Ecology and Environment ›› 2023, Vol. 32 ›› Issue (7): 1285-1292.DOI: 10.16258/j.cnki.1674-5906.2023.07.011
• Research Articles • Previous Articles Next Articles
ZHAO Haiying1(), LIU Zhiyuan2, YUAN Mengxian2, ZHANG Qingwen2, ZHANG Qiong2, CAO Jiling2,*(
)
Received:
2022-12-15
Online:
2023-07-18
Published:
2023-09-27
Contact:
CAO Jiling
赵海英1(), 刘致远2, 袁梦仙2, 张卿雯2, 张琼2, 曹际玲2,*(
)
通讯作者:
曹际玲
作者简介:
赵海英(1979年生),女,讲师,博士,主要从事污染评价与修复方面的研究工作。E-mail: hyzgeography@163.com
基金资助:
CLC Number:
ZHAO Haiying, LIU Zhiyuan, YUAN Mengxian, ZHANG Qingwen, ZHANG Qiong, CAO Jiling. Effects of Silver Nanoparticles on FTIR Spectroscopic Characterization of Maize Seedlings[J]. Ecology and Environment, 2023, 32(7): 1285-1292.
赵海英, 刘致远, 袁梦仙, 张卿雯, 张琼, 曹际玲. 纳米银对玉米幼苗傅里叶红外光谱特性的影响[J]. 生态环境学报, 2023, 32(7): 1285-1292.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2023.07.011
波数/ cm-1 | 主要基团 | 有机物 |
---|---|---|
3405 | O-H和N-H的伸缩振动 | 蛋白质和碳水化合物 |
2925 | -CH2的反对称伸缩振动 | 脂类和蛋白质 |
2850 | -CH2的对称伸缩振动 | 脂类和蛋白质 |
1729 | C=O的伸缩振动 | 细胞壁果胶成分中的脂类化合物 |
1637 | C=O的伸缩振动 | 蛋白质酰胺I带 |
1565 | N-H的弯曲振动 | 蛋白质酰胺II带 |
1384 | C-H弯曲振动 | 膜和胞壁含油脂化合物 |
1250 | C=O的伸缩振动或NH2变形 | 蛋白质酰胺III带 |
1158 | C-O-C的伸缩振动 | 蛋白质分子氨基酸残基、 纤维素糖苷 |
1110 | C-O的伸缩振动 | 碳水化合物 |
1060 | C-O的伸缩振动 | 碳水化合物 |
1050 | C-C和C-O的伸缩振动 | 碳水化合物 |
Table 1 Main organic matter, functional groups and their corresponding FTIR characteristic wavelengths
波数/ cm-1 | 主要基团 | 有机物 |
---|---|---|
3405 | O-H和N-H的伸缩振动 | 蛋白质和碳水化合物 |
2925 | -CH2的反对称伸缩振动 | 脂类和蛋白质 |
2850 | -CH2的对称伸缩振动 | 脂类和蛋白质 |
1729 | C=O的伸缩振动 | 细胞壁果胶成分中的脂类化合物 |
1637 | C=O的伸缩振动 | 蛋白质酰胺I带 |
1565 | N-H的弯曲振动 | 蛋白质酰胺II带 |
1384 | C-H弯曲振动 | 膜和胞壁含油脂化合物 |
1250 | C=O的伸缩振动或NH2变形 | 蛋白质酰胺III带 |
1158 | C-O-C的伸缩振动 | 蛋白质分子氨基酸残基、 纤维素糖苷 |
1110 | C-O的伸缩振动 | 碳水化合物 |
1060 | C-O的伸缩振动 | 碳水化合物 |
1050 | C-C和C-O的伸缩振动 | 碳水化合物 |
处理 | 波数/cm-1 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3405 | 2925 | 1731 | 1647 | 1637 | 1603 | 1559 | 1516 | 1490 | 1417 | 1384 | 1256 | 1201 | 1159 | 1039 | |
L | 3396 | 2922 | 1731 | 1647 | 1637 | 1604 | 1559 | 1516 | 1489 | 1417 | 1384 | 1255 | 1201 | 1159 | 1039 |
M | 3400 | 2922 | 1731 | 1647 | 1633 | 1604 | 1559 | 1516 | 1490 | 1417 | 1384 | 1254 | 1201 | 1157 | 1037 |
H | 3406 | 2924 | 1731 | 1647 | 1637 | 1604 | 1559 | 1516 | 1490 | 1417 | 1384 | 1256 | 1201 | 1156 | 1037 |
Table 2 Characteristic peak wave number of FTIR in maize root under different concentration of AgNPs
处理 | 波数/cm-1 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3405 | 2925 | 1731 | 1647 | 1637 | 1603 | 1559 | 1516 | 1490 | 1417 | 1384 | 1256 | 1201 | 1159 | 1039 | |
L | 3396 | 2922 | 1731 | 1647 | 1637 | 1604 | 1559 | 1516 | 1489 | 1417 | 1384 | 1255 | 1201 | 1159 | 1039 |
M | 3400 | 2922 | 1731 | 1647 | 1633 | 1604 | 1559 | 1516 | 1490 | 1417 | 1384 | 1254 | 1201 | 1157 | 1037 |
H | 3406 | 2924 | 1731 | 1647 | 1637 | 1604 | 1559 | 1516 | 1490 | 1417 | 1384 | 1256 | 1201 | 1156 | 1037 |
处理 | 波数/cm-1 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3405 | 2918 | 2850 | 1731 | 1633 | 1559 | 1518 | 1490 | 1384 | 1320 | 1258 | 1202 | 1160 | 1104 | 1056 | 1038 | |
L | 3415 | 2918 | 2850 | 1731 | 1633 | - | - | - | 1384 | 1320 | 1257 | 1203 | 1160 | 1104 | 1057 | 1038 |
M | 3406 | 2918 | 2850 | 1731 | 1633 | 1559 | 1517 | 1490 | 1384 | 1320 | 1256 | 1203 | 1160 | 1105 | 1056 | 1038 |
H | 3407 | 2919 | 2850 | 1731 | 1647 | 1559 | - | 1490 | 1384 | 1320 | 1257 | 1203 | 1160 | 1104 | 1057 | 1038 |
Table 3 Characteristic peak wave number of FTIR in maize leaves under different concentration of AgNPs
处理 | 波数/cm-1 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3405 | 2918 | 2850 | 1731 | 1633 | 1559 | 1518 | 1490 | 1384 | 1320 | 1258 | 1202 | 1160 | 1104 | 1056 | 1038 | |
L | 3415 | 2918 | 2850 | 1731 | 1633 | - | - | - | 1384 | 1320 | 1257 | 1203 | 1160 | 1104 | 1057 | 1038 |
M | 3406 | 2918 | 2850 | 1731 | 1633 | 1559 | 1517 | 1490 | 1384 | 1320 | 1256 | 1203 | 1160 | 1105 | 1056 | 1038 |
H | 3407 | 2919 | 2850 | 1731 | 1647 | 1559 | - | 1490 | 1384 | 1320 | 1257 | 1203 | 1160 | 1104 | 1057 | 1038 |
[1] |
ACHARYA P, JAYAPRAKASHA G K, CROSBY K M, et al., 2020. Nanoparticle-mediated seed priming improves germination, growth, yield, and quality of watermelons (Citrullus lanatus) at multi-locations in Texas[J]. Scientific Reports, 10: 5037.
DOI PMID |
[2] |
CALABRESE E J, BALDWIN L A, 2003. Toxicology rethinks its central belief[J]. Nature, 421(6924): 691-692.
DOI URL |
[3] |
DAS P, BARUA S, SARKAR S, et al., 2018. Mechanism of toxicity and transformation of silver nanoparticles: Inclusive assessment in earthworm-microbe-soil-plant system[J]. Geoderma, 314: 73-84.
DOI URL |
[4] |
DIMKPA C O, MCLEAN J E, BRITT D W, et al., 2015. Nano-CuO and interaction with nano-ZnO or soil bacterium provide evidence for the interference of nanoparticles in metal nutrition of plants[J]. Ecotoxicology, 24: 119-129.
DOI PMID |
[5] |
FALCO W F, SCHERER M D, OLIVEIRA S L, et al., 2020. Phytotoxicity of silver nanoparticles on Vicia faba: Evaluation of particle size effects on photosynthetic performance and leaf gas exchange[J]. Science of the Total Environment, 701: 134816.
DOI URL |
[6] |
GE Y, PRIESTER J H, VAN DE WERFHORST L C, et al., 2014. Soybean plants modify metal oxide nanoparticle effects on soil bacterial communities[J]. Environmental Science & Technology, 48(22): 13489-13496.
DOI URL |
[7] |
HE G, SHU S, LIU G H, et al., 2022. Aquatic macrophytes mitigate the short-term negative effects of silver nanoparticles on denitrification and greenhouse gas emissions in riparian soils[J]. Environmental Pollution, 293: 118611.
DOI URL |
[8] |
IMAJI A, SEIWA K, 2010. Carbon allocation to defense, storage, and growth in seedlings of two temperate broad-leaved tree species[J]. Oecologia, 162: 273-281.
DOI PMID |
[9] |
JHANZAB H M, RAZZAQ A, BIBI Y, 2019. Proteomic analysis of the effect of inorganic and organic chemicals on silver nanoparticles in wheat[J]. International Journal of Molecular Sciences, 20(4): 825.
DOI URL |
[10] |
JIA H L, WANG X H, WEI T, et al., 2019. Accumulation and fixation of Cd by tomato cell wall pectin under Cd stress[J]. Environmental and Experimental Botany, 167: 103829.
DOI URL |
[11] |
LINARES M G, YU J, SUNAHARA G I, et al., 2020. Barley (Hordeum vulgare) seedling growth declines with increasing exposure to silver nanoparticles in biosolid-amended soils[J]. Canadian Journal of Soil Science, 100(2): 189-197.
DOI URL |
[12] | MADANAYAKE N H, PERERA N, ADASSOORIYA N M, 2022. Engineered nanomaterials: threats, releases, and concentrations in the environment[M]. Amsterdam: Elsevier:225- 240. |
[13] |
MARCHI L D, COPPOLA F, SOARES A M V M, et al., 2019. Engineered nanomaterials: From their properties and applications, to their toxicity towards marine bivalves in a changing environment[J]. Environmental Research, 178: 108683.
DOI URL |
[14] |
MEYCHIK N, NIKOLAEVA Y, KUSHUNINA M, 2014. Are the carboxyl groups of pectin polymers the only metal-binding sites in plant cell walls?[J]. Plant Soil, 381: 25-34.
DOI URL |
[15] |
MUSTAFA G, SAKATA K, HOSSAIN Z, et al., 2015. Proteomic study on the effects of silver nanoparticles on soybean under flooding stress[J]. Journal of Proteomics, 122: 100-118.
DOI PMID |
[16] |
NOORI A, WHITE J C, NEWMAN L A, 2017. Mycorrhizal fungi influence on silver uptake and membrane protein gene expression following silver nanoparticle exposure[J]. Journal of Nanoparticle Research, 19(2): 66.
DOI |
[17] | QIAN H F, PENG X F, HAN X, et al., 2013. Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana[J]. Journal of Environmental Science, 25(9): 1947-1956. |
[18] |
TRIPATHY B C, OELM LLER R, 2012. Reactive oxygen species generation and signaling in plants[J]. Plant Signaling and Behavior, 7(12): 1621-1633.
DOI URL |
[19] |
WANG J C, CHEN X F, CHU S H, et al., 2020. Influence of Cd toxicity on subcellular distribution, chemical forms, and physiological responses of cell wall components towards short-term Cd stress in Solanum nigrum[J]. Environmental Science and Pollution Research, 28: 13955-13969.
DOI |
[20] |
WANG P, MENZIES N W, LOMBI E, et al., 2015. Silver sulfide nanoparticles (Ag2S-NPs) are taken up by plants and are phytotoxic[J]. Nanotoxicology, 9(8): 1041-1049.
DOI PMID |
[21] | WATSON J L, FANG T, DIMKPA C O, et al., 2015. The phytotoxicity of ZnO nanoparticles on wheat varies with soil properties[J]. Biometals, 28(1): 101-112. |
[23] |
XU L, WANG Y Y, HUANG J, et al., 2020. Silver nanoparticles: Synthesis, medical applications and biosafety[J]. Theranostics, 10(20): 8996-9031.
DOI PMID |
[24] |
YAN X, PAN Z Y, CHEN S, 2022. Rice exposure to silver nanoparticles in a life cycle study: Effect of dose responses on grain metabolomic profile, yield, and soil bacteria[J]. Environmental Science: Nano, 9(6): 2195.
DOI URL |
[25] |
YANG J, JIANG F P, MA C X, et al., 2018. Alteration of crop yield and quality of wheat upon exposure to silver nanoparticles in a life cycle study[J]. Journal of agricultural and food chemistry, 66(11): 2589-2597.
DOI PMID |
[26] |
ZHANG H L, DU W C, PERALTA-VIDEA J R, et al., 2018. Metabolomics reveals how cucumber (Cucumis sativus) reprograms metabolites to cope with silver ions and silver nanoparticle-induced oxidative stress[J]. Environmental Science & Technology, 52(14): 8016-8026.
DOI URL |
[27] |
ZHANG H L, HUANG M, ZHANG W H, et al., 2020. Silver nanoparticles alter soil microbial community compositions and metabolite profiles in unplanted and cucumber-planted soils[J]. Environmental Science & Technology, 54(6): 3334-3342.
DOI URL |
[28] | ZHAO J, LIN M Q, WANG Z Y, et al., 2021. Engineered nanomaterials in the environment: Are they safe?[J]. Critical Reviews in Environmental Science & Technology, 51(14): 1443-1478. |
[29] | ZUVERZA-MENA N, ARMENDARIZ R, PERALTA-VIDEA J R, et al., 2016. Effects of silver nanoparticles on radish sprouts: root growth reduction and modifications in the nutritional value[J]. Frontiers in Plant Science, 7: 90. |
[30] | 蔡斌, 陈永华, 杜露, 等, 2021. 博落回对铅的耐性, 富集及生理响应研究[J]. 农业现代化研究, 42(2): 339-348. |
CAI B, CHEN Y H, DU L, et al., 2021. Investigation on tolerance, accumulation and physiological responses of Macleaya cordata to lead[J]. Research of Agricultural Modernization, 42(2): 339-348. | |
[31] | 付川, 余顺慧, 黄怡民, 等, 2014. 紫花苜蓿对铜胁迫生理响应的傅里叶变换红外光谱法研究[J]. 生态学报, 34(5): 1149-1155. |
FU C, YU S H, HUANG Y M, et al., 2014. Physiological response of Medicago sativa L. to copper stress by FTIR spectroscopy[J]. Acta Ecologica Sinica, 34(5): 1149-1155. | |
[32] | 胡立新, 熊倩, 陈晓雯, 等, 2021. FTIR在环境毒理学研究中的应用[J]. 生态毒理学报, 16(3): 107-114. |
HU L X, XIONG Q, CHEN X W, et al., 2021. Application of fourier transform infrared spectroscopy in environmentl toxicology[J]. Asian Journal of Ecotoxicology, 16(3): 107-114. | |
[33] |
黄德超, 任强, 刘蓉, 等, 2016. 纳米银污染对蚕豆根尖微核率影响及评价研究[J]. 生态环境学报, 25(4): 711-714.
DOI |
HUANG D C, REN Q, LIU R, et al., 2016. Research on the influence and evaluation of nano-silver pollution on the micronucleus rate of the root tip of Vicia faba[J]. Ecology and Environmental Sciences, 25(4): 711-714. | |
[34] | 李欣钰, 林妹兰, 卢飞, 等, 2022. 过量铜在两个柑橘品种幼苗中的分布特征及根细胞壁响应机制[J]. 植物营养与肥料学报, 28(6): 1067-1080. |
LI X Y, LIN M L, LU F, et al., 2022. The distribution pattern of copper and the responses of root cell wall to excessive copper in seedlings of two citrus species[J]. Journal of Plant Nutrition and Fertilizers, 28(6): 1067-1080. | |
[35] | 卢晓佩, 姜存仓, 董肖昌, 等, 2017. 硼胁迫下不同柑橘砧木叶片物质组成及结构的FTIR表征[J]. 光谱学与光谱分析, 37(5): 1380-1385. |
LU X P, GU C C, DONG X C, et al., 2017. FTIR spectroscopic characterization of material composition and structure of leaves of different citrus root stocks under boron stress[J]. Spectroscopy and Spectral Analysis, 37(5): 1380-1385. | |
[36] | 彭小凤, 朱敏, 任洁, 等, 2014. 纳米银的植物毒性研究进展[J]. 生态毒理学报, 9(2): 199-204. |
PENG X F, ZHU M, REN J, et al., 2014. Research advance in phytotoxicity of siver nanoparticles[J]. Asian Journal of Ecotoxicology, 9(2): 199-204. | |
[37] | 王荣, 刘艳丽, 张民, 等, 2015. 纳米银对黑麦草生长特性的影响[J]. 农业环境科学学报, 34(4): 639-645. |
WANG R, LIU Y L, ZHANG M, et al., 2015. Effects of nano-silver on growth characteristics of perennial ryegrass[J]. Journal of Agro-Environment Science, 34(4): 639-645. | |
[38] | 夏镇卿, 司雷勇, 金岩, 等, 2020. 根区增温对玉米幼苗主要代谢物傅里叶红外光谱特性及叶绿素含量的影响[J]. 光谱学与光谱分析, 40(4): 1283-1288. |
XIA Z Q, SI L Y, JIN Y, et al., 2020. Effects of root zone temperature increase on fourier transform infrared spectroscopy content of main metabolites and chlorophyll in maize seedlings[J]. Spectroscopy and Spectral Analysis, 40(4): 1283-1288. | |
[39] |
周慧敏, 李品, 冯兆忠, 等, 2019. 地表臭氧浓度升高与干旱交互作用对杨树非结构性碳水化合物积累和叶根分配的短期影响[J]. 植物生态学报, 43(4): 296-304.
DOI |
ZHOU H M, LI P, FENG Z Z, et al., 2019. Short-term effects of combined elevated ozone and limited irrigation on accumulation and allocation of non-structural carbohydrates in leaves and roots of poplar sapling[J]. Chinese Journal of Plant Ecology, 43(4): 296-304.
DOI URL |
[1] | CHEN Dongdong, HUO Lili, ZHAO Liang, CHEN Xin, SHU Min, HE Fuquan, ZHANG Yukun, ZHANG Li, LI Qi. Contribution of Water and Heat Factors to Spatial Variability of Soil Microbial Biomass Carbon and Nitrogen in Qinghai Alpine Grassland: Based on Enhanced Regression Tree Model [J]. Ecology and Environment, 2023, 32(7): 1207-1217. |
[2] | WANG Xuemei, YANG Xuefeng, ZHAO Feng, AN Baisong, HUANG Xiaoyu. Estimation of Aboveground Biomass in the Arid Oasis Based on the Machine Learning Algorithm [J]. Ecology and Environment, 2023, 32(6): 1007-1015. |
[3] | CHEN Keyi, LIN Tianmiao, WANG Jianjun, HE Youjun, ZHANG Liwen. Effects of Natural Forest Conservation Project on Forest Carbon Pool of Key State-Owned Forest Region of Daxing’anling, Heilongjiang Province in the Past 20 Years [J]. Ecology and Environment, 2023, 32(6): 1016-1025. |
[4] | ZHU Yongle, TANG Jiaxi, TAN Ting, LI Yu, XIANG Biao. Contaminant Characteristic of Per- and Poly-fluorinated Substances in Maize in the Surrounding of Fluorine Chemical Park [J]. Ecology and Environment, 2023, 32(5): 1001-1006. |
[5] | ZHAO Liangxia, GAO Kun, HUANG Tingting, GAO Ye, JU Tangdan, JIANG Qiuyang, JIN Heng, XIONG Lei, TANG Zailin, GAO Canhong. The Cadmium Accumulation Characteristics of Maize Inbred Lines with High/Low Grain Cadmium Accumulation at Different Growth Stages [J]. Ecology and Environment, 2023, 32(4): 766-775. |
[6] | YANG Yaodong, CHEN Yumei, TU Pengfei, ZENG Qingru. Phytoremediation Potential of Economic Crop Rotation Patterns for Cadmium-polluted Farmland [J]. Ecology and Environment, 2023, 32(3): 627-634. |
[7] | SONG Zhibin, ZHOU Jiacheng, TAN Lu, TANG Tao. Altitudinal Patterns of Benthic Algal Communities in Plateau Rivers: A Case Study of Heiqu and Xuequ in Tibet [J]. Ecology and Environment, 2023, 32(2): 274-282. |
[8] | LI Weiwen, HUANG Jinquan, QI Yujie, LIU Xiaolan, LIU Jigen, MAO Zhichao, GAO Xiufang. Meta-analysis of Soil Microbial Biomass Carbon Content and Its Influencing Factors under Soil Erosion [J]. Ecology and Environment, 2023, 32(1): 47-55. |
[9] | HUANG Weijia, LIU Chun, LIU Yue, HUANG Bin, LI Dingqiang, YUAN Zaijian. Soil Ecological Stoichiometry and Its Influencing Factors at Different Elevations in Nanling Mountains [J]. Ecology and Environment, 2023, 32(1): 80-89. |
[10] | CHEN Keyi, WANG Jianjun, HE Youjun, ZHANG Liwen. Estimations of Forest Carbon Storage and Carbon Sequestration Potential of Key State-Owned Forest Region in Daxing’anling, Heilongjiang Province [J]. Ecology and Environment, 2022, 31(9): 1725-1734. |
[11] | XIAO Guoju, LI Xiujing, GUO Zhanqiang, HU Yanbin, WANG Jing. Effects of Soil Organic Carbon on Maize Growth and Water Use at the Eastern Foot of Helan Mountain in Ningxia [J]. Ecology and Environment, 2022, 31(9): 1754-1764. |
[12] | LIU Zhendi, SONG Yanyu, WANG Xianwei, TAN Wenwen, ZHANG Hao, GAO Jinli, GAO Siqi, DU Yu. Effects of Simulated Warming on Plant Growth and Carbon and Nitrogen Characteristics in Permafrost Peatland [J]. Ecology and Environment, 2022, 31(9): 1765-1772. |
[13] | CUI Qiao, LI Zongxing, ZHANG Baijuan, ZHAO Yue, NAN Fusen. A Meta-analysis of the Effects of Freezing and Thawing on Soil Dissolved Carbon and Nitrogen and Microbial Biomass Carbon and Nitrogen Contents [J]. Ecology and Environment, 2022, 31(8): 1700-1712. |
[14] | WANG Lei, WEN Yuanguang, ZHOU Xiaoguo, ZHU Hongguang, SUN Dongjing. Effects of Mixing Eucalyptus urophylla×E. grandis with Castanopsis hystrix on Understory Vegetation and Soil Properties [J]. Ecology and Environment, 2022, 31(7): 1340-1349. |
[15] | YU Yanghua, WU Yingu, SONG Yanping, LI Yitong. Stoichiometric Characteristics of Soil Microbial Concentration and Biomass in Zanthoxylum planispinum var. Dintanensis Plantations of Different Ages [J]. Ecology and Environment, 2022, 31(6): 1160-1168. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn