Ecology and Environment ›› 2021, Vol. 30 ›› Issue (9): 1842-1847.DOI: 10.16258/j.cnki.1674-5906.2021.09.008
• Research Articles • Previous Articles Next Articles
CAI Xi'an(), HUANG Juan(
), WU Tong, LIU Juxiu, JIANG Fen, WANG Senhao
Received:
2021-03-18
Online:
2021-09-18
Published:
2021-12-08
Contact:
HUANG Juan
通讯作者:
黄娟
作者简介:
蔡锡安(1968年生),男,博士,从事植被恢复生态学研究。E-mail: xncai@scib.ac.cn
基金资助:
CLC Number:
CAI Xi'an, HUANG Juan, WU Tong, LIU Juxiu, JIANG Fen, WANG Senhao. Study on Methane Emission from Tree Leaves[J]. Ecology and Environment, 2021, 30(9): 1842-1847.
蔡锡安, 黄娟, 吴彤, 刘菊秀, 蒋芬, 王森浩. 植物叶片排放甲烷的初步研究[J]. 生态环境学报, 2021, 30(9): 1842-1847.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2021.09.008
植物种类 Species | 处理 Treatment | 配对差异性Paired Differences | t检验 t-test | 自由度df | 显著性 Sig.(2-tailed) | ||||
---|---|---|---|---|---|---|---|---|---|
均值 Mean | 标准偏差 Std. deviation | 标准误均值 Std. error mean | 95%置信区间的差异性 95% confidence interval of the difference | ||||||
下限 Lower | 上限 Upper | ||||||||
无忧树 Saraca dives | 原位-离体 In situ vs. in vitro | 0.00 | 0.61 | 0.31 | -0.98 | 0.98 | 0.00 | 3 | 0.99 |
垂叶榕 Ficus benjamina | 原位-离体 In situ vs. in vitro | 0.12 | 0.12 | 0.07 | -0.18 | 0.42 | 1.75 | 2 | 0.22 |
Table 1 Paired sample test for methane concentration from in situ sampling and in vitro sampling
植物种类 Species | 处理 Treatment | 配对差异性Paired Differences | t检验 t-test | 自由度df | 显著性 Sig.(2-tailed) | ||||
---|---|---|---|---|---|---|---|---|---|
均值 Mean | 标准偏差 Std. deviation | 标准误均值 Std. error mean | 95%置信区间的差异性 95% confidence interval of the difference | ||||||
下限 Lower | 上限 Upper | ||||||||
无忧树 Saraca dives | 原位-离体 In situ vs. in vitro | 0.00 | 0.61 | 0.31 | -0.98 | 0.98 | 0.00 | 3 | 0.99 |
垂叶榕 Ficus benjamina | 原位-离体 In situ vs. in vitro | 0.12 | 0.12 | 0.07 | -0.18 | 0.42 | 1.75 | 2 | 0.22 |
植物种类 Plant species | 拉丁学名 Latin name | 排放速率 Emission rate/(μg∙g-1∙h-1) | ||
---|---|---|---|---|
海拔600 m Altitude 600 m | 海拔300 m Altitude 300 m | 海拔30 m Altitude 30 m | ||
木荷 | Schima superba | 0.77-0.86 | 1.36-1.37 | -1.19-2.37 |
鼠刺 | Itea chinensis | 0.08 | 0.20-2.22 | -2.01-2.34 |
红车 | Syzyglum hancei | 0.03-0.78 | 0.23-0.43 | -1.49-2.12 |
短序润楠 | Machilus breviflora | 0.35-0.61 | 1.48-2.73 | -1.28-3.11 |
假槟榔 | Archontophoenix alexandras | -6.10-43.94 | ||
大叶冬青 | Ilex latifolia | -0.04-8.98 | ||
含笑 | Michelia figo | -0.36-15.37 | ||
桂花 | Osmanthus fragrans | -5.62-5.65 | ||
海南菜豆树 | Radermachera hainanensis | 42.97-45.44 | ||
树菠萝 | Artocarpus heterophyllus | 30.76-36.69 | ||
无忧树 | Saraca dives | 245.49-447.05 | ||
垂叶榕 | Ficus benjamina | -120.36- -39.85 | ||
尾叶桉 | Eucalyptus urophylla | -49.10-1.64 | ||
马尾松 | Pinus massoniana | -75.85-127.28 |
Table 2 Methane emission rate from plant leaves in southern China
植物种类 Plant species | 拉丁学名 Latin name | 排放速率 Emission rate/(μg∙g-1∙h-1) | ||
---|---|---|---|---|
海拔600 m Altitude 600 m | 海拔300 m Altitude 300 m | 海拔30 m Altitude 30 m | ||
木荷 | Schima superba | 0.77-0.86 | 1.36-1.37 | -1.19-2.37 |
鼠刺 | Itea chinensis | 0.08 | 0.20-2.22 | -2.01-2.34 |
红车 | Syzyglum hancei | 0.03-0.78 | 0.23-0.43 | -1.49-2.12 |
短序润楠 | Machilus breviflora | 0.35-0.61 | 1.48-2.73 | -1.28-3.11 |
假槟榔 | Archontophoenix alexandras | -6.10-43.94 | ||
大叶冬青 | Ilex latifolia | -0.04-8.98 | ||
含笑 | Michelia figo | -0.36-15.37 | ||
桂花 | Osmanthus fragrans | -5.62-5.65 | ||
海南菜豆树 | Radermachera hainanensis | 42.97-45.44 | ||
树菠萝 | Artocarpus heterophyllus | 30.76-36.69 | ||
无忧树 | Saraca dives | 245.49-447.05 | ||
垂叶榕 | Ficus benjamina | -120.36- -39.85 | ||
尾叶桉 | Eucalyptus urophylla | -49.10-1.64 | ||
马尾松 | Pinus massoniana | -75.85-127.28 |
源 Source | Ⅲ类平方和 Quadratic sum of type Ⅲ | 自由度 df | 均方 Mean square | F | 显著性 Significance |
---|---|---|---|---|---|
修正模型 Fixed model | 0.528 | 11 | 0.048 | 7.599 | 0.000 |
截距 Intercept | 0.072 | 1 | 0.072 | 11.331 | 0.003 |
树种 Tree species | 0.028 | 3 | 0.009 | 1.495 | 0.241 |
海拔 Altitude | 0.332 | 2 | 0.166 | 26.248 | 0.000 |
树种×海拔 Tree species×altitude | 0.168 | 6 | 0.028 | 4.434 | 0.004 |
Table 3 Variance analysis of the effects on leaf methane emission from tree species and altitude
源 Source | Ⅲ类平方和 Quadratic sum of type Ⅲ | 自由度 df | 均方 Mean square | F | 显著性 Significance |
---|---|---|---|---|---|
修正模型 Fixed model | 0.528 | 11 | 0.048 | 7.599 | 0.000 |
截距 Intercept | 0.072 | 1 | 0.072 | 11.331 | 0.003 |
树种 Tree species | 0.028 | 3 | 0.009 | 1.495 | 0.241 |
海拔 Altitude | 0.332 | 2 | 0.166 | 26.248 | 0.000 |
树种×海拔 Tree species×altitude | 0.168 | 6 | 0.028 | 4.434 | 0.004 |
[1] |
BEERLING D, GARDINER T, LEGGETT G, et al., 2008. Missing methane emissions from leaves of terrestrial plants[J]. Global Change Biology, 14(8): 1821-1826.
DOI URL |
[2] |
BRUHN D, MIKKELSEN T N, ØBRO J, et al., 2009. Effects of temperature, ultraviolet radiation and pectin methyl esterase on aerobic methane release from plant material[J]. Plant Biology, 11(1): 43-48.
DOI URL |
[3] |
CAO G M, XU X L, LONG R J, et al., 2008. Methane emissions by alpine plant communities in the Qinghai-Tibet Plateau[J]. Biology Letters, 4(6): 681-684.
DOI URL |
[4] |
COVEY K R, MEGONIGAL P J, 2019. Methane production and emissions in trees and forests[J]. New Phytologist, 222(1): 35-51.
DOI URL |
[5] | CRUTZEN P J, SANHUEZA E, BRENNINKMEIJER C A M, 2006. Methane production from mixed tropical savanna and forest vegetation in Venezuela[J]. Atmospheric Chemistry and Physics Discussions, 6(2): 3093-3097. |
[6] |
DUECK T A, D E VISSER R, POORTER H, et al., 2007. No evidence for substantial aerobic methane emission by terrestrial plants: A δ13C-labelling approach[J]. New Phytologist, 175(1): 29-35.
DOI URL |
[7] |
JEFFREY L, REITHMAIER G, SIPPO J Z, et al., 2019. Are methane emissions from mangrove stems a cryptic carbon loss pathway? Insights from a catastrophic forest mortality[J]. New Phytologist, 224(1): 146-154.
DOI URL |
[8] |
KEPPLER F, HAMILTON J T G, MCROBERTS W C, et al., 2008. Methoxyl groups of plant pectin as a precursor of atmospheric methane: evidence from deuterium labeling studies[J]. New Phytologist, 178(4): 808-814.
DOI URL |
[9] |
KEPPLER F, HAMILTON JTG, BRAΒ M, et al., 2006. Methane emissions from terrestrial plants under aerobic conditions[J]. Nature, 439: 187-191.
DOI URL |
[10] |
KIRSCHBAUM M U F, WALCROFT A, 2008. No detectable aerobic methane efflux from plant material, nor from adsorption/desorption processes[J]. Biogeosciences, 5(4): 1551-1558.
DOI URL |
[11] |
NISBET R E R, FISHER R, NIMMO R H, et al., 2009. Emission of methane from plants[J]. Proceedings of the Royal Society B: Biological Sciences, 276(1660): 1347-1354.
DOI URL |
[12] |
PETERS V, CONRAD R, 1996. Sequential reduction processes and initiation of CH4 production upon flooding of oxic upland soils[J]. Soil Biology and Biochemistry, 28(3): 371-382.
DOI URL |
[13] | SANHUEZA E, DONOSO L, 2006. Methane emission from tropical savanna Trachypogon sp. Grasses[J]. Atmospheric Chemistry and Physics Discussions, 6(12): 5315-5319. |
[14] |
SEGERS R, 1998. Methane production and methane consumption: a review of process underlying wetland methane fluxes[J]. Biogeochemistry, 41(1): 23-51.
DOI URL |
[15] |
SUNDQVIST E, CRILL P, MÖLDER M, et al., 2012. Atmospheric methane removal by boreal plants[J]. Geophysical Research Letters, DOI: 10.1029/2012gl053592.
DOI |
[16] |
SUNDQVIST E, MÖLDER M, CRILL P, et al., 2015. Methane exchange in boreal forest estimated by gradient method[J]. Tellus B: Chemical and Physical Meteorology, 67(1): 26688.
DOI URL |
[17] |
VIGANO I, VANWEELDEN H, HOLZINGER R, et al., 2008. Effect of UV radiation and temperature on the emission of methane from plant biomass and structural components[J]. Biogeosciences, 5(3): 937-947.
DOI URL |
[18] |
VILLANUEVA I, POPP C J, MARTIN R S, 2004. Biogenic emissions and ambient concentrations of hydrocarbons, carbonyl compounds and organic acids from ponderosa pine and cottonwood trees at rural and forested sites in Central New Mexico[J]. Atmospheric Environment, 38(2): 249-260.
DOI URL |
[19] |
WANG Z P, GU Q, DENG F D, et al., 2016. Methane emissions from the trunks of living trees on upland soils[J]. New Phytologist, 211(2): 429-439.
DOI URL |
[20] |
WANG Z P, HAN X G, WANG G G, et al., 2008. Aerobic methane emission from plants in the Inner Mongloia steppe[J]. Environmental Science & Technology, 42(1): 62-68.
DOI URL |
[21] |
WYKA T P, OLEKSYN J, ŻYTKOWIAK R P, et al., 2012. Response of leaf structure and photosynthetic properties to intra-canopy light gradients: A common garden test with four broadleaf deciduous angiosperm and seven evergreen conifer tree species[J]. Oecologia, 170(1): 11-24.
DOI URL |
[22] | ZHANG X, LEE X H, GRIFFIS T J, et al., 2014. The influence of plants on atmospheric methane in an agriculture-dominated landscape[J]. International Journal of Biomteorology, 58: 819-833. |
[23] | 邓永翠, 杜岩功, 吴伊波, 等, 2010. 植物释放甲烷研究进展[J]. 生态学报, 30(13): 3608-3615. |
DENG Y C, DU Y G, WU Y B, et al., 2010. Methane emissions from plants: a review[J]. Acta Ecologica Sinica, 30(13): 3608-3615. | |
[24] |
刘菊秀, 李跃林, 刘世忠, 等, 2013. 气温上升对模拟森林生态系统影响实验的介绍[J]. 植物生态学报, 37(6): 558-565.
DOI |
LIU J X, LI Y L, LIU S Z, et al., 2013. An introduction to an experimental design for studying effects of air temperature rise on model forest ecosystems[J]. Chinese Journal of Plant Ecology, 37(6): 558-565.
DOI URL |
|
[25] | 许大全, 2002. 光合作用效率[M]. 上海: 上海科学技术出版社: 17-18. |
XU D Q, 2002. Photosynthetic efficiency[M]. Shanghai: Shanghai Science and Technology Press: 17-18. | |
[26] | 杨燕华, 易黎明, 谢锦升, 等, 2013. 温度对亚热带地区常见树种叶片甲烷排放的影响[J]. 应用生态学报, 24(6): 1545-1550. |
YANG Y H, YU L M, XIE J S, et al., 2013. Effects of temperature on CH4 emission from subtropical common tree species leaves[J]. Chinese Journal of Applied Ecology, 24(6): 1545-1550. |
[1] | JIANG Yongwei, DING Zhenjun, YUAN Junbin, ZHANG Zheng, LI Yang, WEN Qingchun, WANG Yeyao, JIN Xiaowei. Study on Benthic Macroinvertebrates Community Structure and Water Quality Evaluation in Main Rivers of Liaoning Province [J]. Ecology and Environment, 2023, 32(5): 969-979. |
[2] | WANG Yun, ZHENG Xilai, CAO Min, LI Lei, SONG Xiaoran, LIN Xiaolei, GUO Kai. Study on Denitrification Performance and Control Factors in Brackish-Freshwater Transition Zone of Coastal Aquifer [J]. Ecology and Environment, 2023, 32(5): 980-988. |
[3] | KOU Zhu, QING Chun, YUAN Changguo, LI Ping. Diversity and Distribution of Sulfur Oxidizing Bacteria in Hot Springs of Northeast Tibet, China [J]. Ecology and Environment, 2023, 32(5): 989-1000. |
[4] | WANG Xinyu, GAO Dengzhou, LIU Bolin, WANG Bin, ZHENG Yanling, LI Xiaofei, HOU Lijun. The Tidal-cycle Variation and Influencing Factors of Dark Carbon Fixation Process in the Yangtze Estuary [J]. Ecology and Environment, 2023, 32(4): 733-743. |
[5] | QIN Hao, LI Mengai, GAO Jin, CHEN Kailong, ZHANG Yinbo, ZHANG Feng. Composition and Diversity of Soil Bacterial Communities in Shrub at Different Altitudes in Luya Mountain [J]. Ecology and Environment, 2023, 32(3): 459-468. |
[6] | JIANG Nihao, ZHANG Shihao, ZHANG Shihan. Interspecific Associations and Environmental Interpretation of the Dominant Species of the Communities Invaded by Ageratina adenophora in Ailao Mountains [J]. Ecology and Environment, 2022, 31(7): 1370-1382. |
[7] | XIA Kai, DENG Pengfei, MA Ruihao, WANG Fei, WEN Zhengyu, XU Xiaoniu. Changes of Soil Bacterial Community Structure and Diversity from Conversion of Masson Pine Secondary Forest to Slash Pine and Chinese Fir Plantations [J]. Ecology and Environment, 2022, 31(3): 460-469. |
[8] | XUE Wenkai, ZHU Pan, DE Ji, GUO Xiaofang. Study on the Temporal and Spatial Characteristics of the Dominant Species of Cultivable Filamentous Fungi in Nam Co Lake [J]. Ecology and Environment, 2022, 31(12): 2331-2340. |
[9] | LI Cong, LÜ Jinghua, LU Mei, YANG Zhidong, LIU Pan, REN Yulian, DU Fan. Responses of Soil Bacterial Communities to Vertical Vegetarian Zone Changes in the Subtropical Forests, Southeastern Yunnan [J]. Ecology and Environment, 2022, 31(10): 1971-1983. |
[10] | LIU Xiaoju, CHU Jiangtao, ZHANG Yue, SHAN Qi. Effects of Environmental Factors and Fire Disturbance Factors on Distribution of Chamerion angustifolium in Kanas Taiga [J]. Ecology and Environment, 2022, 31(1): 37-43. |
[11] | YAN Dongfeng, ZHANG Yanyan, LV Kangting, ZHOU Mengli, WANG Ting, ZHAO Ning. Niche Characteristics of Dominant Tree Species in Natural Forests at Different Altitudes in the South of Taihang Mountains [J]. Ecology and Environment, 2021, 30(8): 1571-1580. |
[12] | YAO Shiting, LU Guangxin, DENG Ye, DANG Ning, WANG Yingcheng, ZHANG Haijuan, YAN Huilin. Effects of Simulated Warming on Soil Fungal Community Composition and Diversity [J]. Ecology and Environment, 2021, 30(7): 1404-1411. |
[13] | HE Bin, LI Qing, CHEN Qunli, LI Wangjun, YOU Ping. Altitudinal Pattern of Species Diversity of Pseudotsuga sinensis Communty in Northwestern Guizhou, China [J]. Ecology and Environment, 2021, 30(6): 1111-1120. |
[14] | Xue Liyuan, Liu Zhiliang, Song Wei, An Ying, Yuan Xiaobo, Chen Xiao. Spatial Distribution of Aurelia sp. Ephyrae and Its Relationship with Environmental Factors in the Coastal Waters of Qinhuangdao in Spring, 2020 [J]. Ecology and Environment, 2021, 30(6): 1240-1248. |
[15] | ZHENG Shiyu, ZHANG Lvshui, GUO Xiaomin, HUANG Zijun, XIAO Yihua. Spatial and Temporal Variations of Negative Oxygen Ions in the Air and Environmental Influencing Factors in Forest Environment with Different Canopy Densities: A Case Study of Maofeng Mountain in Guangzhou [J]. Ecology and Environment, 2021, 30(11): 2204-2212. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn