Ecology and Environment ›› 2022, Vol. 31 ›› Issue (1): 70-78.DOI: 10.16258/j.cnki.1674-5906.2022.01.009
• Research Articles • Previous Articles Next Articles
SUN Zhan1,2(), WANG Shengjie1*(
), YANG Jinchang1, WEI Yongcheng1, LIN Chunhua2, MA Haibin1,**(
)
Received:
2021-11-01
Online:
2022-01-18
Published:
2022-03-10
Contact:
MA Haibin
孙战1,2(), 王圣洁1*(
), 杨锦昌1, 魏永成1, 林春花2, 马海宾1,**(
)
通讯作者:
马海宾
作者简介:
孙战(1994年生),男,硕士,主要从事植物保护研究。E-mail: damonzhan10@163.com;基金资助:
CLC Number:
SUN Zhan, WANG Shengjie, YANG Jinchang, WEI Yongcheng, LIN Chunhua, MA Haibin. Correlation Analysis of the Occurrence of Bacterial Wilt and Physicochemical Properties and Enzyme Activity of Root-Zone Soil of Casuarina spp.[J]. Ecology and Environment, 2022, 31(1): 70-78.
孙战, 王圣洁, 杨锦昌, 魏永成, 林春花, 马海宾. 木麻黄根区土壤理化特性及酶活性与青枯病发生关联分析[J]. 生态环境学报, 2022, 31(1): 70-78.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2022.01.009
采样区Sampling plots | 经纬度 Latitude and longitude | 气候 Climate | 年均降雨量 The average annual rainfall/mm | 年平均气温 The annual average temperature/℃ | 土壤类型 Soil types | pH | 林分类型 Stand types | 林龄 Age of forest/ a |
---|---|---|---|---|---|---|---|---|
RP | 23°35′20″N, 117°7′22″E | 亚热带海洋性季风 | 1745.9 | 21.4 | 滨海潮沙土 | 5.90 | 纯林 | 8 |
WC | 21°21′55″N, 110°43′23″E | 亚热带季风 | 1597.8 | 22.5 | 滨海潮沙土 | 6.46 | 纯林 | 6 |
XW | 20°28′7″N, 110°31′20″E | 热带季风 | 1400 | 23.6 | 滨海潮沙土 | 5.16 | 纯林 | 7 |
Table 1 Survey results of sampling plots
采样区Sampling plots | 经纬度 Latitude and longitude | 气候 Climate | 年均降雨量 The average annual rainfall/mm | 年平均气温 The annual average temperature/℃ | 土壤类型 Soil types | pH | 林分类型 Stand types | 林龄 Age of forest/ a |
---|---|---|---|---|---|---|---|---|
RP | 23°35′20″N, 117°7′22″E | 亚热带海洋性季风 | 1745.9 | 21.4 | 滨海潮沙土 | 5.90 | 纯林 | 8 |
WC | 21°21′55″N, 110°43′23″E | 亚热带季风 | 1597.8 | 22.5 | 滨海潮沙土 | 6.46 | 纯林 | 6 |
XW | 20°28′7″N, 110°31′20″E | 热带季风 | 1400 | 23.6 | 滨海潮沙土 | 5.16 | 纯林 | 7 |
分级标准 Grading standard | 病级 Disease degree |
---|---|
树木长势极好,小枝浓绿,全株健康无病 The trees are in excellent condition, with dense green twigs, healthy and disease free throughout | 0 |
树木长势良好,小枝枯梢 Trees in good condition, twigs with dead tips | 1 |
树木长势一般,1/3小枝凋萎 Trees of average growth, 1/3 of twigs withered | 2 |
树木长势较差,1/3至2/3小枝凋萎 Poor tree growth, 1/3 to 2/3 of twigs withered | 3 |
树木长势差,2/3以上小枝凋萎 Poor tree growth, with more than 2/3 of twigs withered | 4 |
病株枯死,小枝全部凋萎 The disease plant dead and all twigs withered | 5 |
Table 2 Grading standard for the damage degree of bacterial wilt
分级标准 Grading standard | 病级 Disease degree |
---|---|
树木长势极好,小枝浓绿,全株健康无病 The trees are in excellent condition, with dense green twigs, healthy and disease free throughout | 0 |
树木长势良好,小枝枯梢 Trees in good condition, twigs with dead tips | 1 |
树木长势一般,1/3小枝凋萎 Trees of average growth, 1/3 of twigs withered | 2 |
树木长势较差,1/3至2/3小枝凋萎 Poor tree growth, 1/3 to 2/3 of twigs withered | 3 |
树木长势差,2/3以上小枝凋萎 Poor tree growth, with more than 2/3 of twigs withered | 4 |
病株枯死,小枝全部凋萎 The disease plant dead and all twigs withered | 5 |
病级 Disease degree | 0 | 1 | 2 | 3 | 4 | 5 | ||
---|---|---|---|---|---|---|---|---|
感病株数 Number of diseased plants | RP | 49 | 0 | 0 | 1 | 0 | 0 | |
49 | 0 | 0 | 0 | 0 | 1 | |||
49 | 0 | 1 | 0 | 0 | 0 | |||
WC | 47 | 0 | 0 | 1 | 0 | 2 | ||
46 | 0 | 1 | 1 | 0 | 2 | |||
47 | 0 | 0 | 1 | 0 | 2 | |||
XW | 45 | 0 | 1 | 0 | 0 | 4 | ||
43 | 0 | 1 | 1 | 0 | 5 | |||
44 | 0 | 1 | 0 | 0 | 5 | |||
感病指数 Disease index | RP | WC | XW | |||||
1.33±0.88c | 5.47±0.67b | 10.53±2.33a |
Table 3 Disease index survey results
病级 Disease degree | 0 | 1 | 2 | 3 | 4 | 5 | ||
---|---|---|---|---|---|---|---|---|
感病株数 Number of diseased plants | RP | 49 | 0 | 0 | 1 | 0 | 0 | |
49 | 0 | 0 | 0 | 0 | 1 | |||
49 | 0 | 1 | 0 | 0 | 0 | |||
WC | 47 | 0 | 0 | 1 | 0 | 2 | ||
46 | 0 | 1 | 1 | 0 | 2 | |||
47 | 0 | 0 | 1 | 0 | 2 | |||
XW | 45 | 0 | 1 | 0 | 0 | 4 | ||
43 | 0 | 1 | 1 | 0 | 5 | |||
44 | 0 | 1 | 0 | 0 | 5 | |||
感病指数 Disease index | RP | WC | XW | |||||
1.33±0.88c | 5.47±0.67b | 10.53±2.33a |
土壤指标 Indicators of soil | 地区 Regions | DRS | HRS |
---|---|---|---|
pH | RP | 5.29±0.12a | 5.50±0.06a |
WC | 6.17±0.10 bB | 6.70±0.11aA | |
XW | 5.04±0.07a | 5.16±0.07a | |
EC/ (μS∙cm-1) | RP | 30.70±7.60a | 33.30±7.61a |
WC | 40.27±7.70a | 30.00±6.23a | |
XW | 40.43±2.08a | 32.47±5.61a | |
w(SOM)/ (g∙kg-1) | RP | 3.07±0.30bB | 4.37±0.36aA |
WC | 5.44±0.14b | 6.21±0.19a | |
XW | 2.41±0.18bB | 3.63±0.15aA | |
w(TN)/ (g∙kg-1) | RP | 0.17±0.01b | 0.22±0.03a |
WC | 0.21±0.02a | 0.26±0.04a | |
XW | 0.14±0.01a | 0.16±0.02a | |
w(AN)/ (mg∙kg-1) | RP | 29.23±2.15a | 33.69±0.98a |
WC | 17.37±0.57bB | 26.79±1.74aA | |
XW | 23.00±1.22bB | 27.83±1.01aA | |
w(TP)/ (g∙kg-1) | RP | 0.12±0.01bB | 0.21±0.01aA |
WC | 0.14±0.04a | 0.21±0.02a | |
XW | 0.07±0.01a | 0.07±0.01a | |
w(AP)/ (mg∙kg-1) | RP | 12.01±1.97a | 16.31±1.66a |
WC | 5.73±1.63bB | 18.23±1.05aA | |
XW | 1.02±0.15bB | 1.86±0.08aA | |
w(TK)/ (g∙kg-1) | RP | 8.90±0.02a | 9.33±0.19a |
WC | 5.00±0.37a | 5.71±0.20a | |
XW | 2.55±0.61a | 2.83±0.57a | |
w(AK)/ (mg∙kg-1) | RP | 41.41±0.82bB | 55.37±1.52aA |
WC | 18.85±2.52bB | 27.83±0.81aA | |
XW | 20.97±1.85bB | 37.61±2.41aA |
Table 4 Comparison of physicochemical properties between diseased and healthy plants root-zone soil in the three regions
土壤指标 Indicators of soil | 地区 Regions | DRS | HRS |
---|---|---|---|
pH | RP | 5.29±0.12a | 5.50±0.06a |
WC | 6.17±0.10 bB | 6.70±0.11aA | |
XW | 5.04±0.07a | 5.16±0.07a | |
EC/ (μS∙cm-1) | RP | 30.70±7.60a | 33.30±7.61a |
WC | 40.27±7.70a | 30.00±6.23a | |
XW | 40.43±2.08a | 32.47±5.61a | |
w(SOM)/ (g∙kg-1) | RP | 3.07±0.30bB | 4.37±0.36aA |
WC | 5.44±0.14b | 6.21±0.19a | |
XW | 2.41±0.18bB | 3.63±0.15aA | |
w(TN)/ (g∙kg-1) | RP | 0.17±0.01b | 0.22±0.03a |
WC | 0.21±0.02a | 0.26±0.04a | |
XW | 0.14±0.01a | 0.16±0.02a | |
w(AN)/ (mg∙kg-1) | RP | 29.23±2.15a | 33.69±0.98a |
WC | 17.37±0.57bB | 26.79±1.74aA | |
XW | 23.00±1.22bB | 27.83±1.01aA | |
w(TP)/ (g∙kg-1) | RP | 0.12±0.01bB | 0.21±0.01aA |
WC | 0.14±0.04a | 0.21±0.02a | |
XW | 0.07±0.01a | 0.07±0.01a | |
w(AP)/ (mg∙kg-1) | RP | 12.01±1.97a | 16.31±1.66a |
WC | 5.73±1.63bB | 18.23±1.05aA | |
XW | 1.02±0.15bB | 1.86±0.08aA | |
w(TK)/ (g∙kg-1) | RP | 8.90±0.02a | 9.33±0.19a |
WC | 5.00±0.37a | 5.71±0.20a | |
XW | 2.55±0.61a | 2.83±0.57a | |
w(AK)/ (mg∙kg-1) | RP | 41.41±0.82bB | 55.37±1.52aA |
WC | 18.85±2.52bB | 27.83±0.81aA | |
XW | 20.97±1.85bB | 37.61±2.41aA |
Figure 1 Comparison of physicochemical properties of diseased plants root-zone soil in three regions RP: Raoping; WC: Wuchuan; XW: Xuwen. Abbreviations for soil indicators are shown in Table 4. Different lowercase and capital letters marked in the same indicator represent significant difference (P<0.05) and extremely significant difference (P<0.01)
类别 Category | 发病等级 Disease degree | pH | SOM | TN | TP | TK | EC | AP | AK | AN |
---|---|---|---|---|---|---|---|---|---|---|
发病等级 Disease degree | 1.000 | |||||||||
pH | -0.423 | 1.000 | ||||||||
SOM | -0.264 | 0.762* | 1.000 | |||||||
TN | -0.474 | 0.611 | 0.883** | 1.000 | ||||||
TP | -0.503 | 0.571 | 0.653 | 0.527 | 1.000 | |||||
TK | -0.949** | 0.318 | 0.250 | 0.517 | 0.485 | 1.000 | ||||
EC | 0.211 | 0.025 | 0.483 | 0.600 | 0.000 | -0.050 | 1.000 | |||
AP | -0.896** | 0.561 | 0.350 | 0.500 | 0.644 | 0.800** | -0.183 | 1.000 | ||
AK | -0.609 | -0.374 | -0.285 | 0.067 | 0.172 | 0.720* | -0.084 | 0.477 | 1.000 | |
AN | -0.476 | -0.420 | -0.527 | -0.318 | 0.118 | 0.452 | -0.460 | 0.385 | 0.739* | 1.000 |
Table 5 Correlations between physicochemical properties of diseased plants root-zone soil and disease degree of bacterial wilt
类别 Category | 发病等级 Disease degree | pH | SOM | TN | TP | TK | EC | AP | AK | AN |
---|---|---|---|---|---|---|---|---|---|---|
发病等级 Disease degree | 1.000 | |||||||||
pH | -0.423 | 1.000 | ||||||||
SOM | -0.264 | 0.762* | 1.000 | |||||||
TN | -0.474 | 0.611 | 0.883** | 1.000 | ||||||
TP | -0.503 | 0.571 | 0.653 | 0.527 | 1.000 | |||||
TK | -0.949** | 0.318 | 0.250 | 0.517 | 0.485 | 1.000 | ||||
EC | 0.211 | 0.025 | 0.483 | 0.600 | 0.000 | -0.050 | 1.000 | |||
AP | -0.896** | 0.561 | 0.350 | 0.500 | 0.644 | 0.800** | -0.183 | 1.000 | ||
AK | -0.609 | -0.374 | -0.285 | 0.067 | 0.172 | 0.720* | -0.084 | 0.477 | 1.000 | |
AN | -0.476 | -0.420 | -0.527 | -0.318 | 0.118 | 0.452 | -0.460 | 0.385 | 0.739* | 1.000 |
土壤酶活性 Enzyme activity of soil | 地区 Regions | DRS | HRS |
---|---|---|---|
URE/ (mg∙kg-1∙h-1) | RP | 155.60±0.60a | 161.08±4.09a |
WC | 157.23±2.65a | 163.54±0.98a | |
XW | 156.79±0.31b | 165.25±0.86a | |
ACP/ (μg∙g-1∙h-1) | RP | 36.60±4.83a | 53.67±5.30a |
WC | 10.56±0.18a | 20.98±4.80a | |
XW | 24.49±4.53bB | 66.73±11.94aA | |
INV/ (0.1 mg∙kg-1∙h-1) | RP | 1.05±0.09a | 0.77±0.13a |
WC | 0.83±0.17a | 0.46±0.20a | |
XW | 1.20±0.32b | 0.49±0.10a | |
CAT/ (0.1 mg∙g-1∙h-1) | RP | 0.65±0.01b | 0.76±0.07a |
WC | 0.71±0.01b | 0.82±0.01a | |
XW | 0.56±0.02a | 0.62±0.01a | |
POD/ (mg∙g-1∙h-1) | RP | 0.80±0.01a | 0.91±0.04a |
WC | 0.39±0.04a | 0.43±0.02a | |
XW | 0.44±0.02bB | 0.75±0.15aA | |
PPO/ (mg∙g-1∙h-1) | RP | 23.45±1.80bB | 74.97±3.24aA |
WC | 30.43±3.22bB | 59.17±9.46aA | |
XW | 59.63±8.87b | 79.70±4.30a |
Table 6 Comparison of enzyme activity of root-zone soil between diseased and healthy plants in three regions
土壤酶活性 Enzyme activity of soil | 地区 Regions | DRS | HRS |
---|---|---|---|
URE/ (mg∙kg-1∙h-1) | RP | 155.60±0.60a | 161.08±4.09a |
WC | 157.23±2.65a | 163.54±0.98a | |
XW | 156.79±0.31b | 165.25±0.86a | |
ACP/ (μg∙g-1∙h-1) | RP | 36.60±4.83a | 53.67±5.30a |
WC | 10.56±0.18a | 20.98±4.80a | |
XW | 24.49±4.53bB | 66.73±11.94aA | |
INV/ (0.1 mg∙kg-1∙h-1) | RP | 1.05±0.09a | 0.77±0.13a |
WC | 0.83±0.17a | 0.46±0.20a | |
XW | 1.20±0.32b | 0.49±0.10a | |
CAT/ (0.1 mg∙g-1∙h-1) | RP | 0.65±0.01b | 0.76±0.07a |
WC | 0.71±0.01b | 0.82±0.01a | |
XW | 0.56±0.02a | 0.62±0.01a | |
POD/ (mg∙g-1∙h-1) | RP | 0.80±0.01a | 0.91±0.04a |
WC | 0.39±0.04a | 0.43±0.02a | |
XW | 0.44±0.02bB | 0.75±0.15aA | |
PPO/ (mg∙g-1∙h-1) | RP | 23.45±1.80bB | 74.97±3.24aA |
WC | 30.43±3.22bB | 59.17±9.46aA | |
XW | 59.63±8.87b | 79.70±4.30a |
类别 Category | 发病等级 Disease degree | 土壤酶活性Enzyme activity | |||||||
---|---|---|---|---|---|---|---|---|---|
URE | ACP | INV | CAT | POD | PPO | ||||
发病等级Disease degree | 1.000 | ||||||||
URE | 0.316 | 1.000 | |||||||
ACP | -0.369 | -0.200 | 1.000 | ||||||
INV | -0.053 | 0.133 | -0.050 | 1.000 | |||||
CAT | -0.476 | -0.151 | -0.485 | -0.335 | 1.000 | ||||
POD | -0.580 | 0.050 | 0.767* | 0.100 | -0.243 | 1.000 | |||
PPO | 0.896** | -0.067 | -0.200 | -0.017 | -0.519 | -0.500 | 1.000 |
Table 7 Correlations between enzyme activity in diseased plants root-zone soil and disease degree of bacterial wilt
类别 Category | 发病等级 Disease degree | 土壤酶活性Enzyme activity | |||||||
---|---|---|---|---|---|---|---|---|---|
URE | ACP | INV | CAT | POD | PPO | ||||
发病等级Disease degree | 1.000 | ||||||||
URE | 0.316 | 1.000 | |||||||
ACP | -0.369 | -0.200 | 1.000 | ||||||
INV | -0.053 | 0.133 | -0.050 | 1.000 | |||||
CAT | -0.476 | -0.151 | -0.485 | -0.335 | 1.000 | ||||
POD | -0.580 | 0.050 | 0.767* | 0.100 | -0.243 | 1.000 | |||
PPO | 0.896** | -0.067 | -0.200 | -0.017 | -0.519 | -0.500 | 1.000 |
[1] |
BONANOMI G, ANTIGNANI V, CAPODILUPO M, et al., 2010. Identifying the characteristics of organic soil amendments that suppress soilborne plant diseases[J]. Soil Biology and Biochemistry, 42(2): 136-144.
DOI URL |
[2] |
BONGIORNO G, POSTMA J, BÜNEMANN E K, et al., 2019. Soil suppressiveness to Pythium ultimum in ten European long-term field experiments and its relation with soil parameters[J]. Soil Biology and Biochemistry, 133: 174-187.
DOI URL |
[3] |
GIANFREDA L, RAO M A, 2008. Interactions between xenobiotics and microbial and enzymatic soil activity[J]. Critical Reviews in Environmental Science and Technology, 38(4): 269-310.
DOI URL |
[4] |
KHAN S, HESHAM A E L, QIAO M, et al., 2010. Effects of Cd and Pb on soil microbial community structure and activities[J]. Environmental Science and Pollution Research, 17(2): 288-296.
DOI URL |
[5] |
KIZILKAYA R, ASKIN T, BAYRAKL B, et al., 2004. Microbiological characteristics of soils contaminated with heavy metals[J]. European Journal of Soil Biology, 40(2): 95-102.
DOI URL |
[6] |
LI X G, DING C F, HUA K, et al., 2014. Soil sickness of peanuts is attributable to modifications in soil microbes induced by peanut root exudates rather than to direct allelopathy[J]. Soil Biology and Biochemistry, 78: 149-159.
DOI URL |
[7] |
LOOBY C L, TRESEDER K K, 2018. Shifts in soil fungi and extracellular enzyme activity with simulated climate change in a tropical montane cloud forest[J]. Soil Biology and Biochemistry, 117: 87-96.
DOI URL |
[8] |
SCHELL M A, 2000. Control of virulence and pathogenicity genes of Ralstonia solanacearum by an elaborate sensory network[J]. Annual Review of Phytopathology, 38: 263-292.
DOI URL |
[9] |
SHEN Z Z, PENTON C, LV N, et al., 2018. Banana fusarium wilt disease incidence is influenced by shifts of soil microbial communities under different monoculture spans[J]. Microbial Ecology, 75(3): 739-750.
DOI URL |
[10] |
SUBBARAO K V, HUBBARD J C, SCHULBACH K F, 1997. Comparison of lettuce diseases and yield under subsurface drip and furrow irrigation[J]. Phytopathology, 87(8): 877.
DOI URL |
[11] |
SUKUL P, 2006. Enzymatic activities and microbial biomass in soil as influenced by metalaxyl residues[J]. Soil Biology and Biochemistry, 38(2): 320-326.
DOI URL |
[12] |
ZHANG Q M, ZHU L S, WANG J, et al., 2014. Effects of fomesafen on soil enzyme activity, microbial population, and bacterial community composition[J]. Environ Monit Assess, 186(5): 2801-2812.
DOI URL |
[13] |
ZHU W, LIU L, ZOU P, et al., 2010. Effect of decabromodiphenyl ether (BDE 209) on soil microbial activity and bacterial community composition[J]. World Journal of Microbiology and Biotechnology, 26(10): 1891-1899.
DOI URL |
[14] | 白世红, 马风云, 李树生, 等, 2012. 黄河三角洲不同退化程度人工刺槐林土壤酶活性、养分和微生物相关性研究[J]. 中国生态农业学报, 20(11): 1478-1483. |
BAI S H, MA F Y, LI S S, et al., 2012. Relational analysis of soil enzyme activities, nutrients and microbes in Robinia pseudoacacia plantations in the Yellow River Dalta with different degradation degrees[J]. Chinese Journal of Eco-Agriculture, 20(11): 1478-1483.
DOI URL |
|
[15] | 鲍士旦, 2000. 土壤农化分析[M]. 北京: 农业出版社: 30-83. |
BAO S D, 2000. Agrochemical Analysis of Soil[M]. Beijing: Agricultural Press: 30-83. | |
[16] | 曹小玉, 李际平, 张彩彩, 等, 2014. 不同龄组杉木林土壤有机碳和理化性质的变化特征及其通径分析[J]. 水土保持学报, 28(4): 200-205. |
CAO X Y, LI J P, ZHANG C C, et al., 2014. Variation of contents of organic carbon and physic-chemical properties of soil and path analysis for their relations in different age-group Chinese fir plantations[J]. Journal of Soil and Water Conservation, 28(4): 200-205. | |
[17] | 陈洪, 2000. 木麻黄抗旱生理生化部分特性的研究[J]. 福建农业学报, 15(1): 48-54. |
CHEN H, 2000. Studies on the part physiological and chemical characters of drought tolerance in Casuarina equisetifolia[J]. Fujian Journal of Agricultural Sciences, 15(1): 48-54. | |
[18] | 方中达, 1979. 植病研究方法[M]. 北京: 农业出版社: 6-13. |
FANG Z D, 1979. Plant disease research methods[M]. Beijing: Agricultural Press: 6-13. | |
[19] | 关松荫, 1986. 土壤酶及其研究法[M]. 北京: 农业出版社: 294-297. |
GUAN S Y, 1986. Soil Enzyme and Its Research Methods[M]. Beijing: Agricultural Press: 294-297. | |
[20] | 何川, 刘国顺, 李祖良, 等, 2011. 连作对植烟土壤有机碳和酶活性的影响及其与土传病害的关系[J]. 河南农业大学学报, 45(6): 701-705. |
HE C, LIU G S, LI Z L, et al., 2011. Effect of continuous cropping on tobacco soil organic carbon, enzyme activities, and its relationship with soil-borne diseases[J]. Journal of Henan Agricultural University, 45(6): 701-705. | |
[21] | 何昕, 蒋佳峰, 董元华. 2017, 钾素对番茄青枯病抗性的影响及机理研究[J]. 安徽农业科学, 45(36): 154-156. |
HE X, JIANG J F, DONG Y H, 2017. Effect of potassium on tomato bacterial wilt resistance and its mechanism[J]. Journal of Anhui Agricultural Sciences, 45(36): 154-156. | |
[22] | 廖梓良, 孙世中, 刘建香, 等, 2009. 设施栽培香石竹根际土壤酶活与土传病害相关性研究[J]. 云南师范大学学报 (自然科学版), 29(3): 59-63. |
LIAO Z L, SUN S Z, LIU J X, et al., 2009. Relevance study between soil enzyme activity and soil-borne diseases in rhizosphere soil of Dianthus caryophyllus L. under cultivation[J]. Journal of Yunnan Normal University (Natural Sciences Edition), 29(3): 59-63. | |
[23] | 刘华峰, 张素荣, 代杰瑞, 等, 2020. 章丘区刁镇和辛寨镇表层土壤全氮与碱解氮特征及影响因素[J]. 地质调查与研究, 43(3): 240-245. |
LIU H F, ZHANG S R, DAI J R, et al., 2020. Characteristics and influencing factors of total nitrogen and alkaline-hydrolyzed nitrogen in surface soil from Diaozhen town and Xinzhai town in Zhangqiu district[J]. North China Geology, 43(3): 240-245. | |
[24] | 马海宾, 康丽华, 江业根, 等, 2011. 我国木麻黄青枯病防治研究进展与对策[J]. 防护林科技 (5): 44-45, 48. |
MA H B, KANG L H, JIANG Y G, et al., 2011. Research progress and countermeasures on the control of Casuarina bacterial wilt in my country[J]. Protection Forest Science and Technology (5): 44-45, 48. | |
[25] | 苏妮尔, 沈海龙, 丁佩军, 等, 2020. 不同坡位红皮云杉林木生长与土壤理化性质比较[J]. 森林工程, 36(2): 6-11, 19. |
SU N E, SHEN H L, DING P J, et al., 2020. Comparison of tree growth and soil physical and chemical properties of Picea koraiensis plantation at different slope positions[J]. Forest Engineering, 36(2): 6-11, 19. | |
[26] | 孙战, 张勇, 马海宾, 2020. 粤西木麻黄青枯病成灾原因及防治策略[J]. 温带林业研究, 3(3): 6-10, 49. |
SUN Z, ZHANG Y, MA H B, 2020. Causes and prevention strategies on the outbreak of Casuarina equisetifolia bacterial wilt in western Guangdong province[J]. Journal of Temperate Forestry Research, 3(3): 6-10, 49. | |
[27] | 王相平, 杨劲松, 张胜江, 等, 2020. 改良剂施用对干旱盐碱区棉花生长及土壤性质的影响[J]. 生态环境学报, 29(4): 757-762. |
WANG X P, YANG J S, ZHANG S J, et al., 2020. Effects of different amendments application on cotton growth and soil properties in arid areas[J]. Ecology and Environmental Sciences, 29(4): 757-762. | |
[28] | 吴志华, 李天会, 张华林, 等, 2010. 沿海防护林树种木麻黄和相思生长和抗风性状比较研究[J]. 草业学报, 19(4): 166-175. |
WU Z H, LI T H, ZHANG H L, et al., 2010. Studies on growth and wind-resistance traits of Casuarina and Acacia stands from coastal protection forest[J]. Acta Prataculturae Sinica, 19(4): 166-175. | |
[29] | 徐海娇, 唐珊珊, 周如军, 等, 2017. 白头翁菌核病发生危害调查及其病原菌生物学特性[J]. 植物保护学报, 44(2): 232-239. |
XU H J, TANG S S, ZHOU R J, et al., 2017. Occurrence of sclerotinia rot of Pulsatilla koreana and biological characteristics of Sclerotinia nivalis[J]. Journal of Plant Protection, 44(2): 232-239. | |
[30] | 杨珍, 戴传超, 王兴祥, 等, 2019. 作物土传真菌病害发生的根际微生物机制研究进展[J]. 土壤学报, 56(1): 12-22. |
YANG Z, DAI C C, WANG X X, et al., 2019. Advance in research on rhizosphere microbial mechanisms of crop soil-borne fungal diseases[J]. Acta Pedologica Sinica, 56(1): 12-22. | |
[31] | 游春梅, 陆晓菊, 官会林, 2014. 三七设施栽培根腐病害与土壤酶活性的关联性[J]. 云南师范大学学报(自然科学版), 34(6): 25-29. |
YOU C M, LU X J, GUAN H L, 2014. The relevance of notoginseng root rot to the enzyme activity in soil[J]. Journal of Yunnan Normal University (Natural Sciences Edition), 34(6): 25-29. | |
[32] | 于威, 依艳丽, 杨蕾, 2016. 土壤中钙、氮含量对番茄枯萎病抗性的影响[J]. 中国土壤与肥料 (1): 134-140. |
YU W, YI Y L, YANG L, 2016. Effect of different available calcium and nitrogen in soil on effectiveness of disease resistance to blight of tomato[J]. Soil and Fertilizer Sciences in China (1): 134-140. | |
[33] | 张广雨, 褚德朋, 刘元德, 等, 2019. 生物炭及海藻肥对烟草生长、土壤性状及青枯病发生的影响[J]. 中国烟草科学, 40(5): 15-22. |
ZHANG G Y, CHU D P, LIU Y D, et al., 2019. Effects of biochar and seaweed fertilizers on tobacco growth, soil properties and bacterial wilt occurrence[J]. Chinese Tobacco Science, 40(5): 15-22. | |
[34] | 仲崇禄, 1994. 世界木麻黄科植物的引种和育种[J]. 世界林业研究, 1: 82-84. |
ZHONG C L, 1994. Introduction and breeding of Casuarinaceae in the world[J]. World Forestry Research, 1: 82-84. | |
[35] | 朱永官, 彭静静, 韦中, 等, 2021. 土壤微生物组与土壤健康[J]. 中国科学 (生命科学), 51(1): 1-11. |
ZHU Y G, PENG J J, WEI Z, et al., 2021. Linking the soil microbiome to soil health[J]. Scientia Sinica (Series C), 51(1): 1-11. |
[1] | LI Haipeng, HUANG Yuehua, SUN Xiaodong, CAO Qimin, FU Fangxing, SUN Chuhan. Correlation Analysis of the Occurrence of the Tomato Bacterial Wilt and Different Types of Texture of Latosols and Its Bacterial Community in Cropland in Hainan [J]. Ecology and Environment, 2023, 32(6): 1062-1069. |
[2] | DU Dandan, GAO Ruizhong, FANG Lijing, XIE Longmei. Spatial Variation of Soil Heavy Metals and Their Responses to Physicochemical Factors of Salt Lake Basin in Arid Area [J]. Ecology and Environment, 2023, 32(6): 1123-1132. |
[3] | SHENG Meijun, LI Shengjun, YANG Xinyue, WANG Rui, LI Jie, LI Gang, XIU Weiming. Changes of Soil Enzyme Activities in Cropland with Different Land Use Intensities in Fluvo-aquic Soil Area, North China [J]. Ecology and Environment, 2023, 32(2): 299-308. |
[4] | WANG Lei, WEN Yuanguang, ZHOU Xiaoguo, ZHU Hongguang, SUN Dongjing. Effects of Mixing Eucalyptus urophylla×E. grandis with Castanopsis hystrix on Understory Vegetation and Soil Properties [J]. Ecology and Environment, 2022, 31(7): 1340-1349. |
[5] | QIAN Lianwen, YU Tiantian, LIANG Xujun, WANG Yixiang, CHEN Yongshan. Stability of Biochar after Application for 5 Years in the Amendment of Acidified Tea Garden Soil [J]. Ecology and Environment, 2022, 31(7): 1442-1447. |
[6] | SUN Jianbo, CHANG Wenjun, LI Wenbin, ZHANG Shiqing, LI Chunqiang, PENG Ming. Dynamics of Soil Microbial Biomass and Enzyme Activities in Rhizosphere Soil at Different Growing Stages of Banana [J]. Ecology and Environment, 2022, 31(6): 1169-1174. |
[7] | DENG Xiao, WU Chunyuan, YANG Guisheng, LI Yi, LI Qinfen. Improvement Effect of Coconut-shell Biochar on Coastal Soil in Hainan [J]. Ecology and Environment, 2022, 31(4): 723-731. |
[8] | ZHOU Chunfu, YU Rui, WANG Xiang, CHUANG Shaochuang, YANG Hongxing, XIE Yue. Effects of Antibiotics on Soil Enzyme Activities in Different Soils [J]. Ecology and Environment, 2022, 31(11): 2234-2241. |
[9] | JIANG Jing, RUAN Chengjie, CHEN Xiaoyu, WU Yi, WANG Yongchuang. Research Progress on Simulated Aging of Microplastics and Its Effects on Pollutant Adsorption [J]. Ecology and Environment, 2022, 31(11): 2263-2274. |
[10] | LI Chunhuan, WANG Pan, HAN Cui, XU Yixin, HUANG Juying. Variation Characteristics of Soil Properties Around A Northwest Desert Coal-mining Region under Sulphur and Nitrogen Deposition [J]. Ecology and Environment, 2022, 31(1): 170-180. |
[11] | WANG Rui, SONG Xiangyun, LIU Xinwei. Seasonal Characteristics of Soil Enzymes in Different Vegetations in the Yellow River Delta [J]. Ecology and Environment, 2022, 31(1): 62-69. |
[12] | LI Xin, CHEN Xiaohua, GU Hairong, QIAN Xiaoyong, SHEN Genxiang, ZHAO Qingjie, BAI Yujie. Distribution Characteristics and Influencing Factors of Enzyme Activities in Typical Farmland Soils [J]. Ecology and Environment, 2021, 30(8): 1634-1641. |
[13] | LIN Li, DAI Lei, LIN Zebei, WU Jitong, YAN Wei, WANG Zhijie. Plant Diversity and Its Relationship with Soil Physicochemical Properties of Urban Forest Communities in Central Guizhou [J]. Ecology and Environment, 2021, 30(11): 2130-2141. |
[14] | YANG Hongbing, XIAO Yihua, LI Ming, XU Han, SHI Xin, GUO Xiaomin. Coupling Relationship between Soil Aggregate Stability and Microbial Extracellular Enzyme Activities in Typical Urban Forests during the Dry Season [J]. Ecology and Environment, 2021, 30(10): 1976-1989. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn