Ecology and Environment ›› 2023, Vol. 32 ›› Issue (10): 1833-1841.DOI: 10.16258/j.cnki.1674-5906.2023.10.012
• Research Articles • Previous Articles Next Articles
LI Xuan1,2(), QIAN Xiuwen2, HUANG Juan2,*(
), WANG Mingyu2, XIAO Jun2
Received:
2023-08-16
Online:
2023-10-18
Published:
2024-01-16
Contact:
HUANG Juan
李璇1,2(), 钱秀雯2, 黄娟2,*(
), 王鸣宇2, 肖君2
通讯作者:
黄娟
作者简介:
李璇(1982年生),女,高级工程师,硕士,研究方向为水处理理论与技术。E-mail: liseu@qq.com
基金资助:
CLC Number:
LI Xuan, QIAN Xiuwen, HUANG Juan, WANG Mingyu, XIAO Jun. Responses of Operating Performance and Microbial Community in Constructed Wetlands to NiO NPs Exposure[J]. Ecology and Environment, 2023, 32(10): 1833-1841.
李璇, 钱秀雯, 黄娟, 王鸣宇, 肖君. 纳米氧化镍暴露下人工湿地运行性能及微生物群落的响应[J]. 生态环境学报, 2023, 32(10): 1833-1841.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2023.10.012
[1] |
AZIZ S, 2021. Effect of engineered nickel oxide nanoparticles on antioxidant enzymes in freshwater fish, Labeo rohita[J]. The Pakistan Veterinary Journal, 41(3): 424-428.
DOI URL |
[2] |
CHAPERON S, SAUVE S, 2008. Toxicity interactions of cadmium, copper, and lead on soil urease and dehydrogenase activity in relation to chemical speciation[J]. Ecotoxicological and Environmental Safety, 70(1): 1-9.
DOI URL |
[3] |
CHEN Y, JIANG X, XIAO K K, et al., 2017. Enhanced volatile fatty acids (VFAs) production in a thermophilic fermenter with stepwise pH increase——Investigation on dissolved organic matter transformation and microbial community shift[J]. Water Research, 112: 261-268.
DOI URL |
[4] |
FAISAL M, SAQUIB Q, ALATAR A A, et al., 2013. Phytotoxic hazards of NiO-nanoparticles in tomato: a study on mechanism of cell death[J]. Journal of Hazardous Materials, 250-251: 318-332.
DOI PMID |
[5] |
FINGLER S, STIPIČEVIĆ S, DREVENKAR V, 2004. Sorption behaviour of chlorophenols and triazine herbicides in reference euro-soils[J]. International Journal of Environmental Analytical Chemistry, 84(1-3): 89-93.
DOI URL |
[6] |
GAO L J, HAN F, ZHANG X W, et al., 2020. Simultaneous nitrate and dissolved organic matter removal from wastewater treatment plant effluent in a solid-phase denitrification biofilm reactor[J]. Bioresource Technology, 314: 123714.
DOI URL |
[7] | GEBRE S H, SENDEKU M G, 2019. New frontiers in the biosynthesis of metal oxide nanoparticles and their environmental applications: An overview[J]. SN Applied Sciences, DOI: 10.1007/s42452-019-0931-4. |
[8] |
HAN F, ZHANG M R, SHANG H G, et al., 2020. Microbial community succession, species interactions and metabolic pathways of sulfur-based autotrophic denitrification system in organic-limited nitrate wastewater[J]. Bioresource Technology, 315: 123826.
DOI URL |
[9] | HAN R, LI K X, WE C Z, et al., 2021. Shifts in nitrogen removal performance and microbial communities in constructed wetlands after short-term exposure to titanium dioxide nanoparticles[J]. Water, Air, & Soil Pollution, 232(9): 348. 1-348.14. |
[10] |
HU X B, LIU X B, YANG X Y, et al., 2018. Acute and chronic responses of macrophyte and microorganisms in constructed wetlands to cerium dioxide nanoparticles: Implications for wastewater treatment[J]. Chemical Engineering Journal, 348: 35-45.
DOI URL |
[11] |
HUANG X J, WANG Y X, NI J P, et al., 2020. Metal oxide nanoparticles resonate to ammonium removal through influencing Mg2+ absorption by Pseudomonas putida Y-9[J]. Bioresource Technology, 296: 122339.
DOI URL |
[12] | JACKSON C R, TYLER H L, MILLAR J J, 2013. Determination of microbial extracellular enzyme activity in waters, soils, and sediments using high throughput microplate assays[J]. Jove-Journal of Visualized Experiments, (80): e50399. |
[13] |
JIA L X, LI C, ZHANG Y, et al., 2020. Microbial community responses to agricultural biomass addition in aerated constructed wetlands treating low carbon wastewater[J]. Journal of Environmental Management, 270: 110912.
DOI URL |
[14] |
JOŚKO I, OLESZCZUK P, FUTA B, 2014. The effect of inorganic nanoparticles (ZnO, Cr2O3, CuO and Ni) and their bulk counterparts on enzyme activities in different soils[J]. Geoderma, 232-234: 528-537.
DOI URL |
[15] |
KHALAF E I, EL-SHAFAI N M, NASSAR A M, et al., 2023. Enhancing the photoinduced via a novel nano-combination of terbium oxide and nickel oxide on graphene oxide surface: Cytotoxicity and water treatment[J]. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy, 286: 121949.
DOI URL |
[16] |
KLAINE S J, ALVAREZ P J, BATLEY G E, et al., 2008. Nanomaterials in the environment: behavior, fate, bioavailability, and effects[J]. Environmental Toxicology and Chemistry, 27(9): 1825-1851.
DOI PMID |
[17] |
LI W X, ZHANG P H, QIU H, et al., 2022. Commonwealth of soil health: How do earthworms modify the soil microbial responses to CeO2 nanoparticles?[J]. Environmental Science & Technology, 56(2): 1138-1148.
DOI URL |
[18] |
LIU H H, YANG L, GUO L K, et al., 2023. The nutrient removal and tolerance mechanism of a heterotrophic nitrifying bacterium Pseudomonas putida strain NP5 under metal oxide nanoparticles stress[J]. Environmental Science and Pollution Research International, 30(10): 28227-28237.
DOI |
[19] |
MISHRA P, THAKUR S, MAHAPATRA D M, et al., 2018. Impacts of nano-metal oxides on hydrogen production in anaerobic digestion of palm oil mill effluent - A novel approach[J]. International Journal of Hydrogen Energy, 43(5): 2666-2676.
DOI URL |
[20] |
NOGUEIRA V, LOPES I, ROCHA-SANTOS T A, et al., 2015. Assessing the ecotoxicity of metal nano-oxides with potential for wastewater treatment[J]. Environmental Science and Pollution Research International, 22(17): 13212-132224.
DOI PMID |
[21] |
PIRZADA M, ALTINTAS Z, 2019. Nanomaterials for healthcare biosensing applications[J]. Sensors (Basel), 19(23): 5311.
DOI URL |
[22] |
QU X L, ALVAREZ P J, LI Q L, 2013. Applications of nanotechnology in water and wastewater treatment[J]. Water Research, 47(12): 3931-3946.
DOI PMID |
[23] |
SALEEM S, AHMED B, KHAN M S, et al., 2017. Inhibition of growth and biofilm formation of clinical bacterial isolates by NiO nanoparticles synthesized from Eucalyptus globulus plants[J]. Microbial Pathogenesis, 111: 375-387.
DOI PMID |
[24] |
WANG D L, LIN Z F, WANG T, et al., 2016b. Where does the toxicity of metal oxide nanoparticles come from: The nanoparticles, the ions, or a combination of both[J]. Journal of Hazardous Materials, 308: 328-334.
DOI URL |
[25] |
WANG S, GAO M C, SHE Z L, et al., 2016a. Long-term effects of ZnO nanoparticles on nitrogen and phosphorus removal, microbial activity and microbial community of a sequencing batch reactor[J]. Bioresource Technology, 216: 428-436.
DOI URL |
[26] |
WANG S, LI Z W, GAO M C, et al., 2017. Long-term effects of nickel oxide nanoparticles on performance, microbial enzymatic activity, and microbial community of a sequencing batch reactor[J]. Chemosphere, 169: 387-395.
DOI PMID |
[27] |
XIAO J, HUANG J, WANG M Y, et al., 2021. The fate and long-term toxic effects of NiO nanoparticles at environmental concentration in constructed wetland: Enzyme activity, microbial property, metabolic pathway and functional genes[J]. Journal of Hazardous Materials, 413: 125295.
DOI URL |
[28] |
XU J J, CHENG Y F, XU L Z, et al., 2019. The revolution of performance, sludge characteristics and microbial community of anammox biogranules under long-term NiO NPs exposure[J]. Science of the Total Environment, 649: 440-447.
DOI URL |
[29] |
XU L, ZHANG B, PENG X W, et al., 2020. Dynamic variations of microbial community structure in Myriophyllum aquaticum constructed wetlands in response to different NH4+-N concentrations[J]. Process Biochemistry, 93: 55-62.
DOI URL |
[30] |
YAN C N, LI X, HUANG J, et al., 2023. Long-term synergic removal performance of N, P, and CuO nanoparticles in constructed wetlands along with temporal record of Cu pollution in substrate-biofilm[J]. Environmental Pollution, 322: 121231.
DOI URL |
[31] |
ZHANG T, CAO J S, ZHANG Y L, et al., 2020. Achieving efficient nitrite accumulation in glycerol-driven partial denitrification system: Insights of influencing factors, shift of microbial community and metabolic function[J]. Bioresource Technology, 315: 123844.
DOI URL |
[32] |
ZHANG X J, ZHOU Y, YU B Y, et al., 2017. Effect of copper oxide nanoparticles on the ammonia removal and microbial community of partial nitrification process[J]. Chemical Engineering Journal, 328: 152-158.
DOI URL |
[33] | 陈永华, 吴晓芙, 陈明利, 等, 2010. 人工湿地污水处理系统冬季植物的筛选与评价[J]. 环境科学, 31(8): 1789-1794. |
CHEN Y H, WU X F, CHEN M L, et al., 2010. Screening and evaluation of winter plants in constructed wetland wastewater treatment system[J]. Environmental Science, 31(8): 1789-1794. | |
[34] | 关松荫, 1986. 土壤酶及其研究法[M]. 北京: 农业出版社. |
GUAN S Y, 1986. Soil Enzyme and Its Research Method[M]. Beijing: Agricultural Press. | |
[35] | 国家环境保护总局, 2002. 水和废水监测分析方法[M]. 第4版增补版. 北京: 中国环境科学出版社: 3-8. |
State Environmental Protection Administration of China, 2002. Water and Wastewater Monitoring Methods[M]. 4th edition. Beijing: Chinese Environmental Science Press: 3-8. | |
[36] | 刘志培, 刘双江, 2004. 硝化作用微生物的分子生物学研究进展[J]. 应用与环境生物学报, 10(4): 521-525. |
LIU Z P, LIU S J, 2004. Research progress in molecular biology of nitrifying microorganisms[J]. Chinese Journal of Applied & Environmental Biology, 10(4): 521-525. | |
[37] | 王娟, 刘淑英, 王平, 等, 2008. 不同施肥处理对西北半干旱区土壤酶活性的影响及其动态变化[J]. 土壤通报, 39(2): 299-303. |
WANG J, LIU S Y, WANG P, et al., 2008. Effects of different fertilization treatments on soil enzyme activity and its dynamic changes in semi-arid region of northwest China[J]. Chinese Journal of Soil Science, 39(2): 299-303. | |
[38] | 王利群, 王勇, 董英, 等, 2003. 硝酸盐对硝酸还原酶活性的诱导及硝酸还原酶基因的克隆[J]. 生物工程学报, 19(5): 632-635. |
WANG L Q, WANG Y, DONG Y, et al., 2003. Induction of nitrate on nitrate reductase activity and cloning of nitrate reductase gene[J]. Chinese Journal of Biological Engineering, 19(5): 632-635. | |
[39] | 王文悦, 胡添湉, 于丽华, 等, 2021. 纳米氧化锌粒径效应对人工湿地运行性能的影响[J]. 环境工程学报, 15(12): 3895-3906. |
WANG W Y, HU T T, YU L H, et al., 2021. Effect of particle size effect of nano-sized zinc oxide on performance of constructed wetland[J]. Journal of Environmental Engineering, 15(12): 3895-3906. |
[1] | LIANG Chuan, YANG Yanfang, YU Shanshan, ZHOU Li, ZHANG Jingwei, ZHANG Xiujuan. Differences of Microbial Biomass and Community Structure Characteristics in Sediments under Net-pen and Pond Fish Farming [J]. Ecology and Environment, 2023, 32(8): 1487-1495. |
[2] | WANG Yun, ZHENG Xilai, CAO Min, LI Lei, SONG Xiaoran, LIN Xiaolei, GUO Kai. Study on Denitrification Performance and Control Factors in Brackish-Freshwater Transition Zone of Coastal Aquifer [J]. Ecology and Environment, 2023, 32(5): 980-988. |
[3] | WU Weilong, CHEN Yijie, WEI Ting, YANG Guiqiong, YANG Changhong, ZHEN Zhen, LIN Zhong. Mechanisms of Earthworm-driven Biodegradation of Polycyclic Aromatic Hydrocarbons in Coastal Saline Agricultural Soils [J]. Ecology and Environment, 2023, 32(11): 1996-2006. |
[4] | LIANG Chuan, YANG Yanfang, YU Shanshan, ZHOU Li, ZHANG Jingwei, ZHANG Xiujuan. Differences of Microbial Biomass and Community Structure Characteristics in Sediments under Net-pen and Pond Fish Farming [J]. Ecology and Environment, 2023, 32(10): 1802-1810. |
[5] | LIU Bingru. Response of Thermal Adaptability of Soil Microbial Respiration and Microbial Community and Diversity to Global Climate Change: A Review [J]. Ecology and Environment, 2022, 31(1): 181-186. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn