Ecology and Environment ›› 2023, Vol. 32 ›› Issue (11): 2007-2018.DOI: 10.16258/j.cnki.1674-5906.2023.11.011
• Reviews • Previous Articles Next Articles
ZHAO Hongyan1(), WANG Bin1,2,*
Received:
2023-07-27
Online:
2023-11-18
Published:
2024-01-17
Contact:
WANG Bin
通讯作者:
王斌
作者简介:
赵洪艳(1998年生),女,硕士研究生,研究方向为新污染物的环境行为及健康效应。E-mail: 2389434824@qq.com
基金资助:
CLC Number:
ZHAO Hongyan, WANG Bin. Distribution Characteristics and Exposure Risk of Per- and Polyfluoroalkyl Substances in Indoor Environments[J]. Ecology and Environment, 2023, 32(11): 2007-2018.
赵洪艳, 王斌. 室内环境中全(多)氟烷基化合物的分布特征和暴露风险[J]. 生态环境学报, 2023, 32(11): 2007-2018.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2023.11.011
来源 | PFAS浓度 | 主要PFAS类型 | 参考文献 |
---|---|---|---|
地毯 | 325‒4010 ng∙g−1 | 6:2 FTOH、8:2 FTOH、10:2 FTOH | Liu et al., |
252 ng∙g−1 | PFOA、PFOS、 PFHxS | Beesoon et al., | |
1.6‒600 ng∙g−1 | FOSA/FOSEs、PFCAs、PFSAs、FTOHs | Zheng et al., | |
32.20‒8500 ng∙g−1 | PFBS、PFOS、 FTOH、PFBA | Wu et al., | |
化妆品 | 1200‒19000 ng∙g−1 | PFHxA、PFOA、 PFDA、PFDoDA | Fujii et al., |
22‒10500 ng∙g−1 | 6:2 FTOH、6:2 FTMA、FTOHs、PAPs | Whitehead et al., | |
470000 ng∙g−1 | PFHpA、PFHxA、 PAPs | Schultes et al., | |
食品包装袋 | 60000 ng∙g−1 | PFOA、PFHxA、 PFBS、6:2 FTSA | Schaider et al., |
22.10 ng∙dm−2 | PFOA | Monge Brenes et al., | |
0.20‒2.65 ng∙g−1 | PFDS、PFTeDA、PFTrDA、PFHxDA | Zafeiraki et al., |
Table 1 PFAS concentrations and types in different indoor environment
来源 | PFAS浓度 | 主要PFAS类型 | 参考文献 |
---|---|---|---|
地毯 | 325‒4010 ng∙g−1 | 6:2 FTOH、8:2 FTOH、10:2 FTOH | Liu et al., |
252 ng∙g−1 | PFOA、PFOS、 PFHxS | Beesoon et al., | |
1.6‒600 ng∙g−1 | FOSA/FOSEs、PFCAs、PFSAs、FTOHs | Zheng et al., | |
32.20‒8500 ng∙g−1 | PFBS、PFOS、 FTOH、PFBA | Wu et al., | |
化妆品 | 1200‒19000 ng∙g−1 | PFHxA、PFOA、 PFDA、PFDoDA | Fujii et al., |
22‒10500 ng∙g−1 | 6:2 FTOH、6:2 FTMA、FTOHs、PAPs | Whitehead et al., | |
470000 ng∙g−1 | PFHpA、PFHxA、 PAPs | Schultes et al., | |
食品包装袋 | 60000 ng∙g−1 | PFOA、PFHxA、 PFBS、6:2 FTSA | Schaider et al., |
22.10 ng∙dm−2 | PFOA | Monge Brenes et al., | |
0.20‒2.65 ng∙g−1 | PFDS、PFTeDA、PFTrDA、PFHxDA | Zafeiraki et al., |
暴露途径 | 估算公式 | 单位 |
---|---|---|
饮食摄入 | pg∙kg−1∙d−1 | |
C: 食物中目标PFAS的浓度 | pg∙g−1 | |
Q: 每天消耗的食物量 | g∙d−1 | |
F: PFAS经胃肠道的摄取部分 | 无单位 | |
M: 个体体重 | kg | |
灰尘摄入 | pg∙kg−1∙d−1 | |
C: 室内灰尘中目标PFAS的浓度 | pg∙g−1 | |
Q: 每天吸尘量 | g∙d−1 | |
F: PFAS经胃肠道的摄取部分 | 无单位 | |
M: 个体体重 | kg | |
室内空气吸入 | pg∙kg−1∙d−1 | |
C: 室内空气中目标PFAS的浓度 | pg∙m−3 | |
Q: 每天吸入率 | m3∙d−1 | |
F: PFAS通过肺部的摄取部分 | 无单位 | |
M: 个体体重 | kg | |
皮肤吸收 | pg∙kg−1∙d−1 | |
Q: 根据目标PFAS的手部擦拭量 来确定手上的质量 | pg | |
T: 暴露时间为1 d | d−1 | |
F: PFAS通过皮肤吸收的吸收部分 | 无单位 | |
M: 个体体重 | kg |
Table 2 Equations applied to estimated daily intakes of PFAS from different exposure pathways
暴露途径 | 估算公式 | 单位 |
---|---|---|
饮食摄入 | pg∙kg−1∙d−1 | |
C: 食物中目标PFAS的浓度 | pg∙g−1 | |
Q: 每天消耗的食物量 | g∙d−1 | |
F: PFAS经胃肠道的摄取部分 | 无单位 | |
M: 个体体重 | kg | |
灰尘摄入 | pg∙kg−1∙d−1 | |
C: 室内灰尘中目标PFAS的浓度 | pg∙g−1 | |
Q: 每天吸尘量 | g∙d−1 | |
F: PFAS经胃肠道的摄取部分 | 无单位 | |
M: 个体体重 | kg | |
室内空气吸入 | pg∙kg−1∙d−1 | |
C: 室内空气中目标PFAS的浓度 | pg∙m−3 | |
Q: 每天吸入率 | m3∙d−1 | |
F: PFAS通过肺部的摄取部分 | 无单位 | |
M: 个体体重 | kg | |
皮肤吸收 | pg∙kg−1∙d−1 | |
Q: 根据目标PFAS的手部擦拭量 来确定手上的质量 | pg | |
T: 暴露时间为1 d | d−1 | |
F: PFAS通过皮肤吸收的吸收部分 | 无单位 | |
M: 个体体重 | kg |
[1] |
ANTONIOU E, COLNOT T, ZEEGERS M, et al., 2022. Immunomodulation and exposure to per- and polyfluoroalkyl substances: An overview of the current evidence from animal and human studies[J]. Archives of Toxicology, 96(8): 2261-2285.
DOI PMID |
[2] |
BACH C C, BECH B H, BRIX N, et al., 2015. Perfluoroalkyl and polyfluoroalkyl substances and human fetal growth: a systematic review[J]. Critical Reviews in Toxicology, 45(1): 53-67.
DOI PMID |
[3] | BALK F G P, WINKENS PUTZ K, RIBBENSTEDT A, et al., 2019. Children's exposure to perfluoroalkyl acids - a modelling approach[J]. Environment Science Processes & Impacts, 21(11): 1875-1886. |
[4] |
BAO Y X, HUANG J, CAGNETTA G, et al., 2019. Removal of F-53B as PFOS alternative in chrome plating wastewater by UV/Sulfite reduction[J]. Water Research, 163: 114907.
DOI URL |
[5] |
BASSLER J, DUCATMAN A, ELLIOTT M, et al., 2019. Environmental perfluoroalkyl acid exposures are associated with liver disease characterized by apoptosis and altered serum adipocytokines[J]. Environmental Pollution, 247: 1055-1063.
DOI PMID |
[6] |
BEESOON S, GENUIS S J, BENSKIN J P, et al., 2012. Exceptionally high serum concentrations of perfluorohexanesulfonate in a Canadian family are linked to home carpet treatment applications[J]. Environmental Science & Technology, 46(23): 12960-12967.
DOI URL |
[7] |
BESIS A, BOTSAROPOULOU E, SAMARA C, et al., 2019. Perfluoroalkyl substances (PFASs) in air-conditioner filter dust of indoor microenvironments in Greece: Implications for exposure[J]. Ecotoxicology and Environmental Safety, 183: 109559.
DOI URL |
[8] |
BUCK R C, FRANKLIN J, BERGER U, et al., 2011. Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins[J]. Integrated Environmental Assessment and Management, 7(4): 513-541.
DOI PMID |
[9] |
CAHUAS L, MUENSTERMAN D J, KIM-FU M L, et al., 2022. Paints: A source of volatile PFAS in air horizontal line potential implications for inhalation exposure[J]. Environmental Science & Technology, 56(23): 17070-17079.
DOI URL |
[10] |
CHAPARRO-ORTEGA A, BETANCOURT M, ROSAS P, et al., 2018. Endocrine disruptor effect of perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) on porcine ovarian cell steroidogenesis[J]. Toxicology in Vitro, 46: 86-93.
DOI URL |
[11] |
CHEN W L, BAI F Y, CHANG Y C, et al., 2018. Concentrations of perfluoroalkyl substances in foods and the dietary exposure among Taiwan general population and pregnant women[J]. Journal of Food and Drug Analysis, 26(3): 994-1004.
DOI URL |
[12] |
DAI M F, YAN N, BRUSSEAU M L, 2023. Potential impact of bacteria on the transport of PFAS in porous media[J]. Water Research, 243: 120350.
DOI URL |
[13] |
DALY E R, CHAN B P, TALBOT E A, et al., 2018. Per- and polyfluoroalkyl substance (PFAS) exposure assessment in a community exposed to contaminated drinking water, New Hampshire, 2015[J]. International Journal of Hygiene and Environmental Health, 221(3): 569-577.
DOI PMID |
[14] |
DAS K P, WOOD C R, LIN M T, et al., 2017. Perfluoroalkyl acids-induced liver steatosis: Effects on genes controlling lipid homeostasis[J]. Toxicology, 378: 37-52.
DOI PMID |
[15] |
DE LA TORRE A, NAVARRO I, SANZ P, et al., 2019. Occurrence and human exposure assessment of perfluorinated substances in house dust from three European countries[J]. Science of the Total Environment, 685: 308-314.
DOI URL |
[16] |
DE SILVA A O, ARMITAGE J M, BRUTON T A, et al., 2021. PFAS exposure pathways for humans and wildlife: A synthesis of current knowledge and key gaps in understanding[J]. Environmental Toxicology and Chemistry, 40(3): 631-657.
DOI PMID |
[17] |
DELUCA N M, MINUCCI J M, MULLIKIN A, et al., 2022. Human exposure pathways to poly- and perfluoroalkyl substances (PFAS) from indoor media: A systematic review[J]. Environment International, 162: 107149.
DOI URL |
[18] |
DING N, HARLOW S D, RANDOLPH J F, JR, et al., 2020. Perfluoroalkyl and polyfluoroalkyl substances (PFAS) and their effects on the ovary[J]. Human Reproduction Update, 26(5): 724-752.
DOI PMID |
[19] |
DINGLASAN-PANLILIO M J A, MABURY S A, 2006. Significant residual fluorinated alcohols present in various fluorinated materials[J]. Environmental Science & Technology, 40(5): 1447-1453.
DOI URL |
[20] |
DOMINGO J L, NADAL M, 2017. Per- and polyfluoroalkyl substances (PFASs) in food and human dietary intake: A review of the recent scientific literature[J]. Journal of Agricultural and Food Chemistry, 65(3): 533-543.
DOI PMID |
[21] |
DOMINGO J L, NADAL M, 2019. Human exposure to per- and polyfluoroalkyl substances (PFAS) through drinking water: A review of the recent scientific literature[J]. Environmental Research, 177: 108648.
DOI URL |
[22] |
DOMINGUEZ A, SALAZAR Z, ARENAS E, et al., 2016. Effect of perfluorooctane sulfonate on viability, maturation and gap junctional intercellular communication of porcine oocytes in vitro[J]. Toxicology in Vitro, 35: 93-99.
DOI PMID |
[23] |
DU Z W, DENG S B, LIU D C, et al., 2016. Efficient adsorption of PFOS and F53B from chrome plating wastewater and their subsequent degradation in the regeneration process[J]. Chemical Engineering Journal, 290: 405-413.
DOI URL |
[24] | EGEGHY P P, LORBER M, 2011. An assessment of the exposure of Americans to perfluorooctane sulfonate: A comparison of estimated intake with values inferred from NHANES data[J]. Journal of Exposure Science & Environmental Epidemiology, 21(2): 150-168. |
[25] |
ERIKSSON U, KARRMAN A, 2015. World-wide indoor exposure to polyfluoroalkyl phosphate esters (PAPs) and other PFASs in household dust[J]. Environmental Science & Technology, 49(24): 14503-14511.
DOI URL |
[26] |
FASANO W J, KENNEDY G L, SZOSTEK B, et al., 2005. Penetration of Ammonium perfluorooctanoate through rat and human skin in vitro[J]. Drug and Chemical Toxicology, 28(1): 79-90.
PMID |
[27] |
FENTON S E, DUCATMAN A, BOOBIS A, et al., 2021. Per- and polyfluoroalkyl substance toxicity and human health review: Current state of knowledge and strategies for informing future research[J]. Environmental Toxicology and Chemistry, 40(3): 606-630.
DOI PMID |
[28] | FRANKO J, MEADE B J, FRASCH H F, et al., 2012. Dermal penetration potential of perfluorooctanoic acid (PFOA) in human and mouse skin[J]. Journal of Toxicology and Environmental Health, 75(1): 50-62. |
[29] |
FU J J, GAO Y, WANG T, et al., 2015. Elevated levels of perfluoroalkyl acids in family members of occupationally exposed workers: The importance of dust transfer[J]. Scientific Reports, 5(1): 9313.
DOI |
[30] |
FUJII Y, HARADA K H, KOIZUMI A, 2013. Occurrence of perfluorinated carboxylic acids (PFCAs) in personal care products and compounding agents[J]. Chemosphere, 93(3): 538-544.
DOI PMID |
[31] |
GARG S, KUMAR P, MISHRA V, et al., 2020. A review on the sources, occurrence and health risks of per-/poly-fluoroalkyl substances (PFAS) arising from the manufacture and disposal of electric and electronic products[J]. Journal of Water Process Engineering, 38: 101683.
DOI URL |
[32] |
GLENN G, SHOGREN R, JIN X, et al., 2021. Per- and polyfluoroalkyl substances and their alternatives in paper food packaging[J]. Comprehensive Reviews in Food Science and Food Safety, 20(3): 2596-2625.
DOI PMID |
[33] |
GOMIS M I, VESTERGREN R, NILSSON H, et al., 2016. Contribution of direct and indirect exposure to human serumconcentrations of perfluorooctanoic acid in an occupationally exposed group of ski waxers[J]. Environmental Science & Technology, 50(13): 7037-7046.
DOI URL |
[34] |
HALL S M, PATTON S, PETREAS M, et al., 2020. Per- and polyfluoroalkyl substances in dust collected from residential homes and fire stations in North America[J]. Environmental Science & Technology, 54(22): 14558-14567.
DOI URL |
[35] |
HALLBERG I, KJELLGREN J, PERSSON S, et al., 2019. Perfluorononanoic acid (PFNA) alters lipid accumulation in bovine blastocysts after oocyte exposure during in vitro maturation[J]. Reproductive Toxicology, 84: 1-8.
DOI PMID |
[36] |
HARRAD S, DE WIT C A, ABDALLAH M A E, et al., 2010. Indoor contamination with hexabromocyclododecanes, polybrominated diphenyl ethers, and perfluoroalkyl compounds: An important exposure Pathway for People?[J]. Environmental Science & Technology, 44(9): 3221-3231.
DOI URL |
[37] |
HAUG L S, HUBER S, SCHLABACH M, et al., 2011. Investigation on per- and polyfluorinated compounds in paired samples of house dust and indoor air from Norwegian homes[J]. Environmental Science & Technology, 45(19): 7991-7998.
DOI URL |
[38] |
HEYDEBRECK F, TANG J, XIE Z, et al., 2016. Emissions of per- and polyfluoroalkyl substances in a textile manufacturing plant in hina and their relevance for workers' exposure[J]. Environmental Science & Technology, 50(19): 10386-10396.
DOI URL |
[39] |
HUANG Y, NIAN M, YU G Q, et al., 2022. Environmental exposure to per- and polyfluoroalkyl substances and sleep disturbance in pregnant women: A prospective cohort study[J]. Science of the Total Environment, 842: 156869.
DOI URL |
[40] |
HUBER S, HAUG L S, SCHLABACH M, 2011. Per- and polyfluorinated compounds in house dust and indoor air from northern Norway - a pilot study[J]. Chemosphere, 84(11): 1686-1693.
DOI PMID |
[41] |
JANE L E L, YAMADA M, FORD J, et al. 2022. Health-related toxicity of emerging per- and polyfluoroalkyl substances: Comparison to legacy PFOS and PFOA[J]. Environmental Research, 212(Pt C):113431.
DOI URL |
[42] |
JIAN J M, CHEN D, HAN F J, et al., 2018. A short review on human exposure to and tissue distribution of per- and polyfluoroalkyl substances (PFASs)[J]. Science of the Total Environment, 636: 1058-1069.
DOI URL |
[43] |
JOHNSON M S, BUC K R C, COUSINS I T, et al., 2020. Estimating environmental hazard and risks from exposure to per‐ and polyfluoroalkyl Substances (PFASs): Outcome of a SETAC focused topic meeting[J]. Environmental Toxicology and Chemistry, 40(3): 543-549.
DOI URL |
[44] |
JUHASZ A L, KEITH A, JONES R, et al., 2023. Impact of precursors and bioaccessibility on childhood PFAS exposure from house dust[J]. Science of The Total Environment, 889: 164306.
DOI URL |
[45] |
KAISER A-M, FORSTHUBER M, WIDHALM R, et al., 2023. Prenatal exposure to per- and polyfluoroalkyl substances and pregnancy outcome in Austria[J]. Ecotoxicology and Environmental Safety, 259: 115006.
DOI URL |
[46] |
KARÁSKOVÁ P, VENIER M, MELYMUK L, et al., 2016. Perfluorinated alkyl substances (PFASs) in household dust in Central Europe and North America[J]. Environment International, 94: 315-324.
DOI PMID |
[47] |
LANKOVA D, SVARCOVA A, KALACHOVA K, et al., 2015. Multi-analyte method for the analysis of various organohalogen compounds in house dust[J]. Analytica Chimica Acta, 854: 61-69.
DOI PMID |
[48] |
LI K, LI C, YU N Y, et al., 2015. In vivo bioavailability and in vitro bioaccessibility of perfluorooctanoic acid (PFOA) in food matrices: Correlation analysis and method development[J]. Environmental Science & Technology, 49(1): 150-158.
DOI URL |
[49] |
LI Y, FLETCHER T, MUCS D, et al., 2018. Half-lives of PFOS, PFHxS and PFOA after end of exposure to contaminated drinking water[J]. Occupational and Environmental Medicine, 75(1): 46-51.
DOI PMID |
[50] |
LIEW Z, GOUDARZI H, OULHOTE Y, 2018. Developmental exposures to perfluoroalkyl substances (PFASs): An update of associated health outcomes[J]. Current Environmental Health Reports, 5(1): 1-19.
DOI PMID |
[51] |
LIN H, TANIYASU S, YAMAZAKI E, et al., 2020. Per- and polyfluoroalkyl substances in the air particles of Asia: Levels, seasonality, and size-dependent distribution[J]. Environmental Science & Technology, 54(22): 14182-14191.
DOI URL |
[52] |
LIU S Y, YANG R J, YIN N Y, et al., 2020. Effects of per- and poly-fluorinated alkyl substances on pancreatic and endocrine differentiation of human pluripotent stem cells[J]. Chemosphere, 254: 126709.
DOI URL |
[53] |
LIU X T, CHEN D, WANG B, et al., 2020. Does low maternal exposure to per- and polyfluoroalkyl substances elevate the risk of spontaneous preterm birth? A nested case-c effects of per- and poly-fluorinated alkyl substances on pancreatic and endocrine differentiation of human pluripotent stem cells ontrol study in China[J]. Environmental Science & Technology, 54(13): 8259-8268.
DOI URL |
[54] |
LIU X Y, GUO Z S, FOLK E E T, et al., 2015. Determination of fluorotelomer alcohols in selected consumer products and preliminary investigation of their fate in the indoor environment[J]. Chemosphere, 129: 81-86.
DOI PMID |
[55] |
LIU X, ZHANG H, TIAN Y M, et al., 2021. Bioavailability evaluation of perchlorate in different foods in vivo: Comparison with in vitro assays and implications for human health risk assessment[J]. Journal of Agricultural and Food Chemistry, 69(17): 5189-5197.
DOI URL |
[56] |
LOPEZ-ARELLANO P, LOPEZ-ARELLANO K, LUNA J, et al., 2019. Perfluorooctanoic acid disrupts gap junction intercellular communication and induces reactive oxygen species formation and apoptosis in mouse ovaries[J]. Environmental Toxicology, 34(1): 92-98.
DOI URL |
[57] |
LU M J, LI G Y, YANG Y, et al., 2021. A review on in-vitro oral bioaccessibility of organic pollutants and its application in human exposure assessment[J]. Science of the Total Environment, 752: 142001.
DOI URL |
[58] |
MCDONOUGH C A, WARD C, HU Q, et al., 2020. Immunotoxicity of an electrochemically fluorinated aqueous film-forming foam[J]. Toxicological Sciences, 178(1): 104-114.
DOI PMID |
[59] |
MIKKONEN A T, MARTIN J, UPTON R N, et al., 2023. Spatio-temporal trends in livestock exposure to per- and polyfluoroalkyl substances (PFAS) inform risk assessment and management measures[J]. Environmental Research, 225(12): 115518.
DOI URL |
[60] | MONGE BRENES A L, CURTZWILER G, DIXON P, et al., 2019. PFOA and PFOS levels in microwave paper packaging between 2005 and 2018[J]. Food Additives & Contaminants: Part B, 12(3): 191-198. |
[61] | MORALES-MCDEVITT M E, BECANOVA J, BLUM A, et al., 2021. The air that we breathe: Neutral and volatile PFAS in indoor air[J]. Environmental Science & Technology Letters, 8(10): 897-902. |
[62] |
NGUYEN M A, WIBERG K, RIBELI E, et al., 2017. Spatial distribution and source tracing of per- and polyfluoroalkyl substances (PFASs) in surface water in Northern Europe[J]. Environmental Pollution, 220(Part B): 1438-1446.
DOI URL |
[63] |
NILSSON S, SMURTHWAITE K, AYLWARD L L, et al., 2022. Serum concentration trends and apparent half-lives of per- and polyfluoroalkyl substances (PFAS) in Australian firefighters[J]. International Journal of Hygiene and Environmental Health, 246: 114040.
DOI URL |
[64] |
OLSEN G W, CHANG S C, NOKER P E, et al., 2009. A comparison of the pharmacokinetics of perfluorobutanesulfonate (PFBS) in rats, monkeys, and humans[J]. Toxicology, 256(1-2): 65-74.
DOI PMID |
[65] | PEASLEE G F, WILKINSON J T, MCGUINNESS S R, et al., 2020. Another pathway for firefighter exposure to per- and polyfluoroalkyl substances: Firefighter textiles[J]. Environmental Science & Technology Letters, 7(8): 594-599. |
[66] |
POOTHONG S, PAPADOPOULOU E, PADILLA-SANCHEZ J A, et al., 2020. Multiple pathways of human exposure to poly- and perfluoroalkyl substances (PFASs): From external exposure to human blood[J]. Environment International, 134: 105244.
DOI URL |
[67] |
QI W P, CLARK J M, TIMME-LARAGY A R, et al., 2018. Perfluorobutanesulfonic acid (PFBS) potentiates adipogenesis of 3T3-L1 adipocytes[J]. Food and Chemical Toxicology, 120: 340-345.
DOI PMID |
[68] |
RAGNARSDOTTIR O, ABDALLAH M A, HARRAD S, 2022. Dermal uptake: An important pathway of human exposure to perfluoroalkyl substances?[J]. Environmental Pollution, 307: 119478.
DOI URL |
[69] |
ROCK K D, POLERA M E, GUILLETTE T C, et al., 2023. Domestic dogs and horses as sentinels of per- and polyfluoroalkyl substance exposure and associated health biomarkers in Gray's Creek North Carolina[J]. Environmental Science & Technology, 57(26): 9567-9579.
DOI URL |
[70] |
SAVVAIDES T, KOELMEL J P, ZHOU Y K, et al., 2021. Prevalence and implications of per- and polyfluoroalkyl substances (PFAS) in settled dust[J]. Current Environmental Health Reports, 8(4): 323-335.
DOI PMID |
[71] | SCHAIDER L A, BALAN S A, BLUM A, et al., 2017. Fluorinated compounds in U.S. fast food packaging[J]. Environmental Science & Technology Letters, 4(3): 105-111. |
[72] | SCHRENK D, BIGNAMI M, BODIN L, et al., 2020. Risk to human health related to the presence of perfluoroalkyl substances in food[J]. EFSA Journal, 18(9): e06223. |
[73] | SCHULTES L, VESTERGREN R, VOLKOVA K, et al., 2018. Per- and polyfluoroalkyl substances and fluorine mass balance in cosmetic products from the Swedish market: Implications for environmental emissions and human exposure[J]. Environmental Science: Processes & Impacts, 20(12): 1680-1690. |
[74] |
SHOEIB T, HASSAN Y, RAUERT C, et al., 2016. Poly- and perfluoroalkyl substances (PFASs) in indoor dust and food packaging materials in Egypt: Trends in developed and developing countries[J]. Chemosphere, 144: 1573-1581.
DOI PMID |
[75] |
SINCLAIR E, KIM S K, AKINLEYE H B, et al., 2007. Quantitation of gas-phase perfluoroalkyl surfactants and fluorotelomer alcohols released from nonstick cookware and microwave popcorn bags[J]. Environmental Science & Technology, 41(4): 1180-1185.
DOI URL |
[76] |
SINCLAIR G M, LONG S M, JONES O A H, 2020. What are the effects of PFAS exposure at environmentally relevant concentrations?[J]. Chemosphere, 258: 127340.
DOI URL |
[77] |
SUSMANN H P, SCHAIDER L A, RODGERS K M, et al., 2019. Dietary habits related to food packaging and population exposure to PFASs[J]. Environmental Health Perspectives, 127(10): 107003.
DOI URL |
[78] |
TANNER E M, BLOOM M S, WU Q, et al., 2018. Occupational exposure to perfluoroalkyl substances and serum levels of perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) in an aging population from upstate New York: A retrospective cohort study[J]. International Archives of Occupational and Environmental Health, 91(2): 145-154.
DOI PMID |
[79] |
THEPAUT E, DIRVEN H, HAUG L S, et al., 2021. Per- and polyfluoroalkyl substances in serum and associations with food consumption and use of personal care products in the Norwegian biomonitoring study from the EU project EuroMix[J]. Environmental Research, 195: 110795.
DOI URL |
[80] |
TIAN Z X, KIM S-K, SHOEIB M, et al., 2016. Human exposure to per- and polyfluoroalkyl substances (PFASs) via house dust in Korea: Implication to exposure pathway[J]. Science of The Total Environment, 553: 266-275.
DOI URL |
[81] |
TRUDEL D, HOROWITZ L, WORMUTH M, et al., 2008. Estimating consumer exposure to PFOS and PFOA[J]. Risk Analysis, 28(2): 251-69.
DOI PMID |
[82] |
WANG B, YAO Y M, WANG Y, et al., 2022. Per- and polyfluoroalkyl substances in outdoor and indoor dust from mainland China: Contributions of unknown precursors and implications for human exposure[J]. Environmental Science & Technology, 56(10): 6036-6045.
DOI URL |
[83] |
WANG X L, BAI Y Y, TANG C F, et al., 2018. Impact of perfluorooctane sulfonate on reproductive ability of female mice through suppression of estrogen receptor alpha-activated kisspeptin neurons[J]. Toxicological Sciences, 165(2): 475-486.
DOI URL |
[84] |
WASHINGTON J W, RANKIN K, LIBELO E L, et al., 2019. Determining global background soil PFAS loads and the fluorotelomer-based polymer degradation rates that can account for these loads[J]. Science of the Total Environment, 651(Part 2): 2444-2449.
DOI URL |
[85] |
WESCHLER C J, NAZAROFF W W, 2008. Semivolatile organic compounds in indoor environments[J]. Atmospheric Environment, 42(40): 9018-9040.
DOI URL |
[86] | WHITEHEAD H D, VENIER M, WU Y, et al., 2021. Fluorinated compounds in North American cosmetics[J]. Environmental Science & Technology Letters, 8(7): 538-544. |
[87] |
WINKENS K, GIOVANOULIS G, KOPONEN J, et al., 2018. Perfluoroalkyl acids and their precursors in floor dust of children's bedrooms - Implications for indoor exposure[J]. Environment International, 119: 493-502.
DOI PMID |
[88] |
WU Y, ROMANAK K, BRUTON T, et al., 2020. Per-and polyfluoroalkyl substances in paired dust and carpets from childcare centers[J]. Chemosphere, 251: 126771.
DOI URL |
[89] |
XIA C J, DIAMOND M L, PEASLEE G F, et al., 2022. Per- and polyfluoroalkyl substances in North American school uniforms[J]. Environmental Science & Technology, 56(19): 13845-13857.
DOI URL |
[90] |
XU F P, CHEN D, LIU X T, et al., 2021. Emerging and legacy per- and polyfluoroalkyl substances in house dust from South China: Contamination status and human exposure assessment[J]. Environmental Research, 192: 110243.
DOI URL |
[91] |
YAO Y M, CHANG S, SUN H W, et al., 2016. Neutral and ionic per- and polyfluoroalkyl substances (PFASs) in atmospheric and dry deposition samples over a source region (Tianjin, China)[J]. Environmental Pollution, 212: 449-456.
DOI PMID |
[92] |
YAO Y M, ZHAO Y Y, SUN H W, et al., 2018. Per- and polyfluoroalkyl substances (PFASs) in indoor air and dust from homes and various microenvironments in China: Implications for human exposure[J]. Environmental Science & Technology, 52(5): 3156-3166.
DOI URL |
[93] |
YOUNG A S, HAUSER R, JAMES-TODD T M, et al., 2021. Impact of “healthier” materials interventions on dust concentrations of per- and polyfluoroalkyl substances, polybrominated diphenyl ethers, and organophosphate esters[J]. Environment International, 150: 106151.
DOI URL |
[94] |
YUAN G X, PENG H, HUANG C, et al., 2016. Ubiquitous occurrence of fluorotelomer alcohols in eco-friendly paper-made food-contact materials and their implication for human exposure[J]. Environmental Science & Technology, 50(2): 942-50.
DOI URL |
[95] |
ZABALETA I, NEGREIRA N, BIZKARGUENAGA E, et al., 2017. Screening and identification of per- and polyfluoroalkyl substances in microwave popcorn bags[J]. Food Chemistry, 230: 497-506.
DOI PMID |
[96] |
ZAFEIRAKI E, COSTOPOULOU D, VASSILIADOU I, et al., 2014. Determination of perfluorinated compounds (PFCs) in various foodstuff packaging materials used in the Greek market[J]. Chemosphere, 94: 169-176.
PMID |
[97] |
ZANG L, LIU X R, XIE X J, et al., 2023. Exposure to per- and polyfluoroalkyl substances in early pregnancy, risk of gestational diabetes mellitus, potential pathways, and influencing factors in pregnant women: A nested case-control study[J]. Environmental Pollution, 326: 121504.
DOI URL |
[98] |
ZHANG B, HE Y, HUANG Y Y, et al., 2020. Novel and legacy poly- and perfluoroalkyl substances (PFASs) in indoor dust from urban, industrial, and e-waste dismantling areas: The emergence of PFAS alternatives in China[J]. Environmental Pollution, 263(Part A): 114461.
DOI URL |
[99] |
ZHANG L M, KRISHNAN P, EHRESMAN D J, et al., 2016. Editor's highlight: Perfluorooctane sulfonate-choline ion pair formation: A potential mechanism modulating hepatic steatosis and oxidative stress in mice[J]. Toxicological Sciences, 153(1): 186-197.
DOI PMID |
[100] |
ZHANG Y T, ZEESHAN M, SU F, et al., 2022. Associations between both legacy and alternative per- and polyfluoroalkyl substances and glucose-homeostasis: The isomers of C8 health project in China[J]. Environment International, 158: 106913.
DOI URL |
[101] |
ZHENG G M, BOOR B E, SCHREDER E, et al., 2020. Indoor exposure to per- and polyfluoroalkyl substances (PFAS) in the childcare environment[J]. Environmental Pollution, 258: 113714.
DOI URL |
[102] |
ZHOU J Q, BAUMANN K, CHANG N M, et al., 2022. Per- and polyfluoroalkyl substances (PFASs) in airborne particulate matter (PM2.0) emitted during floor waxing: A pilot study[J]. Atmospheric Environment, 268: 118845.
DOI URL |
[103] |
ZHU Y M, JIA Y B, WANG X, et al., 2022. Mechanisms underlying the impacts of lipids on the diverse bioavailability of per- and polyfluoroalkyl substances in foods[J]. Environmental Science & Technology, 56(6): 3613-3622.
DOI URL |
[104] |
ZHU Y M, LI Y Q, LIU X S, et al., 2023. Bioaccessibility of per- and polyfluoroalkyl substances in food and dust: Implication for more accurate risk assessment[J]. Science of the Total Environment, 868: 161739.
DOI URL |
[105] | 郝薛文, 李力, 王杰, 等, 2015. 全氟和多氟烷基化合物的环境风险评估研究现状、不确定性与趋势分析[J]. 环境科学, 36(8): 3106-3118. |
HAO X W, LI L, WANG J, et al., 2015. Status Quo, uncertainties and trends analysis of environmental risk assessment for PFASs[J]. Environmental Sciences, 36(8): 3106-3118. | |
[106] | 史亚利, 蔡亚岐, 2014. 全氟和多氟化合物环境问题研究[J]. 化学进展, 26(4): 665-681. |
SHI Y L, CAI Y Q, 2014. Study of per-and polyfluoroalkyl substances related environmental problems[J]. Progress in Chemistry, 26(4): 665-681. | |
[107] | 史亚利, 张博钠, 郑哲, 等, 2022. 全氟和多氟烷基类物质在大气环境中的存在和行为研究进展[J]. 环境科学研究, 35(9): 2037-2046. |
SHI Y L, ZHANG B N, ZHENG Z, et al., 2022. Research progress on existence and behavior of per-and polyfluoroalkyl substances in atmosphere[J]. Research of Environmental Sciences, 35(9): 2037-2046. | |
[108] | 夏慧, 敖俊杰, 袁涛, 2016. 室内灰尘中全氟化合物的污染状况与人体暴露水平评估[J]. 生态毒理学报, 11(2): 223-230. |
XIA H, AO J J, YUAN T, 2016. Occurrences, characteristics and human exposure assessment of perfluorinated compounds in indoor dust[J]. Asian Journal of Ecotoxicolog, 11(2): 223-230. | |
[109] | 赵洋洋, 姚义鸣, 常帅, 等, 2015. 室内空气和灰尘中全(多)氟烷基化合物的研究进展[J]. 环境化学, 34(4): 656-663. |
ZHAO Y Y, YAO Y M, CHANG S, et al., 2015. Per (poly) fluoroalkyl substances in indoor air and dust[J]. Environmental Chemistry, 34(4): 656-663. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn