Ecology and Environment ›› 2021, Vol. 30 ›› Issue (6): 1249-1259.DOI: 10.16258/j.cnki.1674-5906.2021.06.016
• Research Articles • Previous Articles Next Articles
CAI Yang1,2(), LI Wei1,2,*, ZUO Xueyan1,2, CUI Lijuan1,2, LEI Yinru1,2, ZHAO Xinsheng1,2, ZHAI Xiajie1,2, LI Jing1,2, PAN Xu1,2
Received:
2020-11-24
Online:
2021-06-18
Published:
2021-09-10
Contact:
LI Wei
蔡杨1,2(), 李伟1,2,*, 左雪燕1,2, 崔丽娟1,2, 雷茵茹1,2, 赵欣胜1,2, 翟夏杰1,2, 李晶1,2, 潘旭1,2
通讯作者:
李伟
作者简介:
蔡杨(1994年生),女,硕士研究生,主要从事湿地生态恢复研究。E-mail: caiy9160@163.com
基金资助:
CLC Number:
CAI Yang, LI Wei, ZUO Xueyan, CUI Lijuan, LEI Yinru, ZHAO Xinsheng, ZHAI Xiajie, LI Jing, PAN Xu. Distribution Characteristics and Influencing Factors of PAHs in Yancheng Coastal Wetland Soil[J]. Ecology and Environment, 2021, 30(6): 1249-1259.
蔡杨, 李伟, 左雪燕, 崔丽娟, 雷茵茹, 赵欣胜, 翟夏杰, 李晶, 潘旭. 盐城滨海湿地土壤多环芳烃分布特征及影响因素[J]. 生态环境学报, 2021, 30(6): 1249-1259.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2021.06.016
单体种类 Type | 缩写 Abbreviation | 环数 Ring | 分子式 Molecular formula | 结构式 Structural formula | 分子质量 Molecular weight | 致癌性 Carcinogenicity |
---|---|---|---|---|---|---|
萘 | Nap | 2 | C10H8 | ![]() | 128 | |
苊烯 | Acy | 3 | C12H8 | ![]() | 152 | |
苊 | Ace | 3 | C12H10 | ![]() | 154 | |
芴 | Flu | 3 | C13H10 | ![]() | 166 | |
蒽 | Ant | 3 | C14H10 | ![]() | 178 | |
菲 | Phe | 3 | C14H10 | ![]() | 178 | |
荧蒽 | Flt | 4 | C16H10 | ![]() | 202 | |
芘 | Pyr | 4 | C16H10 | ![]() | 202 | |
苯并[a]蒽 | BaA | 4 | C18H12 | ![]() | 228 | √ |
䓛 | Chr | 4 | C18H12 | ![]() | 228 | √ |
苯并[b]荧蒽 | BbF | 5 | C20H12 | ![]() | 252 | √ |
苯并[k]荧蒽 | BkF | 5 | C20H12 | ![]() | 252 | √ |
苯并[a]芘 | BaP | 5 | C20H12 | ![]() | 252 | √ |
二苯并[a, h]蒽 | DahA | 5 | C22H14 | ![]() | 278 | √ |
茚并[1, 2, 3-cd]芘 | IcdP | 6 | C22H12 | ![]() | 276 | √ |
苯并[g, h, i]苝 | BghiP | 6 | C22H12 | ![]() | 276 |
Table 1 Table 1 16 priority PAHs listed in EPA
单体种类 Type | 缩写 Abbreviation | 环数 Ring | 分子式 Molecular formula | 结构式 Structural formula | 分子质量 Molecular weight | 致癌性 Carcinogenicity |
---|---|---|---|---|---|---|
萘 | Nap | 2 | C10H8 | ![]() | 128 | |
苊烯 | Acy | 3 | C12H8 | ![]() | 152 | |
苊 | Ace | 3 | C12H10 | ![]() | 154 | |
芴 | Flu | 3 | C13H10 | ![]() | 166 | |
蒽 | Ant | 3 | C14H10 | ![]() | 178 | |
菲 | Phe | 3 | C14H10 | ![]() | 178 | |
荧蒽 | Flt | 4 | C16H10 | ![]() | 202 | |
芘 | Pyr | 4 | C16H10 | ![]() | 202 | |
苯并[a]蒽 | BaA | 4 | C18H12 | ![]() | 228 | √ |
䓛 | Chr | 4 | C18H12 | ![]() | 228 | √ |
苯并[b]荧蒽 | BbF | 5 | C20H12 | ![]() | 252 | √ |
苯并[k]荧蒽 | BkF | 5 | C20H12 | ![]() | 252 | √ |
苯并[a]芘 | BaP | 5 | C20H12 | ![]() | 252 | √ |
二苯并[a, h]蒽 | DahA | 5 | C22H14 | ![]() | 278 | √ |
茚并[1, 2, 3-cd]芘 | IcdP | 6 | C22H12 | ![]() | 276 | √ |
苯并[g, h, i]苝 | BghiP | 6 | C22H12 | ![]() | 276 |
采样点 Sample sites | 植被 Vegetation | 植被覆盖度 Coverage/% | 土壤类型 Soil type |
---|---|---|---|
S1 | 盐地碱蓬Suaeda salsa | 23 | 砂土Sandy soil |
S2 | 互花米草Spartina alterniflora | 84 | 砂土Sandy soil |
S3 | 海三稜藨草Scirpus×mariqueter | 43 | 砂土Sandy soil |
S4 | 盐地碱蓬Suaeda salsa | 27 | 砂土Sandy soil |
S5 | 盐地碱蓬Suaeda salsa | 33 | 砂土Sandy soil |
S6 | 互花米草Spartina alterniflora | 76 | 砂土Sandy soil |
S7 | 海三稜藨草Scirpus×mariqueter | 39 | 砂土Sandy soil |
S8 | 白茅Imperata cylindrica | 66 | 砂土Sandy soil |
S9 | 海三稜藨草Scirpus×mariqueter | 36 | 砂土Sandy soil |
S10 | 海三稜藨草Scirpus×mariqueter | 43 | 砂土Sandy soil |
S11 | 海三稜藨草Scirpus×mariqueter | 30 | 砂土Sandy soil |
S12 | 海三稜藨草Scirpus×mariqueter | 37 | 砂土Sandy soil |
S13 | 白茅Imperata cylindrica | 58 | 砂土Sandy soil |
S14 | 白茅Imperata cylindrica | 54 | 砂土Sandy soil |
S15 | 盐地碱蓬Suaeda salsa | 21 | 砂土Sandy soil |
S16 | 互花米草Spartina alterniflora | 89 | 砂土Sandy soil |
S17 | 白茅Imperata cylindrica | 62 | 砂土Sandy soil |
S18 | 互花米草Spartina alterniflora | 83 | 砂土Sandy soil |
S19 | 白茅Imperata cylindrica | 68 | 砂土Sandy soil |
S20 | 盐地碱蓬(Suaeda salsa | 25 | 砂土Sandy soil |
S21 | 互花米草Spartina alterniflora | 78 | 粘土Clay loam |
Table 2 Basic situation of vegetation and soil in sample sites
采样点 Sample sites | 植被 Vegetation | 植被覆盖度 Coverage/% | 土壤类型 Soil type |
---|---|---|---|
S1 | 盐地碱蓬Suaeda salsa | 23 | 砂土Sandy soil |
S2 | 互花米草Spartina alterniflora | 84 | 砂土Sandy soil |
S3 | 海三稜藨草Scirpus×mariqueter | 43 | 砂土Sandy soil |
S4 | 盐地碱蓬Suaeda salsa | 27 | 砂土Sandy soil |
S5 | 盐地碱蓬Suaeda salsa | 33 | 砂土Sandy soil |
S6 | 互花米草Spartina alterniflora | 76 | 砂土Sandy soil |
S7 | 海三稜藨草Scirpus×mariqueter | 39 | 砂土Sandy soil |
S8 | 白茅Imperata cylindrica | 66 | 砂土Sandy soil |
S9 | 海三稜藨草Scirpus×mariqueter | 36 | 砂土Sandy soil |
S10 | 海三稜藨草Scirpus×mariqueter | 43 | 砂土Sandy soil |
S11 | 海三稜藨草Scirpus×mariqueter | 30 | 砂土Sandy soil |
S12 | 海三稜藨草Scirpus×mariqueter | 37 | 砂土Sandy soil |
S13 | 白茅Imperata cylindrica | 58 | 砂土Sandy soil |
S14 | 白茅Imperata cylindrica | 54 | 砂土Sandy soil |
S15 | 盐地碱蓬Suaeda salsa | 21 | 砂土Sandy soil |
S16 | 互花米草Spartina alterniflora | 89 | 砂土Sandy soil |
S17 | 白茅Imperata cylindrica | 62 | 砂土Sandy soil |
S18 | 互花米草Spartina alterniflora | 83 | 砂土Sandy soil |
S19 | 白茅Imperata cylindrica | 68 | 砂土Sandy soil |
S20 | 盐地碱蓬(Suaeda salsa | 25 | 砂土Sandy soil |
S21 | 互花米草Spartina alterniflora | 78 | 粘土Clay loam |
单体种类 Type | 海三稜藨草 Scirpus× mariqueter | 互花米草 Spartina alterniflora | 盐地碱蓬 Suaeda salsa | 白茅 Imperata cylindrica |
---|---|---|---|---|
Nap | 4.98±1.13B 2) | 9.89±4.72A | 8.58±1.43A | 6.34±2.41AB |
Acy | 7.75±2.16A | 10.2±9.08A | 11.6±4.64A | 6.54±1.35A |
Ace | 9.15±6.75A | 16.4±9.93A | 8.20±3.47A | 7.61±3.67A |
Flu | 9.49±3.00A | 17.3±6.45A | 11.2±2.36A | 11.0±5.67A |
Ant | 13.9±3.33A | 19.5±5.90A | 17.5±6.07A | 14.4±5.02A |
Phe | 16.0±12.4A | 26.3±6.27A | 26.6±17.8A | 32.3±15.6A |
Flt | 12.6±6.51B | 42.1±32.6A | 17.5±8.97B | 15.6±3.65B |
Pyr | 32.0±17.9A | 77.7±84.3A | 127±119A | 23.6±7.08A |
BaA | 6.08±0.796A | 19.4±13.9A | 50.1±54.3A | 10.3±5.81A |
Chr | 6.65±1.75A | 12.4±3.81A | 9.26±5.67A | 8.56±5.00A |
BbF | 9.73±5.05A | 9.14±6.34A | 9.16±4.54A | 5.18±0.953A |
BkF | 30.1±11.7B | 171±90.3A | 122±102AB | 181±92.6A |
BaP | 17.0±11.0A | 19.5±9.34A | 12.6±3.47A | 22.2±6.86A |
DahA | 26.3±18.6B | 103±78.7A | 26.4±10.6B | 77.2±45.5AB |
IcdP | 37.1±25.9A | 72.0±25.9A | 58.9±40.7A | 46.4±40.9A |
BghiP | 28.6±7.86A | 29.8±7.88A | 27.2±5.01A | 24.9±8.33A |
∑16PAHs | 267±21.3C | 655±178A | 544±57.3AB | 493±81.1B |
Table 3 PAHs concentration in soil under different vegetation cover
单体种类 Type | 海三稜藨草 Scirpus× mariqueter | 互花米草 Spartina alterniflora | 盐地碱蓬 Suaeda salsa | 白茅 Imperata cylindrica |
---|---|---|---|---|
Nap | 4.98±1.13B 2) | 9.89±4.72A | 8.58±1.43A | 6.34±2.41AB |
Acy | 7.75±2.16A | 10.2±9.08A | 11.6±4.64A | 6.54±1.35A |
Ace | 9.15±6.75A | 16.4±9.93A | 8.20±3.47A | 7.61±3.67A |
Flu | 9.49±3.00A | 17.3±6.45A | 11.2±2.36A | 11.0±5.67A |
Ant | 13.9±3.33A | 19.5±5.90A | 17.5±6.07A | 14.4±5.02A |
Phe | 16.0±12.4A | 26.3±6.27A | 26.6±17.8A | 32.3±15.6A |
Flt | 12.6±6.51B | 42.1±32.6A | 17.5±8.97B | 15.6±3.65B |
Pyr | 32.0±17.9A | 77.7±84.3A | 127±119A | 23.6±7.08A |
BaA | 6.08±0.796A | 19.4±13.9A | 50.1±54.3A | 10.3±5.81A |
Chr | 6.65±1.75A | 12.4±3.81A | 9.26±5.67A | 8.56±5.00A |
BbF | 9.73±5.05A | 9.14±6.34A | 9.16±4.54A | 5.18±0.953A |
BkF | 30.1±11.7B | 171±90.3A | 122±102AB | 181±92.6A |
BaP | 17.0±11.0A | 19.5±9.34A | 12.6±3.47A | 22.2±6.86A |
DahA | 26.3±18.6B | 103±78.7A | 26.4±10.6B | 77.2±45.5AB |
IcdP | 37.1±25.9A | 72.0±25.9A | 58.9±40.7A | 46.4±40.9A |
BghiP | 28.6±7.86A | 29.8±7.88A | 27.2±5.01A | 24.9±8.33A |
∑16PAHs | 267±21.3C | 655±178A | 544±57.3AB | 493±81.1B |
特征比值 Characteristic ratio | 热解源 Combustion | 石油源 Petroleum | |
---|---|---|---|
石油燃烧 Petroleum combustion | 生物质、煤燃烧 Biomass & coal combustion | ||
Ant/(Ant+Phe) | >0.1 | <0.1 | |
Flt/(Flt+Pyr) | >0.4 | <0.4 | |
BaA/(BaA+Chr) | 0.2‒0.35 | >0.35 | <0.2 |
IcdP/(IcdP+BghiP) | 0.2‒0.5 | >0.5 | <0.2 |
Table 4 Isomer ratios and corresponding sources of PAHs
特征比值 Characteristic ratio | 热解源 Combustion | 石油源 Petroleum | |
---|---|---|---|
石油燃烧 Petroleum combustion | 生物质、煤燃烧 Biomass & coal combustion | ||
Ant/(Ant+Phe) | >0.1 | <0.1 | |
Flt/(Flt+Pyr) | >0.4 | <0.4 | |
BaA/(BaA+Chr) | 0.2‒0.35 | >0.35 | <0.2 |
IcdP/(IcdP+BghiP) | 0.2‒0.5 | >0.5 | <0.2 |
单体种类 Type | PC1 | PC2 | PC3 |
---|---|---|---|
Nap | 0.381 | -0.0624 | 0.205 |
Acy | 0.327 | -0.0522 | -0.245 |
Ace | 0.310 | -0.0382 | 0.202 |
Flu | 0.373 | 0.119 | 0.173 |
Ant | 0.284 | 0.239 | 0.0480 |
Phe | 0.0640 | 0.312 | -0.289 |
Flt | 0.373 | -0.0183 | -0.0182 |
Pyr | 0.202 | -0.423 | 0.198 |
BaA | 0.100 | -0.397 | 0.252 |
Chr | 0.268 | 0.301 | -0.0799 |
BbF | 0.216 | -0.231 | -0.352 |
BkF | 0.0425 | 0.361 | 0.250 |
BaP | -0.0224 | 0.307 | 0.246 |
DahA | 0.153 | 0.191 | 0.352 |
IcdP | 0.235 | 0.139 | -0.498 |
BghiP | 0.196 | -0.251 | -0.115 |
方差贡献率 Percentage of variance/% | 33.3 | 19.6 | 9.93 |
Table 5 Principal component analysis matrix
单体种类 Type | PC1 | PC2 | PC3 |
---|---|---|---|
Nap | 0.381 | -0.0624 | 0.205 |
Acy | 0.327 | -0.0522 | -0.245 |
Ace | 0.310 | -0.0382 | 0.202 |
Flu | 0.373 | 0.119 | 0.173 |
Ant | 0.284 | 0.239 | 0.0480 |
Phe | 0.0640 | 0.312 | -0.289 |
Flt | 0.373 | -0.0183 | -0.0182 |
Pyr | 0.202 | -0.423 | 0.198 |
BaA | 0.100 | -0.397 | 0.252 |
Chr | 0.268 | 0.301 | -0.0799 |
BbF | 0.216 | -0.231 | -0.352 |
BkF | 0.0425 | 0.361 | 0.250 |
BaP | -0.0224 | 0.307 | 0.246 |
DahA | 0.153 | 0.191 | 0.352 |
IcdP | 0.235 | 0.139 | -0.498 |
BghiP | 0.196 | -0.251 | -0.115 |
方差贡献率 Percentage of variance/% | 33.3 | 19.6 | 9.93 |
Fig. 7 Partial correlations (Pearson's r) between ∑16PAHs and the five variables SGS stands for soil particle size, and PC1 is extracted by principal component analysis of sand, clay, and silt (the explanation rate of PC1 is 97.68%)
研究区Study area | PAHs种数PAHs number | 质量分数Concentration | 参考文献Renference |
---|---|---|---|
盐城滨海湿地Yancheng coastal wetlands | 16 | 227‒884 ng∙g-1 | 本文This study |
辽河口Liaohe estuary | 16 | 235‒374 ng∙g-1 | Li et al., |
崇明岛Chongming Island | 16 | 47.97‒1.67×103 ng∙g-1 | 锁玉栋, |
汕头红树林Mangrove wetlands in Shantou, South China | 16 | 79.1‒853 ng∙g-1 | Cai et al., |
爱丁堡湾(爱琴海)Edremit Bay (Aegean Sea) | 18 | 0.650‒175 ng∙g-1 | Darilmaz et al., |
印度申达本红树林湿地Sundarban Mangrove Wetland, India | 19 | 9.40‒4.22×103 ng∙g-1 | Santosh et al., |
Table 6 Comparison of PAHs in different research areas at home and abroad
研究区Study area | PAHs种数PAHs number | 质量分数Concentration | 参考文献Renference |
---|---|---|---|
盐城滨海湿地Yancheng coastal wetlands | 16 | 227‒884 ng∙g-1 | 本文This study |
辽河口Liaohe estuary | 16 | 235‒374 ng∙g-1 | Li et al., |
崇明岛Chongming Island | 16 | 47.97‒1.67×103 ng∙g-1 | 锁玉栋, |
汕头红树林Mangrove wetlands in Shantou, South China | 16 | 79.1‒853 ng∙g-1 | Cai et al., |
爱丁堡湾(爱琴海)Edremit Bay (Aegean Sea) | 18 | 0.650‒175 ng∙g-1 | Darilmaz et al., |
印度申达本红树林湿地Sundarban Mangrove Wetland, India | 19 | 9.40‒4.22×103 ng∙g-1 | Santosh et al., |
[1] |
ABBASI S, KESHAVARZI B, MOORE F, et al., 2019. Geochemistry and environmental effects of potentially toxic elements, polycyclic aromatic hydrocarbons and microplastics in coastal sediments of the Persian Gulf[J]. Environmental Earth Sciences, 78(15): 1-15.
DOI URL |
[2] |
AICHNER B, BUSSIAN B, LEHNIK-HABRINK P, et al., 2013. Levels and spatial distribution of persistent organic pollutants in the environment: a case study of german forest soils[J]. Environmental Science & Technology, 47(22): 12703-12714.
DOI URL |
[3] |
BUCHELI T D, BLUM F, DESAULES A, et al., 2004. Polycyclic aromatic hydrocarbons, black carbon, and molecular markers in soils of Switzerland[J]. Chemosphere, 56(11): 1061-1076.
DOI URL |
[4] |
CAI Y M, WU J D, ZHANG Y L, et al., 2019. Polycyclic aromatic hydrocarbons in surface sediments of mangrove wetlands in Shantou, South China[J]. Journal of Geochemical Exploration, 205: 106332.
DOI URL |
[5] |
CULOTTA L, STEFANO C D, GIANGUZZA A, et al., 2006. The PAH composition of surface sediments from Stagnone coastal lagoon, Marsala (Italy)[J]. Marine Chemistry, 99(1-4): 117-127.
DOI URL |
[6] |
DARILMAZ E, ALYURUK H, KONTAS A, et al., 2019. Distributions and Sources of PAHs and OCPs in Surficial Sediments of Edremit Bay (Aegean Sea)[J]. Archives of Environmental Contamination and Toxicology, 77(2): 237-248.
DOI URL |
[7] |
DAVIS E M, WALKER T R, ADAMS M, et al., 2019. Source apportionment of polycyclic aromatic hydrocarbons (PAHs) in small craft harbor (SCH) surficial sediments in Nova Scotia, Canada[J]. Science of The Total Environment, 691: 528-537.
DOI URL |
[8] | DUVAL M M, FRIEDLANDER S K, 1981. Source resolution of polycyclic aromatic hydrocarbons in the los angeles atmosphere: Application of a CMB with first-order decay[J]. USEPA Report EPA-600/2-81-161 Washington, DC US Government Printing Office. |
[9] | EDWARDS N T, 1983. Polycyclic Aromatic Hydrocarbons (PAHs) in the Terrestrial Environment: a review[J]. Journal of Environment Quality, 12(4): 427-441. |
[10] | FERNÁNDEZ-LUQUEÑO F, VALENZUELA-ENCINAS C, MARSCH R, et al., 2011. Microbial communities to mitigate contamination of PAHs in soil-possibilities and challenges: a review[J]. Environmental Science & Pollution Research, 18(1): 12-30. |
[11] |
GAN S, LAU E V, NG H K, 2009. Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs)[J]. Journal of Hazardous Materials, 172(2-3): 532-549.
DOI URL |
[12] |
HELLOU J, STELLER S, ZITKO V, et al., 2002. Distribution of PACs in surficial sediments and bioavailability to mussels, Mytilus edulis of Halifax harbour[J]. Marine Environmental Research, 53(4): 357-379.
DOI URL |
[13] | IARC, 2010. Monographs on the evaluation of carcinogenic risks to humans, vol. 92. Some Non-Heterocyclic Polycyclic Aromatic Hydrocarbons and Some Related Exposures[M]. Lyon: IARC. |
[14] |
JAFARABADI A R, BAKHTIARI A R, YAGHOOBI Z, et al., 2019. Distributions and compositional patterns of polycyclic aromatic hydrocarbons (PAHs) and their derivatives in three edible fishes from Kharg coral Island, Persian Gulf, Iran[J]. Chemosphere, 215(1): 835-845.
DOI URL |
[15] |
JENKINS B M, JONES A D, TURN S Q, et al., 1996. Emission factors for polycyclic aromatic hydrocarbons from biomass burning[J]. Environmental Science & Technology, 30(8): 2462-2469.
DOI URL |
[16] |
JEON H D, OH S Y, 2019. Distribution, toxicity, and origins of polycyclic aromatic hydrocarbons in soils in Ulsan, South Korea[J]. Environmental Monitoring and Assessment, 191(7): 409-421.
DOI URL |
[17] |
KANNAN K, JOHNSON B, YOHN S S, et al., 2005. Spatial and Temporal Distribution of Polycyclic Aromatic Hydrocarbons in Sediments from Michigan Inland Lakes[J]. Environmental Science & Technology, 39(13): 4700-4706.
DOI URL |
[18] |
KHALILI N, SCHEFF P A, HOLSEN T M, 1995. PAH source fingerprints for coke ovens, diesel and, gasoline engines, highway tunnels, and wood combustion emissions[J]. Atmospheric Environment, 29(4): 533-542.
DOI URL |
[19] |
LARSEN R K, BAKER J E, 2003. Source Apportionment of Polycyclic Aromatic Hydrocarbons in the Urban Atmosphere: A Comparison of Three Methods[J]. Environmental Science & Technology, 37(9): 1873-1881.
DOI URL |
[20] |
LI G L, LANG Y H, YANG W, et al., 2014. Source contributions of PAHs and toxicity in reed wetland soils of Liaohe estuary using a CMB-TEQ method[J]. Science of The Total Environment, 490: 199-204.
DOI URL |
[21] |
LIU N, ZHANG D L, CEN K, et al., 2018. Influence of Anthropogenic Activities on the Temporal and Spatial Variation of Polycyclic Aromatic Hydrocarbons in the sediments of Jiangsu Coastal Zone, China[J]. Continental Shelf Research, 170(6): 11-20.
DOI URL |
[22] |
MA B, HE Y, CHEN H H, et al., 2010. Dissipation of polycyclic aromatic hydrocarbons (PAHs) in the rhizosphere: synthesis through meta-analysis[J]. Environmental Pollution, 158(3): 855-861.
DOI URL |
[23] |
MALISZEWSKA-KORDYBACH B, 1996. Polycyclic aromatic hydrocarbons in agricultural soils in Poland: Preliminary proposals for criteria to evaluate the level of soil contamination[J]. Applied Geochemistry, 11(1-2): 121-127.
DOI URL |
[24] | MALISZEWSKA-KORDYBACH B, 1998. The relationship between the properties of soils and the content of PAHs on the example of agricultural soils from Lublin district[J]. Archives of Environmental Protection, 24: 79-91. |
[25] |
NAM J J, THOMAS G O, JAWARD F, et al., 2008. PAHs in background soils from Western Europe: Influence of atmospheric deposition and soil organic matter[J]. Chemosphere, 70(9): 1596-1602.
DOI URL |
[26] | PAZI I, GONUL L T, KUCUKSEZGIN F, 2019. Sources and Characterization of Polycyclic Aromatic and Aliphatic Hydrocarbons in Sediments Collected near Aquaculture Sites from Eastern Aegean Coast[J]. Polycyclic Aromatic Compounds, https://doi.org/10.1080/10406638.2019.1645708. |
[27] |
QU C K, ALBANESE S, LIMA A, et al., 2019. The occurrence of OCPs, PCBs, and PAHs in the soil, air, and bulk deposition of the Naples metropolitan area, southern Italy: implications for sources and environmental processes[J]. Environment International, 124: 89-97.
DOI URL |
[28] |
SAMANTA S K, SINGH O V, JAIN R K, 2002. Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation[J]. Trends in Biotechnology, 20(6): 243-248.
DOI URL |
[29] |
SANTOSH K S, ANDREA B, MOUSUMI C, et al., 2012. Distribution and Ecosystem Risk Assessment of Polycyclic Aromatic Hydrocarbons (PAHs) in Core Sediments of Sundarban Mangrove Wetland, India[J]. Polycyclic Aromatic Compounds, 32(1): 1-26.
DOI URL |
[30] |
SIMCIK M F, EISENREICH S J, LIOY P J, 1999. Source apportionment and source/sink relationships of PAHs in the coastal atmosphere of Chicago and Lake Michigan[J]. Atmospheric Environment, 33(30): 5071-5079.
DOI URL |
[31] |
SIMPSON C D, MOSI A A, CULLEN W R, et al., 1996. Composition and distribution of polycyclic aromatic hydrocarbon contamination in surficial marine sediments from Kitimat Harbor, Canada[J]. The science of the Total Environment, 181(3): 265-78.
DOI URL |
[32] |
SUN H W, LI J G, 2005. Availability of pyrene in unaged and aged soils to earthworm uptake, butanol extraction and SFE[J]. Water Air and Soil Pollution, 166(1): 353-365.
DOI URL |
[33] |
TRAPIDO M, 1999. Polycyclic aromatic hydrocarbons in Estonian soil: contamination and profiles[J]. Environmental Pollution, 105(1): 67-74.
DOI URL |
[34] |
WANG X T, MIAO Y, ZHANG Y, et al., 2013. Polycyclic aromatic hydrocarbons (PAHs) in urban soils of the megacity Shanghai: occurrence, source apportionment and potential human health risk[J]. Science of the Total Environment, 447: 80-89.
DOI URL |
[35] |
YANG W, LANG Y H, BAI J, et al., 2015. Quantitative evaluation of carcinogenic and non-carcinogenic potential for PAHs in coastal wetland soils of China[J]. Ecological Engineering, 74: 117-124.
DOI URL |
[36] |
YANG Z Y, SHAH K, CREVIER C, et al., 2018. Occurrence, source and ecological assessment of petroleum related hydrocarbons in intertidal marine sediments of the Bay of Fundy, New Brunswick, Canada[J]. Marine Pollution Bulletin, 133(8): 799-807.
DOI URL |
[37] |
YAO Y, MENG X Z, WU C C, et al., 2016. Tracking human footprints in Antarctica through passive sampling of polycyclic aromatic hydrocarbons in inland lakes[J]. Environmental Pollution, 213: 412-419.
DOI URL |
[38] |
YUNKER M B, MACDONALD R W, VINGAZAN R, et al., 2002. PAHs in the Fraiser river basin: a critical appraisal of PAHs ratios as indicators of PAH source and composition[J]. Organic Geochemistry, 33(4): 489-515.
DOI URL |
[39] |
ZHANG H B, LUO Y M, WONG M H, et al., 2006. Distributions and concentrations of PAHs in Hong Kong soils[J]. Environmental Pollution 141(1): 107-114.
DOI URL |
[40] |
ZHAO X G, JIN H Y, JI Z Q, et al., 2019. PAES and PAHs in the surface sediments of the East China Sea: Occurrence, distribution and influence factors[J]. Science of The Total Environment, 703: 134763.
DOI URL |
[41] | 陈丽琼, 2010. 比重计法测定土壤颗粒组成的研究[J]. 环境科学导刊, 29(4): 99-101. |
CHEN L Q, 2010. Research on Structure of Soil Particle by Hydro meter Method[J]. Environmental Science Survey, 29(4): 99-101. | |
[42] | 刘娜, 2017. 人类活动影响下江苏省典型海岸带多环芳烃分布特征研究[D]. 青岛: 青岛大学. |
LIU N, 2017. Study on the Distribution of Polycyclic Aromatic Hydrocarbons in Sediments of Anthropogenic Activities influenced in Jiangsu coast Abstract[D]. Qingdao: Qingdao University. | |
[43] | 倪妮, 宋洋, 王芳, 等, 2016. 多环芳烃污染土壤生物联合强化修复研究进展[J]. 土壤学报, 53(3): 561-571. |
NI N, SONNG Y, WANG F, et al., 2016. Research progress of bio-intensified bioremediation of polycyclic aromatic hydrocarbons contaminated soil[J]. Acta Pedologica Sinica, 53(3): 561-571. | |
[44] | 孙玉川, 沈立成, 袁道先, 2014. 表层岩溶泉水中多环芳烃污染特征及来源解析[J]. 环境科学, 35(6): 2091-2098. |
SUN Y C, SHEN L C, YUAN D X, 2014. Contamination and Source of Polycyclic Aromatic Hydrocarbons in Epikarst Spring Water[J]. Environmental Science, 35(6): 2091-2098. | |
[45] | 锁玉栋, 2020. 崇明岛表层土壤持久性有机污染物分布、来源及风险评价[D]. 上海: 华东师范大学. |
SUO Y Z, 2020. Distribution, source and risk assessment of persistent organic pollutants in topsoil of Chongming Island[D]. Shanghai: East China Normal University. | |
[46] | 杨国义, 张天彬, 高淑涛, 等, 2007. 珠江三角洲典型区域农业土壤中多环芳烃的含量分布特征及其污染来源[J]. 环境科学, 28(10): 2350-2354. |
YANG G Y, ZHANG T B, GAO S T, et al., 2007. Distribution characteristics and pollution sources of polycyclic aromatic hydrocarbons in agricultural soils in the typical region of the Pearl River Delta[J]. Environmental Science, 28(10): 2350-2354. | |
[47] | 中华人民共和国环境保护部, 2016. 土壤和沉积物多环芳烃的测定气相色谱-质谱法: HJ 805—2016 [S]. 北京: 中国环境科学出版社. |
Ministry of Environmental Protection of the People's Republic of China, 2016. Soil and Sediment Determination of polycyclic aromatic hydrocarbon by Gas chromatography-Mass Spectrometry Method: HJ 805—2016 [S]. Beijing: China Environmental Science Press. | |
[48] | 朱鸣鹤, 方飚雄, 庞艳华, 等, 2010. 海三稜藨草 (Scirpus mariqueter) 根系低分子量有机酸对根际沉积物重金属生物有效性的影响[J]. 海洋与湖沼, 41(4): 583-589. |
ZHU M H, FANG B X, PANG Y H, et al., 2010. Effects of low molecular weight organic acids of root exudates on heavy metal bioavailability around Scirpus mariqueter rhizosphere sediments[J]. Oceanologia et Limnologia Sinica, 41(4): 583-589. |
[1] | HAO Lei, ZHAI Yongguang, QI Wenchao, LAN Qiongqiong. Spatial-temporal Dynamics of Vegetation Carbon Sources/sinks in Inner Mongolia from 2001 to 2020 and Its Response to Climate Change [J]. Ecology and Environment, 2023, 32(5): 825-834. |
[2] | DONG Zhijin, ZHANG Chengchun, ZHAN Xiuli, ZHANG Weifu. Spatial Distribution Characteristics of Soil Nutrients of Biological Soil Crusts and Their Underlying Soil of Sandy Land in the East of Yellow River in Ningxia [J]. Ecology and Environment, 2023, 32(5): 910-919. |
[3] | XU Xiaoyun, RAO Zhihan, JIANG Hongbin, ZHANG Wei, CHEN Chao, YANG Yongan, HU Yanli, WEI Haichuan. Pollution Characteristics and Formation Potential for O3 and SOA of Ambient VOCs in Suining Industrial Zone in Summer [J]. Ecology and Environment, 2023, 32(5): 956-968. |
[4] | LI Jianhui, DANG Zheng, CHEN Lin. Spatial-temporal Characteristics of PM2.5 and Its Influencing Factors in the Yellow River Jiziwan Metropolitan Area [J]. Ecology and Environment, 2023, 32(4): 697-705. |
[5] | ZHANG Lin, QI Shi, ZHOU Piao, WU Bingchen, ZHANG Dai, ZHANG Yan. Study on Influencing Factors of Soil Organic Carbon Content in Mixed Broad-leaved and Coniferous Forests Land in Beijing Mountainous Areas [J]. Ecology and Environment, 2023, 32(3): 450-458. |
[6] | HE Yanhu, GONG Zhenjie, WU Haibin, CAI Yanpeng, YANG Zhifeng, CHEN Xiaohong. Spatiotemporal Evolution of Urban Eco-efficiency and Its Influencing Factors in Guangdong-Hong Kong-Macao Greater Bay Area [J]. Ecology and Environment, 2023, 32(3): 469-480. |
[7] | HAO Jinhu, WEI Wei, LI Shengnan, MA Muyuan, LI Xiaoxia, YANG Hongguo, JIANG Qiyu, CHAI Peidong. GEE Based Evaluation of the Spatial-temporal Pattern and Drivers of Long-term Water Body in Beijing-Tianjin-Hebei [J]. Ecology and Environment, 2023, 32(3): 556-566. |
[8] | QIAN Haiming, ZHANG Yunlin, LI Na, WANG Weijia, SUN Xiao, ZHANG Yibo, SHI Kun, FENG Sheng, GAO Yanghui. High Frequency Monitoring of Water Quality Dynamics for River Drinking Water Source during the Typical Rainfall Process [J]. Ecology and Environment, 2023, 32(3): 579-589. |
[9] | YANG Qili, DOU Weili, LIU Zhiwen, GUO Jing, LÜ Gang. Analysis of Petroleum Hydrocarbon Pollution Characteristics and Influencing Factors Based on N-alkanes Tracing in the River Channel of Fuxin Xihe River [J]. Ecology and Environment, 2023, 32(3): 599-608. |
[10] | YOU Haizhou, WANG Chao, ZHAO Guangzhi, LI Dongmei. Distribution Characteristics of Populus euramericana Nocturnal Sap Flow and Its Response to Environmental Factors in North China Plain [J]. Ecology and Environment, 2023, 32(2): 256-263. |
[11] | FU Chuanbo, DAN Li, TONG Jinhe, CHEN Hong. Characteristics and Potential Source Analysis of Ozone pollution in Haikou City [J]. Ecology and Environment, 2023, 32(2): 331-340. |
[12] | ZHANG Li, LI Cheng, TAN Haoze, WEI Jiayi, CHENG Jiong, PENG Guixiang. Reduction Effect and Influencing Factors of Typical Urban Woodlands on Atmospheric Particulate Matter in Guangzhou [J]. Ecology and Environment, 2023, 32(2): 341-350. |
[13] | LI Haiyan, YANG Xiaoqin, JAN Meipeng, ZHANG Xiaoran. [J]. Ecology and Environment, 2023, 32(2): 407-420. |
[14] | YUAN Linjiang, LI Mengbo, LENG Gang, ZHONG Bingbing, XIA Dapeng, WANG Jinghua. Synergistic Effect of Sulfate Reduction and Ammonia Oxidation in Anaerobic Environment [J]. Ecology and Environment, 2023, 32(1): 207-214. |
[15] | JIANG Ming, ZHANG Ziyang, LI Tingting, LIN Boji, ZHANG Zhengen, LIAO Tong, YUAN Luan, PAN Suhong, LI Jun, ZHANG Gan. Source Apportionment of Ammonium in Atmospheric PM2.5 in the Pearl River Delta Based on Nitrogen Isotope [J]. Ecology and Environment, 2022, 31(9): 1840-1848. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn