Ecology and Environmental Sciences ›› 2025, Vol. 34 ›› Issue (9): 1398-1409.DOI: 10.16258/j.cnki.1674-5906.2025.09.007
• Research Article [Ecology] • Previous Articles Next Articles
LI Dongyi1,2(), LI Tingting1,2, XUE Wanyi1,2, XIA Yongzhi1,2, WANG Zhengxiang1,2,*(
)
Received:
2025-01-11
Online:
2025-09-18
Published:
2025-09-05
李东熠1,2(), 李亭亭1,2, 薛婉怡1,2, 夏永知1,2, 汪正祥1,2,*(
)
通讯作者:
*E-mail: wangzx66@hubu.edu.cn
作者简介:
李东熠(1997年生),男,硕士研究生,研究方向为珍稀濒危植物保护。E-mail: ldy05336@163.com
基金资助:
CLC Number:
LI Dongyi, LI Tingting, XUE Wanyi, XIA Yongzhi, WANG Zhengxiang. Prediction and Analysis of Potential Habitat Distribution of Taxus wallichiana var. Chinensis under Climate Change: A Case Study of Hubei Province[J]. Ecology and Environmental Sciences, 2025, 34(9): 1398-1409.
李东熠, 李亭亭, 薛婉怡, 夏永知, 汪正祥. 气候变化下红豆杉潜在适宜生境分布预测分析——以湖北省为例[J]. 生态环境学报, 2025, 34(9): 1398-1409.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2025.09.007
因子类型 | 环境因子名称 | 单位 | 值域 |
---|---|---|---|
气候 | 年均温(BIO1) | ℃ | 4.10-17.60 |
最湿季的均温(BIO8) | ℃ | 13.21-27.29 | |
最湿季的降水量(BIO16) | mm | 380.55-755.24 | |
最冷季的降水量(BIO19) | mm | 32.16-196.76 | |
地形 | 坡向 | - | 0-8 |
起伏度 | m | 3-2534 | |
土壤 | 土壤分类(WRB_PHASES) | - | 1-42 |
土壤单位的可用储水量(AWC) | mm | 0-150 | |
土地覆盖数据CLCD | 中国土地覆盖数据集 (CLCD) | - | 1-7 |
人类足迹数据HFS | 人类足迹数据 (HFS) | - | 0.28-50 |
Table 1 Filtered environmental variables factors
因子类型 | 环境因子名称 | 单位 | 值域 |
---|---|---|---|
气候 | 年均温(BIO1) | ℃ | 4.10-17.60 |
最湿季的均温(BIO8) | ℃ | 13.21-27.29 | |
最湿季的降水量(BIO16) | mm | 380.55-755.24 | |
最冷季的降水量(BIO19) | mm | 32.16-196.76 | |
地形 | 坡向 | - | 0-8 |
起伏度 | m | 3-2534 | |
土壤 | 土壤分类(WRB_PHASES) | - | 1-42 |
土壤单位的可用储水量(AWC) | mm | 0-150 | |
土地覆盖数据CLCD | 中国土地覆盖数据集 (CLCD) | - | 1-7 |
人类足迹数据HFS | 人类足迹数据 (HFS) | - | 0.28-50 |
模型 | 环境因子重要性/% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Aspec | AWC | Bio8 | Bio16 | Bio19 | Bio1 | CLCD | HFS | Relief | wrb_pha | |
GLM | 1.8 | 11.4 | 9.9 | 67.5 | 72.4 | 32.0 | 0.7 | 3.1 | 1.7 | 7.5 |
GBM | 0.3 | 1.4 | 6.1 | 10.6 | 10.8 | 9.3 | 0.0 | 1.8 | 15.7 | 1.3 |
CTA | 0.2 | 2.2 | 5.6 | 13.8 | 8.2 | 23.9 | 0.7 | 3.0 | 63.5 | 0.0 |
ANN | 3.7 | 16.9 | 8.7 | 42.1 | 45.1 | 9.4 | 1.7 | 10.5 | 47.0 | 14.9 |
SRE | 1.4 | 13.1 | 24.7 | 23.0 | 34.6 | 19.9 | 2.7 | 7.6 | 36.5 | 7.5 |
FDA | 0.0 | 1.8 | 15.8 | 41.2 | 45.8 | 55.9 | 0.0 | 0.8 | 7.9 | 1.0 |
RF | 0.5 | 1.7 | 5.9 | 6.8 | 3.9 | 21.6 | 0.3 | 1.9 | 8.6 | 1.1 |
Maxent1 | 1.3 | 2.4 | 6.1 | 36.1 | 40.5 | 7.9 | 0.0 | 1.8 | 3.3 | 0.6 |
Maxent2 | 7.4 | 3.3 | 0.4 | 19.0 | 33.9 | 14.6 | 2.1 | 1.5 | 12.4 | 5.2 |
EnsembleModel | 0.1 | 3.0 | 3.4 | 25.1 | 28.1 | 13.9 | 0.1 | 0.9 | 7.5 | 0.8 |
Table 2 Environmental variable importance
模型 | 环境因子重要性/% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Aspec | AWC | Bio8 | Bio16 | Bio19 | Bio1 | CLCD | HFS | Relief | wrb_pha | |
GLM | 1.8 | 11.4 | 9.9 | 67.5 | 72.4 | 32.0 | 0.7 | 3.1 | 1.7 | 7.5 |
GBM | 0.3 | 1.4 | 6.1 | 10.6 | 10.8 | 9.3 | 0.0 | 1.8 | 15.7 | 1.3 |
CTA | 0.2 | 2.2 | 5.6 | 13.8 | 8.2 | 23.9 | 0.7 | 3.0 | 63.5 | 0.0 |
ANN | 3.7 | 16.9 | 8.7 | 42.1 | 45.1 | 9.4 | 1.7 | 10.5 | 47.0 | 14.9 |
SRE | 1.4 | 13.1 | 24.7 | 23.0 | 34.6 | 19.9 | 2.7 | 7.6 | 36.5 | 7.5 |
FDA | 0.0 | 1.8 | 15.8 | 41.2 | 45.8 | 55.9 | 0.0 | 0.8 | 7.9 | 1.0 |
RF | 0.5 | 1.7 | 5.9 | 6.8 | 3.9 | 21.6 | 0.3 | 1.9 | 8.6 | 1.1 |
Maxent1 | 1.3 | 2.4 | 6.1 | 36.1 | 40.5 | 7.9 | 0.0 | 1.8 | 3.3 | 0.6 |
Maxent2 | 7.4 | 3.3 | 0.4 | 19.0 | 33.9 | 14.6 | 2.1 | 1.5 | 12.4 | 5.2 |
EnsembleModel | 0.1 | 3.0 | 3.4 | 25.1 | 28.1 | 13.9 | 0.1 | 0.9 | 7.5 | 0.8 |
时期 | NP | AREA_MN/hm2 | AI/% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
低适生区 | 中高适生 | 总适生区 | 低适生区 | 中高适生区 | 总适生区 | 低适生区 | 中高适生区 | 总适生区 | ||||
当代 | 1159 | 360 | 476 | 444.95 | 2752.78 | 3165.34 | 41.25 | 75.73 | 79.51 | |||
SSP1-2.6 | 2030S | 561 | 225 | 216 | 1413.55 | 5742.67 | 9653.24 | 60.62 | 83.33 | 92.12 | ||
2070S | 627 | 269 | 128 | 2008.13 | 7557.25 | 26303.91 | 65.21 | 82.57 | 94.03 | |||
SSP2-4.5 | 2030S | 678 | 274 | 141 | 1946.76 | 8090.15 | 25082.27 | 65.25 | 83.14 | 95.07 | ||
2070S | 736 | 318 | 135 | 2145.11 | 7920.44 | 30351.85 | 66.05 | 81.92 | 96.16 | |||
SSP5-8.5 | 2030S | 627 | 269 | 137 | 2008.13 | 7557.25 | 24029.20 | 65.21 | 82.57 | 94.95 | ||
2070S | 641 | 403 | 118 | 2499.06 | 4392.06 | 28575.42 | 67.61 | 76.77 | 94.19 |
Table 3 Fragmentation indices of Taxus wallichiana var. chinensis habitat (periods and climate scenarios)
时期 | NP | AREA_MN/hm2 | AI/% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
低适生区 | 中高适生 | 总适生区 | 低适生区 | 中高适生区 | 总适生区 | 低适生区 | 中高适生区 | 总适生区 | ||||
当代 | 1159 | 360 | 476 | 444.95 | 2752.78 | 3165.34 | 41.25 | 75.73 | 79.51 | |||
SSP1-2.6 | 2030S | 561 | 225 | 216 | 1413.55 | 5742.67 | 9653.24 | 60.62 | 83.33 | 92.12 | ||
2070S | 627 | 269 | 128 | 2008.13 | 7557.25 | 26303.91 | 65.21 | 82.57 | 94.03 | |||
SSP2-4.5 | 2030S | 678 | 274 | 141 | 1946.76 | 8090.15 | 25082.27 | 65.25 | 83.14 | 95.07 | ||
2070S | 736 | 318 | 135 | 2145.11 | 7920.44 | 30351.85 | 66.05 | 81.92 | 96.16 | |||
SSP5-8.5 | 2030S | 627 | 269 | 137 | 2008.13 | 7557.25 | 24029.20 | 65.21 | 82.57 | 94.95 | ||
2070S | 641 | 403 | 118 | 2499.06 | 4392.06 | 28575.42 | 67.61 | 76.77 | 94.19 |
[1] | ALLOUCHE O, TSOAR A, KADMON R, 2006. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS)[J]. Journal of Applied Ecology, 43(6): 1223-1232. |
[2] | ANDERSON R P, 2013. A framework for using niche models to estimate impacts of climate change on species distributions[J]. Annals of the New York Academy of Sciences, 1297(1): 8-28. |
[3] | CABRA-RIVAS I, SALDAÑA A, CASTRO-DÍEZ P, et al., 2016. A multi-scale approach to identify invasion drivers and invaders’ future dynamics[J]. Biological Invasions, 18: 411-426. |
[4] | COBOS M E, PETERSON A T, BARVE N, et al., 2019. kuenm: An R package for detailed development of ecological niche models using Maxent[J]. PeerJ, 7: e6281. |
[5] | CVH, 2024. Data resources[EB/OL]. [2024-05-29]. https://www.cvh.ac.cn/spms/list.php. |
[6] | DAI Y C, HUANG H Q, QING Y, et al., 2023. Ecological response of an umbrella species to changing climate and land use: Habitat conservation for Asiatic black bear in the Sichuan‐Chongqing Region, Southwestern China[J]. Ecology and Evolution, 13(6): e10222. |
[7] | ELITH J, LEATHWICK J R, 2009. Species distribution models: ecological explanation and prediction across space and time[J]. Annual Review of Ecology, Evolution, and Systematics, 40(1): 677-697. |
[8] | ELITH J, PHILLIPS S J, HASTIE T, et al., 2011. A statistical explanation of MaxEnt for ecologists[J]. Diversity and distributions, 17(1): 43-57. |
[9] | FRANCO A C S, LORINI M L, MINSKY E M C, et al., 2022. Far beyond the Amazon: Global distribution, environmental suitability, and invasive potential of the two most introduced peacock bass[J]. Biological Invasions, 24(9): 2851-2872. |
[10] | GBIF, 2024. GBIF occurrence download[EB/OL]. [2024-05-29]. https://doi.org/10.15468/dl.5pgnnm. |
[11] | GONG X, CHEN Y J, WANG T, et al., 2020. Double-edged effects of climate change on plant invasions: Ecological niche modeling global distributions of two invasive alien plants[J]. Science of the Total Environment, 740: 139933. |
[12] | HUANG R J, DU H M, WEN Y T, et al., 2022. Predicting the distribution of suitable habitat of the poisonous weed Astragalus variabilis in China under current and future climate conditions[J]. Frontiers in Plant Science, 13: 921310. |
[13] | IUCN, 2024. IUCNredlist[EB/OL]. [2024-05-29]. https://www.iucnredlist.org. |
[14] | JANITZA S, CELIK E, BOULESTEIX A L, 2018. A computationally fast variable importance test for random forests for high-dimensional data[J]. Advances in Data Analysis and Classification, 12(4): 885-915. |
[15] | LI J L, DENG C R, DUAN G Z, et al., 2024. Potentially suitable habitats of Daodi goji berry in China under climate change[J]. Frontiers in Plant Science, 14: 1279019. |
[16] | LI Y X, SHAO W H, JIANG J M, 2022. Predicting the potential global distribution of Sapindus mukorossi under climate change based on MaxEnt modelling[J]. Environmental Science and Pollution Research, 29(15): 21751-21768. |
[17] |
MU H W, LI X C, WEN Y N, et al., 2022. A global record of annual terrestrial Human Footprint dataset from 2000 to 2018[J]. Scientific Data, 9(1): 176.
DOI PMID |
[18] | PHILLIPS S J, ANDERSON R P, 2006. Schapire R E. Maximum entropy modeling of species geographic distributions[J]. Ecological modelling, 190(3-4): 231-259. |
[19] | PHILLIPS S J, DUDÍK M, 2008. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation[J]. Ecography, 31(2): 161-175. |
[20] | RANC N, SANTINI L, RONDININI C, et al., 2017. Performance tradeoffs in target‐group bias correction for species distribution models[J]. Ecography, 40(9): 1076-1087. |
[21] | STREET G M, 2020. Habitat suitability and distribution models with applications in R[J]. Journal of Wildlife Management, 84(6): 1212. |
[22] | SUBRAMANIAN J, SIMON R, 2013. Overfitting in prediction models-is it a problem only in high dimensions?[J]. Contemporary Clinical Trials, 36(2): 636-641. |
[23] | WANG J H, QIAN Q F, JIA X J, et al., 2023a. The possible impact of human activity and climate change on the potential suitable habitats of Taxus wallichiana var. mairei (Taxaceae) evaluated by ensemble modeling techniques[J]. Environmental Research Communications, 5(10): 105006. |
[24] | WANG Y L, LIU H C, XU J K, et al., 2023b. Prediction of suitable planting areas of Rubia cordifolia in China based on a species distribution model and analysis of specific secondary metabolites[J]. Industrial Crops and Products, 206: 117651. |
[25] | YANG J, HUANG X, 2023. The 30 m annual land cover datasets and its dynamics in China from 1985 to 2022 [EB/OL]. [2024-05-29]. https://zenodo.org/records/8176941. |
[26] | 杜超群, 吴昊, 袁慧, 等, 2023. 湖北主要造林树种生态区划研究[J]. 西南林业大学学报(自然科学), 43(6): 1-7. |
DU C Q, WU H, YUAN H, et al., 2023. Study on Ecological regionalization of main afforestation species in Hubei Province[J]. Journal of Southwest Forestry University(Natural Sciences), 43(6): 1-7. | |
[27] | 段居琦, 周广, 2011. 中国水稻潜在分布及其气候特征[J]. 生态学报, 31(22): 6659-6668. |
DUAN J Q, ZHOU G, 2011. Potential distribution of rice in china and its climate characteristics[J]. Acta Ecologica Sinica, 31(22): 6659-6668. | |
[28] | 高灿, 樊智丰, 马长乐, 等, 2024. 基于Biomod2组合模型对气候变化下滇山茶适生区的预测[J]. 生态学杂志, 43(11): 3526-3536. |
GAO C, FAN Z F, MA C L, et al., 2024. Modelling the suitable area of Camellia reticulata under climate change based on the Biomod2[J]. Chinese Journal of Ecology, 43(11): 3526-3536. | |
[29] | 郭富印, 刘晓煌, 赵晓峰, 等, 2024. 气候变化与人类活动对盐生植被的影响——以柽柳为例[J/OL]. 中国地质, 1-16. (2024-09-25) [2024-12-03]. http://kns.cnki.net/kcms/detail/11.1167.P.20240924.1722.005.html. |
GUO F Y, LIU X H, ZHAO X F, et al., 2024. Impacts of climate change and human activities on saline vegetation-anexample of Tamarix chinensis[J/OL]. Geology in China, 1-16. (2024-09-25) [2024-12-03]. http://kns.cnki.net/kcms/detail/11.1167.P.20240924.1722.005.html. | |
[30] | 郭恺琦, 姜小龙, 徐刚标, 2021. 薄片青冈潜在适生区及气候变化对其分布的影响[J]. 生态学杂志, 40(8): 2563-2574. |
GUO K Q, JIANG X L, XU G B, 2021. Potential suitable distribution area of Quercus lamellosa and the influence of climate change[J]. Chinese Journal of Ecology, 40(8): 2563-2574. | |
[31] |
郭彦龙, 赵泽芳, 乔慧捷, 等, 2020. 物种分布模型面临的挑战与发展趋势[J]. 地球科学进展, 35(12): 1292-1305.
DOI |
Guo Y L, Zhao Z F, Qiao H J, et al., 2020. Challenges and development trend of species distribution model[J]. Advances in Earth Science, 35(12): 1292-1305.
DOI |
|
[32] | 郜二虎, 汪正祥, 王志臣, 2012. 湖北堵河源自然保护区科学考察与研究[M]. 北京: 科学出版社: 88-97. |
HAO E H, WANG Z X, WANG Z C, 2012. Scientific investigation and research in duheyuan nature reserve, Hubei Province[M]. Beijing: Science Press: 88-97. | |
[33] | 雷军成, 徐海根, 吴军, 等, 2015. 气候变化情景下物种适宜生境预测研究进展[J]. 四川动物, 34(5): 794-800. |
LEI J C, XU H G, WU J, et al., 2015. Advance in predicting the suitable habitat of species under future climate change[J]. Sichuan Journal of Zoology, 34(5): 794-800. | |
[34] | 刘国华, 傅伯杰, 2001. 全球气候变化对森林生态系统的影响[J]. 自然资源学报, 16(1): 71-78. |
LIU G H, FU B J, 2001. Effects of global climate change on forest ecosystems[J]. Journal of Natural Resources, 16(1): 71-78.
DOI |
|
[35] | 李炎林, 杨星星, 张家银, 等, 2014. 南方红豆杉转录组SSR挖掘及分子标记的研究[J]. 园艺学报, 41(4): 735-745. |
LI Y L, YANG X X, ZHANG J Y, et al., 2014. Studies on SSR Molecular Markers Based on Transcriptome of Taxus chinensis var. mairei[J]. Acta Horticulturae Sinica, 41(4): 735-745. | |
[36] | 李新周, 刘晓东, 马红艳, 2023. 人类活动对轨道尺度全球季风区降水影响的模拟研究[J]. 地球环境学报, 14(5): 557-572. |
LI X Z, LIU X D, MA H Y, 2023. Regulation of human activities on orbital-scale precipitation in global monsoon regions[J]. Journal of Earth Environment, 14(5): 557-572. | |
[37] |
刘新星, 余响华, 刘学端, 2015. 红豆杉分布与培育技术研究进展[J]. 生物技术通报, 31(7): 51-57.
DOI |
LIU X X, YU X H, LIU X D, 2015. Research progress of cultivation technology of Taxus and its distribution in China[J]. Biotechnology Bulletin, 31(7): 51-57.
DOI |
|
[38] | 柳晓燕, 赵彩云, 李俊生, 等, 2022. 气候变化情景下中国外来入侵植物黄顶菊潜在分布区模拟与早期预警[J]. 环境科学研究, 35(12): 2768-2776. |
LIU X Y, ZHAO C Y, LI J S, et al., 2022. Simulation and early warning of potential range of Flaveria bidentis in China under climate change scenarios[J]. Research of Environmental Sciences, 35(12): 2768-2776. | |
[39] |
罗玫, 王昊, 吕植, 2017. 使用大熊猫数据评估Biomod2和MaxEnt分布预测模型的表现[J]. 应用生态学报, 28(12): 4001-4006.
DOI |
LUO M, WANG H, LÜ Z, 2017. Evaluating the performance of species distribution models Biomod2 and MaxEnt using the giant panda distribution data[J]. Chinese Journal of Applied Ecology, 28(12): 4001-4006.
DOI |
|
[40] | 王晓帆, 段雨萱, 金露露, 等, 2023. 基于优化的最大熵模型预测中国高山栎组植物的历史、现状与未来分布变化[J]. 生态学报, 43(16): 6590-6604. |
WANG X F, DUAN Y X, JIN L L, et al., 2023. Ediction of historical, present, and future distribution of Quercus sect. Heterobalanus based on the optimized MaxEnt model in China[J]. Acta Ecologica Sinica, 43(16): 6590-6604. | |
[41] |
王云, 周忠学, 郭钟哲, 2014. 都市农业景观破碎化过程对生态系统服务价值的影响——以西安市为例[J]. 地理研究, 33(6): 1097-1105.
DOI |
WANG Y, ZHOU Z X, GUO Z Z, 2014. Impact of the urban agricultural landscape fragmentation onecosystem services: A case study of Xi’an City[J]. Geographical Research, 33(6): 1097-1105. | |
[42] | 王志伟, 纪燕玲, 陈永敢, 2015. 植物内生菌研究及其科学意义[J]. 微生物学通报, 42(2): 349-363. |
WANG Z W, JI Y L, CHEN Y G, 2015. Studies and biological significances of plant endophytes[J]. Microbiology China, 42(2): 349-363. | |
[43] | 汪正祥, 蔡德军, 2013. 湖北五道峡自然保护区生物多样性及其保护研究[M]. 北京: 中国林业出版社: 86-95. |
WANG Z X, CAI D J, 2013. Study on biodiversity and conservation in Wudaoxia Nature Reserve, Hubei Province[M]. Beijing: China Forestry Publishing House: 86-95. | |
[44] | 汪正祥, 雷耘, 杨其仁, 等, 2016. 湖北崩尖子自然保护区生物多样性及其保护研究[M]. 北京: 科学出版社: 73-78. |
WANG Z X, LEI Y, YANG Q R, et al., 2016. Study on biodiversity and conservation in bengjianzi nature reserve, Hubei Province[M]. Beijing: Science Press: 73-78. | |
[45] | 汪正祥, 雷耘, 李亭亭, 2012. 湖北万朝山自然保护区生物多样性及其保护研究[M]. 北京: 科学出版社: 96-109. |
WANG Z X, LEI Y, LI T T, 2013. Study on biodiversity and conservation in Wanchaoshan Nature Reserve, Hubei Province[M]. Beijing: China Forestry Publishing House:96-109. | |
[46] | 吴榜华, 张启昌, 兰晓龙, 等, 1995. 东北红豆杉生长与气象因子关系的初步调查[J]. 吉林林学院学报 (4): 193-199, 209. |
WU B H, ZHANG Q C, LANG X L, et al., 1995. A preliminary investigation on the relations between growth of Taxus cuspidata and meteorological factors[J]. Journal of Jilin Forestry University (4): 193-199, 209. | |
[47] |
肖麒, 章梦婷, 吴翼, 等, 2020. 基于生态位模型的外来入侵种克氏原螯虾在中国的适生区预测[J]. 应用生态学报, 31(1): 309-318.
DOI |
XIAO L, ZHANG M T, WU Y, et al., 2020. Prediction of potential distribution of the invasive species Procambarus clarkii in China based on ecological niche models[J]. Chinese Journal of Applied Ecology, 31(1): 309-318.
DOI |
|
[48] | 谢春平, 2014. 南方红豆杉分布区生态适应性分析[J]. 热带地理, 34(3): 359-365. |
Xie C P, 2014. Climatic ecological adaption for geographical distribution of Taxus Wallichiana var. Mairei[J]. Tropical Geography, 34(3): 359-365. | |
[49] | 许仲林, 彭焕华, 彭守璋, 2015. 物种分布模型的发展及评价方法[J]. 生态学报, 35(2): 557-567. |
XU Z L, PENG H F, PENG S Z, 2015. The development and evaluation of species distribution models[J]. Acta Ecologica Sinica, 35(2): 557-567. | |
[50] | 徐帆, 贺鹭瑶, 郑伟, 2025. 基于MaxEnt模型预测我国怒江山茶的潜在适生区[J/OL]. 西南农业学报, 1-11. (2025-02-11) [2025-02-24]. http://kns.cnki.net/kcms/detail/51.1213.S.20250211.1442.010.html. |
XU F, HE L Y, ZHENG W, 2025. Prediction of the potential suitable area of Camellia saluenensis in China based on MaxEnt model[J/OL]. Southwest China Journal of Agricultural Sciences, 1-11. (2025-02-11) [2025-02-24]. http://kns.cnki.net/kcms/detail/51.1213.S.20250211.1442.010.html. | |
[51] | 杨利民, 张荫桥, 胡全德, 1993. 紫杉生物生态学特性及繁殖育苗初步研究[J]. 中国野生植物资源 (4): 41-43. |
Yang L M, Zhang Y Q, Hu Q D, 1993. Preliminary study on the biological and ecological characteristics and propagation of Taxus[J]. Chinese Wild Plant Resources (4): 41-43. | |
[52] | 杨玉林, 宋学东, 董京祥, 等, 2009. 红豆杉属植物资源及其世界分布概况[J]. 森林工程, 25(3): 5-10. |
Yang Y L, Song X D, Dong J X, et al., 2009. Resources and distribution of Taxus in the world[J]. Forest Engineering, 25(3): 5-10. | |
[53] | 杨子文, 韩姝伊, 李壹, 等, 2023. 气候变化对雪豹全球潜在适生区分布的影响与评估[J]. 生态学报, 43(4): 1412-1425. |
YANG Z W, HAN S Y, LI Y, et al., 2023. Impacts and assessment of climate change on the global distribution of potentially suitable habitats for Panthera uncia[J]. Acta Ecologica Sinica, 43(4): 1412-1425. | |
[54] | 殷晓洁, 周广胜, 隋兴华, 等, 2013. 蒙古栎地理分布的主导气候因子及其阈值[J]. 生态学报, 33(1): 103-109. |
YIN X J, ZHOU G S, SUI X H, et al., 2013. Dominant climatic factors of Quercus mongolica geographical distribution andtheir thresholds[J]. Acta Ecologica Sinica, 33(1): 103-109. | |
[55] | 张利平, 夏军, 胡志芳, 2009. 中国水资源状况与水资源安全问题分析[J]. 长江流域资源与环境, 18(2): 116-120. |
ZHANG L P, XIA J, HU Z F, 2009. Situation and problem analysis of water resource security in China[J]. Resources and Environment in the Yangtze Basin, 18(2): 116-120. | |
[56] | 赵宗慈, 罗勇, 黄建斌, 2018. 从检验CMIP5气候模式看CMIP6地球系统模式的发展[J]. 气候变化研究进展, 14(6): 643-648. |
ZHAO Z C, LUO Y, HUANG J B, 2018. The detection of the CMIP5 climate model to see the development of CMIP6 earth system models[J]. Climate Change Research, 14(6): 643-648. | |
[57] | 周全, 史航, 江明喜, 等, 2018. 湖北竹溪十八里长峡自然保护区红豆杉群落特征研究[J]. 湖北林业科技, 47(1): 5-9. |
ZHOU Q, SHI H, JIANG M X, et al., 2018. Study on the community characteristics of Taxus chinensis in Shibalichangxia Nature Reserve in Zhuxi, Hubei Province[J]. Hubei Forestry Science and Technology, 47(1): 5-9. | |
[58] | 周宇琛, 胡菊华, 刘牧, 等, 2024. 利用最大熵(MaxEnt)模型对红豆杉潜在适生区的模拟[J]. 东北林业大学学报, 52(4): 66-71. |
ZHOU Y C, HU J H, LIU M, et al., 2024. Simulation of Potential Suitable Habitats for Taxus wallichiana Using MaxEnt Model[J]. Journal of Northeast Forestry University, 52(4): 66-71. | |
[59] | 朱莹莹, 徐晓婷, 2019. 气候变化对我国特有濒危物种水杉野生种群分布的影响[J]. 生态学杂志, 38(6): 1629-1636. |
ZHU Y Y, XU X T, 2019. Effects of climate change on the distribution of wild population of Metasequoia glyptostroboides, an endangered and endemic species in China[J]. Chinese Journal of Ecology, 38(6): 1629-1636. |
[1] | XU Da, GONG Chengcheng, ZHANG Zaiyong, RAN Bin, HU Yue, WANG Hanbing, CHEN Chen. The Spatiotemporal Variation Patterns of Vegetation Net Primary Productivity and Its Influencing Factors in the Mu Us Sandy Land [J]. Ecology and Environmental Sciences, 2025, 34(9): 1361-1372. |
[2] | LIU Zeyuan, WEI Youhai, YAN Xufa, CHENG Liang, HOU Lu, YAN Ziwei, GUO Liangzhi. Impact of Climate Change on the Potential Geographic Distribution of the Invasive Weed Sonchus asper [J]. Ecology and Environmental Sciences, 2025, 34(6): 845-852. |
[3] | ZHANG Yali, HUANG Zhujun, TIAN Yichao, LIN Junliang, QIN Caihuan. Time-lag and Accumulation Responses of Fractional Vegetation Coverage Change to Extreme Climate in Southwestern China [J]. Ecology and Environmental Sciences, 2025, 34(5): 665-677. |
[4] | YE Junhong, LIU Zhenhuan, LIU Ziyu. Scenarios Simulation of Territorial Space Ecological Restoration Zoning in the Pearl River Delta Urban Agglomeration Area [J]. Ecology and Environmental Sciences, 2025, 34(1): 4-12. |
[5] | XU Jiale, YANG Xingchuan, ZHAO Wenji, YANG Zhiqiang, ZHONG Yixue, SHI Leyan, MA Pengfei. Evolution Characteristics of Vegetation Coverage in Central and Western Inner Mongolia under the Background of Climate Change [J]. Ecology and Environmental Sciences, 2024, 33(7): 1008-1018. |
[6] | LI Hui, DENG Jiawei, LI Yaxin, MU Yingqi. Impacts of Climate and Land Use Change on Runoff in Typical Basin of Northern Foothills of Qinling Mountains: Case Study of Bahe River Basin [J]. Ecology and Environmental Sciences, 2024, 33(5): 802-811. |
[7] | TIAN Xuchen, WEI Hongling, XIE Shengnan, CHU Qiming, YANG Jing, ZHANG Ying, XIAO Siqiu, TANG Zonghua, LIU Ying, LI Dewen. Potential Geographical Distribution of Acer in Northeast China Based on the MaxEnt Model [J]. Ecology and Environmental Sciences, 2024, 33(4): 509-519. |
[8] | HAO Lei, ZHAI Yongguang, QI Wenchao, LAN Qiongqiong. Spatial-temporal Dynamics of Vegetation Carbon Sources/sinks in Inner Mongolia from 2001 to 2020 and Its Response to Climate Change [J]. Ecology and Environmental Sciences, 2023, 32(5): 825-834. |
[9] | CHEN Junfang, WU Xian, LIU Xiaolin, LIU Juan, YANG Jiarong, LIU Yu. Shaping Characteristics of Elemental Stoichiometry on Microbial Diversity under Different Soil Water Contents [J]. Ecology and Environmental Sciences, 2023, 32(5): 898-909. |
[10] | LI Hui, LI Bilong, GE Lili, HAN Chenhui, YANG Qian, ZHANG Yuejun. Temporal and Spatial Characteristics of Vegetation Evolution and Topographic Effects in Fenhe River Basin from 2000 to 2021 [J]. Ecology and Environmental Sciences, 2023, 32(3): 439-449. |
[11] | DENG Tianle, XIE Liyong, ZHANG Fengzhe, ZHAO Hongliang, JIANG Yutong. Competition for Growth Space between Barnyard Grass and Rice under Elevated Atmospheric CO2 Concentration [J]. Ecology and Environmental Sciences, 2022, 31(8): 1566-1572. |
[12] | YUAN Chunming, YANG Guoping, GENG Yunfen, ZHANG Shanshan. Prediction of Population Dynamics of the Endangered Plant Pterospermum kingtungense Using Integral Projection Models [J]. Ecology and Environmental Sciences, 2022, 31(8): 1530-1536. |
[13] | QI Yue, ZHANG Qiang, HU Shujuan, CAI Dihua, ZHAO Funian, ZHANG Kai, WANG Heling, WANG Runyuan. Climate Change and Its Impact on Winter Wheat Potential Productivity of Loess Plateau in China [J]. Ecology and Environmental Sciences, 2022, 31(8): 1521-1529. |
[14] | LU Yanyu, SUN Wei, FANG Yanqiu, TANG Weian, DENG Hanqing, HE Dongyan. Estimating the Climatic Potential Productivity and the Climatic Capacity of Food Security Based on the Cropping Structure in Anhui Province [J]. Ecology and Environmental Sciences, 2022, 31(7): 1293-1305. |
[15] | CAO Xiaoyun, ZHU Cunxiong, CHEN Guoqian, SUN Shujiao, ZHAO Huifang, ZHU Wenbin, ZHOU Bingrong. Surface Greenness Change and Topographic Differentiation over Qaidam Basin from 2000 to 2021 [J]. Ecology and Environmental Sciences, 2022, 31(6): 1080-1090. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn