J]. Ecology and Environment, 2023, 32(4): 776-783. |
[4] | CHEN Minyi, ZHU Hanghai, SHE Weiduo, YIN Guangcai, HUANG Zuzhao, YANG Qiaoling. Health Risk Assessment and Source Apportionment of Soil Heavy Metals at A Legacy Shipyard Site in Pearl River Delta [J]. Ecology and Environment, 2023, 32(4): 794-804. |
[5] | XIAO Jieyun, ZHOU Wei, SHI Peiqi. Hyperspectral Inversion of Soil Heavy Metals [J]. Ecology and Environment, 2023, 32(1): 175-182. |
[6] | WANG Jie, SHAN Yan, MA Lan, SONG Yanjing, WANG Xiangyu. Effects of Straw and Biochar Synergistic Returning on the Improvement of Salt-affected Soil in the Yellow River Delta [J]. Ecology and Environment, 2023, 32(1): 90-98. |
[7] | YOU Hongjian, ZHANG Wenwen, LAN Zhengfang, MA Lan, ZHANG Baodi, MU Xiaokun, LI Wenhui, CAO Yune. Effects of Earthworm in-situ Composting and Biochar on Cucumber Root-knot Nematodes and Rhizosphere Microorganisms [J]. Ecology and Environment, 2023, 32(1): 99-109. |
[8] | LI Xiaohui, AI Xianbin, LI Liang, WANG Xiyang, XIN Zaijun, SUN Xiaoyan. Study on Passivation Effects of New Modified Rice Husk Biochar Materials on Cadmium Contaminated Soil [J]. Ecology and Environment, 2022, 31(9): 1901-1908. |
[9] | RUAN Huihua, XU Jianhui, ZHANG Feifei. Spatiotemporal Changes of Vegetation and Land Surface Temperature during 2001 and 2020 in the Guangdong-Hong Kong-Macao Greater Bay Area of China [J]. Ecology and Environment, 2022, 31(8): 1510-1520. |
[10] | WANG Lixiao, LIU Jinxian, CHAI Baofeng. Response of Soil Bacterial Community and Nitrogen Cycle during the Natural Recovery of Abandoned Farmland in Subalpine of the North China [J]. Ecology and Environment, 2022, 31(8): 1537-1546. |
[11] | TAO Ling, HUANG Lei, ZHOU Yilei, LI Zhongxing, REN Jun. Influences of Biochar Prepared by Co-pyrolysis with Sludge and Attapulgite on Bioavailability and Environmental Risk of Heavy Metals in Mining Soil [J]. Ecology and Environment, 2022, 31(8): 1637-1646. |
[12] | FANG Xianbao, ZHANG Zhijun, LAI Yangqing, YE Mai, DIAO Zenghui. Remediation of Heavy Metals Cr and Cd in Soil by A Novel Sludge-derived Biochar [J]. Ecology and Environment, 2022, 31(8): 1647-1656. |
[13] | LUO Songying, LI Qiuxia, QIU Jinkun, DENG Suyan, LI Yifeng, CHEN Bishan. Speciation Characteristics, Migration and Transformation of Heavy Metals in Mangrove Soil-plant System in Nansan Island [J]. Ecology and Environment, 2022, 31(7): 1409-1416. |
[14] | QIAN Lianwen, YU Tiantian, LIANG Xujun, WANG Yixiang, CHEN Yongshan. Stability of Biochar after Application for 5 Years in the Amendment of Acidified Tea Garden Soil [J]. Ecology and Environment, 2022, 31(7): 1442-1447. |
[15] | PENG Hongli, TAN Haixia, WANG Ying, WEI Jianmei, FENG Yang. The Discrepancy of Heavy Metals Morphological Distribution in Soil and Its Associated Ecological Risk Evaluation under Different Planting Patterns [J]. Ecology and Environment, 2022, 31(6): 1235-1243. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn