Ecology and Environment ›› 2021, Vol. 30 ›› Issue (12): 2309-2316.DOI: 10.16258/j.cnki.1674-5906.2021.12.005
• Research Articles • Previous Articles Next Articles
WANG Haoyue1(), GUO Yuefeng1,*(
), XU Yajie1, QI Wei1,2, BU Fanjing1, QI Huijuan1
Received:
2021-06-17
Online:
2021-12-18
Published:
2022-01-04
Contact:
GUO Yuefeng
王皓月1(), 郭月峰1,*(
), 徐雅洁1, 祁伟1,2, 卜繁靖1, 祁慧娟1
通讯作者:
郭月峰
作者简介:
王皓月(1998年生),男,硕士研究生,主要从事水土保持与荒漠化防治研究工作。E-mail: 1648341190@qq.com
基金资助:
CLC Number:
WANG Haoyue, GUO Yuefeng, XU Yajie, QI Wei, BU Fanjing, QI Huijuan. Coupling Relationship between Vegetation and Soil System in Ecological Restoration of Different Stand Types in Jiufeng Mountain[J]. Ecology and Environment, 2021, 30(12): 2309-2316.
王皓月, 郭月峰, 徐雅洁, 祁伟, 卜繁靖, 祁慧娟. 九峰山不同林分类型生态恢复植被-土壤系统耦合关系评价[J]. 生态环境学报, 2021, 30(12): 2309-2316.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2021.12.005
林分类型 Stand type | 林龄 Age/ a | 海拔 Elevation/m | 坡向 Aspect | 坡位 Position | 平均树高 Average of height/m | 平均胸径/地径 Average of DBH/Ground diameter/cm | 主要地植被物 Ground cover |
---|---|---|---|---|---|---|---|
侧柏 Platycladus orientalis (L.) Franco | 6 | 1046 | 阳坡 Sunny slope | 坡中 In the slope | 3.35 | 1.52 | 猪毛蒿、山韭、草木樨 Artemisia scoparia Waldst. et Kit., Allium senescens L. Melilotus officinalis (L.) Pall. |
柠条 Caragana korshinskii Kom. | 7 | 1162 | 阳坡 Sunny slope | 坡中 In the slope | 1.21 | 2.15 | 羊草、砂蓝刺头、蒙古蒿 Leymus chinensis (Trin.) Tzvel., Echinops gmelina Turcz., Artemisia mongolica (Fisch. ex Bess.) Nakai |
长梗扁桃 Amygdalus pedunculata Pall | 7 | 1094 | 阳坡 Sunny slope | 坡中 In the slope | 1.24 | 2.36 | 香青兰、羊草、远志、蒙古蒿 Dracocephalum moldavica L., Leymus chinensis (Trin.) Tzvel., Polygala tenuifolia Willd., Artemisia mongolica (Fisch. ex Bess.) Nakai |
山杨 Populus davidiana Dode | 8 | 1033 | 阳坡 Sunny slope | 坡中 In the slope | 5.92 | 12.85 | 胡枝子、牻牛儿苗、百里香 Lespedeza bicolor Turcz., Erodium stephanianum Willd., Thymus mongolicus Ronn. |
虎榛子 Ostryopsis davidiana Decaisne | 7 | 1129 | 阳坡 Sunny slope | 坡中 In the slope | 1.18 | 3.27 | 蒙古莸、羊草、山韭 Caryopteris mongholica Bunge, Leymus chinensis (Trin.) Tzvel., Allium senescens L. |
黄刺玫 Rosa xanthina Lindl. | 5 | 1051 | 阳坡 Sunny slope | 坡中 In the slope | 1.12 | 2.51 | 红柴胡、山韭、蓝刺头 Bupleurum scorzonerifolium Willd., Allium senescens L., Echinops sphaerocephalus L. |
Table 1 Basic information of sampling plots
林分类型 Stand type | 林龄 Age/ a | 海拔 Elevation/m | 坡向 Aspect | 坡位 Position | 平均树高 Average of height/m | 平均胸径/地径 Average of DBH/Ground diameter/cm | 主要地植被物 Ground cover |
---|---|---|---|---|---|---|---|
侧柏 Platycladus orientalis (L.) Franco | 6 | 1046 | 阳坡 Sunny slope | 坡中 In the slope | 3.35 | 1.52 | 猪毛蒿、山韭、草木樨 Artemisia scoparia Waldst. et Kit., Allium senescens L. Melilotus officinalis (L.) Pall. |
柠条 Caragana korshinskii Kom. | 7 | 1162 | 阳坡 Sunny slope | 坡中 In the slope | 1.21 | 2.15 | 羊草、砂蓝刺头、蒙古蒿 Leymus chinensis (Trin.) Tzvel., Echinops gmelina Turcz., Artemisia mongolica (Fisch. ex Bess.) Nakai |
长梗扁桃 Amygdalus pedunculata Pall | 7 | 1094 | 阳坡 Sunny slope | 坡中 In the slope | 1.24 | 2.36 | 香青兰、羊草、远志、蒙古蒿 Dracocephalum moldavica L., Leymus chinensis (Trin.) Tzvel., Polygala tenuifolia Willd., Artemisia mongolica (Fisch. ex Bess.) Nakai |
山杨 Populus davidiana Dode | 8 | 1033 | 阳坡 Sunny slope | 坡中 In the slope | 5.92 | 12.85 | 胡枝子、牻牛儿苗、百里香 Lespedeza bicolor Turcz., Erodium stephanianum Willd., Thymus mongolicus Ronn. |
虎榛子 Ostryopsis davidiana Decaisne | 7 | 1129 | 阳坡 Sunny slope | 坡中 In the slope | 1.18 | 3.27 | 蒙古莸、羊草、山韭 Caryopteris mongholica Bunge, Leymus chinensis (Trin.) Tzvel., Allium senescens L. |
黄刺玫 Rosa xanthina Lindl. | 5 | 1051 | 阳坡 Sunny slope | 坡中 In the slope | 1.12 | 2.51 | 红柴胡、山韭、蓝刺头 Bupleurum scorzonerifolium Willd., Allium senescens L., Echinops sphaerocephalus L. |
目标层 Objective level | 子目标层 Subgoal layer | 指标层 Index level | 权重 Weight |
---|---|---|---|
土壤-植被综合系统 Soil-plant integrated system | 土壤系统 Soil system | 土壤含水量 SMC | 0.1318 |
土壤容重 BD | 0.0786 | ||
土壤孔隙度 | 0.0819 | ||
土壤全氮 TN | 0.1504 | ||
土壤全磷 TP | 0.062 | ||
土壤全钾 TK | 0.053 | ||
土壤有机碳 SOC | 0.1328 | ||
植被系统 Plant system | Shannon-Wiener指数 | 0.1308 | |
Margalef指数 | 0.0291 | ||
Pielou指数 | 0.0273 | ||
Simpson指数 | 0.0277 | ||
植物生物量 Plant biomass | 0.0946 |
Table 2 The index and weight of coupling coordination degree of soil-vegetation system
目标层 Objective level | 子目标层 Subgoal layer | 指标层 Index level | 权重 Weight |
---|---|---|---|
土壤-植被综合系统 Soil-plant integrated system | 土壤系统 Soil system | 土壤含水量 SMC | 0.1318 |
土壤容重 BD | 0.0786 | ||
土壤孔隙度 | 0.0819 | ||
土壤全氮 TN | 0.1504 | ||
土壤全磷 TP | 0.062 | ||
土壤全钾 TK | 0.053 | ||
土壤有机碳 SOC | 0.1328 | ||
植被系统 Plant system | Shannon-Wiener指数 | 0.1308 | |
Margalef指数 | 0.0291 | ||
Pielou指数 | 0.0273 | ||
Simpson指数 | 0.0277 | ||
植物生物量 Plant biomass | 0.0946 |
D | 水平类型类 Horizontal type | P(y)与S(x)对比关系 P(y) versus S(x) | 植被土壤耦合协调类型 Vegetation and soil coupling coordination type |
---|---|---|---|
0<D≤0.1 | 极度失调衰退型 Extremely maladjusted recession | P(y)/S(x) | 极度失调衰退类植被损益型 Extremely maladjusted recession vegetation loss type |
0.8≤P(y)/S(x)≤1.2 | 极度失调衰退类植被土壤共损型 Extremely maladjusted declining vegetation soil co-loss type | ||
P(y)/S(x) | 极度失调衰退类土壤损益型 Extremely maladjusted recession type soil profit and loss type | ||
0.1<D≤0.2 | 严重失调衰退型 Serious disorder recession type | P(y)/S(x) | 严重失调衰退类植被损益型 Severe disorder and decline of vegetation loss type |
0.8≤P(y)/S(x)≤1.2 | 严重失调衰退类植被土壤共损型 Soil co-loss type of seriously disordered and declining vegetation | ||
P(y)/S(x) | 严重失调衰退类土壤损益型 Serious disorder decline type of soil profit and loss type | ||
0.2<D≤0.3 | 中度失调衰退型 Moderate disorder recession type | P(y)/S(x) | 中度失调衰退类植被损益型 Moderately disordered declining vegetation loss type |
0.8≤P(y)/S(x)≤1.2 | 中度失调衰退类植被土壤共损型 Soil co-loss type of moderately disordered declining vegetation | ||
P(y)/S(x) | 中度失调衰退类土壤损益型 Soil profit and loss type of moderate disorder decline | ||
0.3<D≤0.4 | 轻度失调衰退型 Mild disorder recession type | P(y)/S(x) | 轻度失调衰退类植被损益型 Gain and loss type of mildly maladjusted declining vegetation |
0.8≤P(y)/S(x)≤1.2 | 轻度失调衰退类植被土壤共损型 Soil co-loss type of mildly disordered and declining vegetation | ||
P(y)/S(x) | 轻度失调衰退类土壤损益型 Slight disorder and decline of soil profit and loss type | ||
0.4<D≤0.5 | 濒临失调衰退型 Mild disorder recession type | P(y)/S(x) | 濒临失调衰退类植被损益型 On the verge of disorderly decline vegetation loss type |
0.8≤P(y)/S(x)≤1.2 | 濒临失调衰退类植被土壤共损型 Soil co-loss type of vegetation on the verge of disorderly decline | ||
P(y)/S(x) | 濒临失调衰退类土壤损益型 On the verge of disordered decline type of soil profit and loss type | ||
0.5<D≤0.6 | 勉强协调发展型 Reluctantly coordinated development | P(y)/S(x) | 勉强协调发展类土壤滞后型 Barely coordinated development of the type of soil lag |
0.8≤P(y)/S(x)≤1.2 | 勉强协调发展类植被土壤同步型 The barely coordinated development of vegetation-soil synchrony type | ||
P(y)/S(x) | 勉强协调发展类植被滞后型 Reluctantly coordinated development type vegetation lag type | ||
0.6<D≤0.7 | 初级协调发展型 Primary coordinated development type | P(y)/S(x) | 初级协调发展类土壤滞后型 Primary coordinated development type of soil lag type |
0.8≤P(y)/S(x)≤1.2 | 初级协调发展类植被土壤同步型 Primary coordinated development type vegetation soil synchronous type | ||
P(y)/S(x) | 初级协调发展类植被滞后型 Primary coordinated development type vegetation lag type | ||
0.7<D≤0.8 | 中级协调发展型 Intermediate coordinated development type | P(y)S(x) | 中级协调发展类土壤滞后型 Intermediate coordinated development type soil lag type |
0.8≤P(y)/S(x)≤1.2 | 中级协调发展类植被土壤同步型 Intermediate coordinated development type vegetation soil synchronous type | ||
P(y)/S(x) | 中级协调发展类植被滞后型 Intermediate coordinated development type vegetation lag type | ||
0.8<D≤0.9 | 良好协调发展型 Intermediate coordinated development type | P(y)/S(x) | 良好协调发展类土壤滞后型 Good coordinated development of soil lag type |
0.8≤P(y)/S(x)≤1.2 | 良好协调发展类植被土壤同步型 Good coordinated development of vegetation-soil synchronous type | ||
P(y)/S(x) | 良好协调发展类植被滞后型 Well-coordinated development of vegetation lag type | ||
0.9<D≤1 | 优质协调发展型 High quality coordinated development type | P(y)/S(x) | 优质协调发展类土壤滞后型 Quality coordinated development type of soil lag type |
0.8≤P(y)/S(x)≤1.2 | 优质协调发展类植被土壤同步型 High-quality coordinated development of vegetation and soil synchronous type | ||
P(y)/S(x)<0.8 | 优质协调发展类植被滞后型 Quality and coordinated development type vegetation lag type |
Table 3 Classification of coupling types of soil-vegetation systems
D | 水平类型类 Horizontal type | P(y)与S(x)对比关系 P(y) versus S(x) | 植被土壤耦合协调类型 Vegetation and soil coupling coordination type |
---|---|---|---|
0<D≤0.1 | 极度失调衰退型 Extremely maladjusted recession | P(y)/S(x) | 极度失调衰退类植被损益型 Extremely maladjusted recession vegetation loss type |
0.8≤P(y)/S(x)≤1.2 | 极度失调衰退类植被土壤共损型 Extremely maladjusted declining vegetation soil co-loss type | ||
P(y)/S(x) | 极度失调衰退类土壤损益型 Extremely maladjusted recession type soil profit and loss type | ||
0.1<D≤0.2 | 严重失调衰退型 Serious disorder recession type | P(y)/S(x) | 严重失调衰退类植被损益型 Severe disorder and decline of vegetation loss type |
0.8≤P(y)/S(x)≤1.2 | 严重失调衰退类植被土壤共损型 Soil co-loss type of seriously disordered and declining vegetation | ||
P(y)/S(x) | 严重失调衰退类土壤损益型 Serious disorder decline type of soil profit and loss type | ||
0.2<D≤0.3 | 中度失调衰退型 Moderate disorder recession type | P(y)/S(x) | 中度失调衰退类植被损益型 Moderately disordered declining vegetation loss type |
0.8≤P(y)/S(x)≤1.2 | 中度失调衰退类植被土壤共损型 Soil co-loss type of moderately disordered declining vegetation | ||
P(y)/S(x) | 中度失调衰退类土壤损益型 Soil profit and loss type of moderate disorder decline | ||
0.3<D≤0.4 | 轻度失调衰退型 Mild disorder recession type | P(y)/S(x) | 轻度失调衰退类植被损益型 Gain and loss type of mildly maladjusted declining vegetation |
0.8≤P(y)/S(x)≤1.2 | 轻度失调衰退类植被土壤共损型 Soil co-loss type of mildly disordered and declining vegetation | ||
P(y)/S(x) | 轻度失调衰退类土壤损益型 Slight disorder and decline of soil profit and loss type | ||
0.4<D≤0.5 | 濒临失调衰退型 Mild disorder recession type | P(y)/S(x) | 濒临失调衰退类植被损益型 On the verge of disorderly decline vegetation loss type |
0.8≤P(y)/S(x)≤1.2 | 濒临失调衰退类植被土壤共损型 Soil co-loss type of vegetation on the verge of disorderly decline | ||
P(y)/S(x) | 濒临失调衰退类土壤损益型 On the verge of disordered decline type of soil profit and loss type | ||
0.5<D≤0.6 | 勉强协调发展型 Reluctantly coordinated development | P(y)/S(x) | 勉强协调发展类土壤滞后型 Barely coordinated development of the type of soil lag |
0.8≤P(y)/S(x)≤1.2 | 勉强协调发展类植被土壤同步型 The barely coordinated development of vegetation-soil synchrony type | ||
P(y)/S(x) | 勉强协调发展类植被滞后型 Reluctantly coordinated development type vegetation lag type | ||
0.6<D≤0.7 | 初级协调发展型 Primary coordinated development type | P(y)/S(x) | 初级协调发展类土壤滞后型 Primary coordinated development type of soil lag type |
0.8≤P(y)/S(x)≤1.2 | 初级协调发展类植被土壤同步型 Primary coordinated development type vegetation soil synchronous type | ||
P(y)/S(x) | 初级协调发展类植被滞后型 Primary coordinated development type vegetation lag type | ||
0.7<D≤0.8 | 中级协调发展型 Intermediate coordinated development type | P(y)S(x) | 中级协调发展类土壤滞后型 Intermediate coordinated development type soil lag type |
0.8≤P(y)/S(x)≤1.2 | 中级协调发展类植被土壤同步型 Intermediate coordinated development type vegetation soil synchronous type | ||
P(y)/S(x) | 中级协调发展类植被滞后型 Intermediate coordinated development type vegetation lag type | ||
0.8<D≤0.9 | 良好协调发展型 Intermediate coordinated development type | P(y)/S(x) | 良好协调发展类土壤滞后型 Good coordinated development of soil lag type |
0.8≤P(y)/S(x)≤1.2 | 良好协调发展类植被土壤同步型 Good coordinated development of vegetation-soil synchronous type | ||
P(y)/S(x) | 良好协调发展类植被滞后型 Well-coordinated development of vegetation lag type | ||
0.9<D≤1 | 优质协调发展型 High quality coordinated development type | P(y)/S(x) | 优质协调发展类土壤滞后型 Quality coordinated development type of soil lag type |
0.8≤P(y)/S(x)≤1.2 | 优质协调发展类植被土壤同步型 High-quality coordinated development of vegetation and soil synchronous type | ||
P(y)/S(x)<0.8 | 优质协调发展类植被滞后型 Quality and coordinated development type vegetation lag type |
林分类型 Stand type | 容重 Bulk density/ (g∙cm-3) | 孔隙度Porosity/% | 含水率 Moisture conten/ % | w(全氮Total nitrogen)/ (g∙kg-1) | w(全钾Total potassium)/ (g∙kg-1) | w(全磷Total phosphorus)/ (g∙kg-1) | w(有机碳Organic carbon)/ (g∙kg-1) |
---|---|---|---|---|---|---|---|
侧柏 Platycladus orientalis (L.)Franco | 1.45±0.04ab | 47.03±2.30a | 7.64±1.12a | 0.95±0.53ab | 14.43±8.16a | 0.54±0.22ab | 3.54±0.64a |
柠条 Caragana korshinskii Kom. | 1.39±0.05b | 47.9±2.14a | 10.32±1.17a | 0.49±0.05b | 9.47±0.55a | 0.36±0.06b | 2.66±0.07ab |
长梗扁桃 Amygdalus pedunculata Pall | 1.42±0.22ab | 46.5±8.11a | 12.37±4.13a | 0.66±0.06ab | 15.44±1.88a | 0.43±0.08b | 2.69±0.16ab |
山杨 Populus davidiana Dode | 1.56±0.08ab | 41.09±3.30ab | 11.56±6.49a | 1.31±0.30a | 18.84±4.530a | 0.66±0.09ab | 3.07±0.84ab |
虎榛子 Ostryopsis davidiana Decaisne | 1.44±0.22ab | 45.6±8.38a | 11.35±3.15a | 0.81±0.44ab | 15.87±8.58a | 0.54±0.29ab | 2.42±0.09ab |
黄刺玫 Rosa xanthina Lindl. | 1.48±0.09ab | 41.9±4.04ab | 8.77±4.29a | 1.02±0.09ab | 19.11±0.45a | 0.66±0.04ab | 2.65±0.09ab |
撂荒地 Abandoned field | 1.63±0.09a | 31.12±2.59b | 7.59±1.08a | 0.35±0.04b | 7.33±2.64a | 0.89±0.07a | 2.27±0.14b |
Table 4 The different of soil index layer in different artifical stand types
林分类型 Stand type | 容重 Bulk density/ (g∙cm-3) | 孔隙度Porosity/% | 含水率 Moisture conten/ % | w(全氮Total nitrogen)/ (g∙kg-1) | w(全钾Total potassium)/ (g∙kg-1) | w(全磷Total phosphorus)/ (g∙kg-1) | w(有机碳Organic carbon)/ (g∙kg-1) |
---|---|---|---|---|---|---|---|
侧柏 Platycladus orientalis (L.)Franco | 1.45±0.04ab | 47.03±2.30a | 7.64±1.12a | 0.95±0.53ab | 14.43±8.16a | 0.54±0.22ab | 3.54±0.64a |
柠条 Caragana korshinskii Kom. | 1.39±0.05b | 47.9±2.14a | 10.32±1.17a | 0.49±0.05b | 9.47±0.55a | 0.36±0.06b | 2.66±0.07ab |
长梗扁桃 Amygdalus pedunculata Pall | 1.42±0.22ab | 46.5±8.11a | 12.37±4.13a | 0.66±0.06ab | 15.44±1.88a | 0.43±0.08b | 2.69±0.16ab |
山杨 Populus davidiana Dode | 1.56±0.08ab | 41.09±3.30ab | 11.56±6.49a | 1.31±0.30a | 18.84±4.530a | 0.66±0.09ab | 3.07±0.84ab |
虎榛子 Ostryopsis davidiana Decaisne | 1.44±0.22ab | 45.6±8.38a | 11.35±3.15a | 0.81±0.44ab | 15.87±8.58a | 0.54±0.29ab | 2.42±0.09ab |
黄刺玫 Rosa xanthina Lindl. | 1.48±0.09ab | 41.9±4.04ab | 8.77±4.29a | 1.02±0.09ab | 19.11±0.45a | 0.66±0.04ab | 2.65±0.09ab |
撂荒地 Abandoned field | 1.63±0.09a | 31.12±2.59b | 7.59±1.08a | 0.35±0.04b | 7.33±2.64a | 0.89±0.07a | 2.27±0.14b |
林分类型 Stand type | Margalef 指数 Margalef index | Simpson 指数 Simpson index | Shannon-wiener 指数 Shannon-wiener index | Pielou 指数 Pielou index | 生物量 Biomass/(t∙hm-2) |
---|---|---|---|---|---|
侧柏 Platycladus orientalis (L.) Franco | 1.16±0.06ab | 0.81±0.03a | 1.84±0.23a | 0.90±0.07a | 5.66±2.09a |
柠条 Caragana korshinskii Kom. | 1.5±0.31ab | 0.88±0.08a | 2.28±0.15a | 0.88±0.06a | 0.06±0.01b |
长梗扁桃 Amygdalus pedunculata Pall | 1.2±0.15ab | 0.80±0.05a | 1.75±0.33a | 0.82±0.12ab | 0.23±0.06b |
山杨 Populus davidiana Dode | 1.25±0.19ab | 0.79±0.03a | 1.84±0.11a | 0.78±0.03ab | 5.18±1.21a |
虎榛子 Ostryopsis davidiana Decaisne | 1.78±0.58a | 0.84±0.07a | 2.23±0.61a | 0.87±0.07a | 0.04±0.03b |
黄刺玫 Rosa xanthina Lindl. | 1.23±0.11ab | 0.82±0.02a | 2.06±0.08a | 0.87±0.06a | 0.03±0.02b |
撂荒地 Abandoned field | 0.93±0.06b | 0.60±0.05b | 1.64±0.04a | 0.62±0.04b | 0.02±0.002b |
Table 5 The different vegetation index layer among different artificial stand types
林分类型 Stand type | Margalef 指数 Margalef index | Simpson 指数 Simpson index | Shannon-wiener 指数 Shannon-wiener index | Pielou 指数 Pielou index | 生物量 Biomass/(t∙hm-2) |
---|---|---|---|---|---|
侧柏 Platycladus orientalis (L.) Franco | 1.16±0.06ab | 0.81±0.03a | 1.84±0.23a | 0.90±0.07a | 5.66±2.09a |
柠条 Caragana korshinskii Kom. | 1.5±0.31ab | 0.88±0.08a | 2.28±0.15a | 0.88±0.06a | 0.06±0.01b |
长梗扁桃 Amygdalus pedunculata Pall | 1.2±0.15ab | 0.80±0.05a | 1.75±0.33a | 0.82±0.12ab | 0.23±0.06b |
山杨 Populus davidiana Dode | 1.25±0.19ab | 0.79±0.03a | 1.84±0.11a | 0.78±0.03ab | 5.18±1.21a |
虎榛子 Ostryopsis davidiana Decaisne | 1.78±0.58a | 0.84±0.07a | 2.23±0.61a | 0.87±0.07a | 0.04±0.03b |
黄刺玫 Rosa xanthina Lindl. | 1.23±0.11ab | 0.82±0.02a | 2.06±0.08a | 0.87±0.06a | 0.03±0.02b |
撂荒地 Abandoned field | 0.93±0.06b | 0.60±0.05b | 1.64±0.04a | 0.62±0.04b | 0.02±0.002b |
林分类型 Stand type | P(y) | S(x) | P(y)/S(x) | C | D | 土壤-植被耦合模式 Soil-vegetation coupling model |
---|---|---|---|---|---|---|
侧柏 Platycladus orientalis (L.)Franco | 0.1639 | 0.3336 | 0.4913 | 0.7808 | 0.4398 | 濒临失调衰退类土壤损益型 On the verge of disordered decline type of soil profit and loss type |
柠条 Caragana korshinskii Kom. | 0.2226 | 0.2775 | 0.8022 | 0.9939 | 0.4985 | 濒临失调衰退类植被土壤共损型 Soil co-loss type of vegetation on the verge of disorderly decline |
长梗扁桃 Amygdalus pedunculata Pall | 0.1477 | 0.3410 | 0.4331 | 0.7120 | 0.4171 | 濒临失调衰退类土壤损益型 On the verge of disordered decline type of soil profit and loss type |
山杨 Populus davidiana Dode | 0.1488 | 0.3130 | 0.4754 | 0.7630 | 0.4197 | 濒临失调衰退类土壤损益型 On the verge of disordered decline type of soil profit and loss type |
虎榛子 Ostryopsis davidiana Decaisne | 0.1519 | 0.3866 | 0.3929 | 0.6792 | 0.4277 | 濒临失调衰退类土壤损益型 On the verge of disordered decline type of soil profit and loss type |
黄刺玫 Rosa xanthina Lindl. | 0.1313 | 0.2776 | 0.4730 | 0.7604 | 0.3943 | 轻度失调衰退类土壤损益型 Slight disorder and decline of soil profit and loss type |
撂荒地 Abandoned field | 0.0594 | 0.1605 | 0.3303 | 0.8880 | 0.2970 | 中度失调衰退类土壤损益型 Soil profit and loss type of moderate disorder decline |
Table 6 Evaluation of coupling coordination relationship between soil and vegetation systems in different artificial stands for ecological restoration
林分类型 Stand type | P(y) | S(x) | P(y)/S(x) | C | D | 土壤-植被耦合模式 Soil-vegetation coupling model |
---|---|---|---|---|---|---|
侧柏 Platycladus orientalis (L.)Franco | 0.1639 | 0.3336 | 0.4913 | 0.7808 | 0.4398 | 濒临失调衰退类土壤损益型 On the verge of disordered decline type of soil profit and loss type |
柠条 Caragana korshinskii Kom. | 0.2226 | 0.2775 | 0.8022 | 0.9939 | 0.4985 | 濒临失调衰退类植被土壤共损型 Soil co-loss type of vegetation on the verge of disorderly decline |
长梗扁桃 Amygdalus pedunculata Pall | 0.1477 | 0.3410 | 0.4331 | 0.7120 | 0.4171 | 濒临失调衰退类土壤损益型 On the verge of disordered decline type of soil profit and loss type |
山杨 Populus davidiana Dode | 0.1488 | 0.3130 | 0.4754 | 0.7630 | 0.4197 | 濒临失调衰退类土壤损益型 On the verge of disordered decline type of soil profit and loss type |
虎榛子 Ostryopsis davidiana Decaisne | 0.1519 | 0.3866 | 0.3929 | 0.6792 | 0.4277 | 濒临失调衰退类土壤损益型 On the verge of disordered decline type of soil profit and loss type |
黄刺玫 Rosa xanthina Lindl. | 0.1313 | 0.2776 | 0.4730 | 0.7604 | 0.3943 | 轻度失调衰退类土壤损益型 Slight disorder and decline of soil profit and loss type |
撂荒地 Abandoned field | 0.0594 | 0.1605 | 0.3303 | 0.8880 | 0.2970 | 中度失调衰退类土壤损益型 Soil profit and loss type of moderate disorder decline |
[1] |
YANG Z P, ZHANG Q, WANG Y L, et al., 2011. Spatial and temporal variability of soil properties under Caragana microphylla shrubs in the northwestern Shanxi Loess Plateau, China[J]. Journal of Arid Environments, 75(6): 538-544.
DOI URL |
[2] |
MAZZACAVALLO M G, ANDREW K, MATTHEW C, et al., 2017. Modelling water uptake provides a new perspective on grass and tree coexistence[J]. Land Degradation and Development, 28(1): 309.
DOI URL |
[3] | 李利平, 1993. 九峰山地区的生物资源及其保护[J]. 资源开发与保护, 9(4): 275-277. |
LI L P, 1993. Resources of Living-Things and Its Protection in Jiufengshan area[J]. Resources Development and Conservation, 9(4):275-277. | |
[4] | 费玲, 钟全林, 程栋梁, 等, 2016. 天然阔叶林与杉木人工林灌木层地上地下生物量的分配关系[J]. 林业科学, 52(3): 97-104. |
FEI L, ZHONG Q L, CHENG D L, et al., 2016. Biomass Allocation Between Aboveground-and Underground of shrub Layer Vegetation in Natural Evergreen Broad-Leaved Forest and Chinese Fir Plantation[J]. Scientia Silvae Sinicae, 52(3): 97-104. | |
[5] | 温晶, 张秋良, 李嘉悦, 等, 2019. 间伐强度对兴安落叶松林林下植被多样性及生物量的影响[J]. 中南林业科技大学学报, 39(5): 95-100. |
WEN J, ZHANG Q L, LI J Y, et al., 2019. Effects of thinning intensity on diversity of undergrowth vegetation and biomass in Larix gmelini forest[J]. Journal of Central South University of Forestry & Technology, 39(5): 95-100. | |
[6] | 马国飞, 满苏尔·沙比提, 靳万贵, 2017. 天山南坡台兰河上游草地土壤理化性质与海拔的关系研究[J]. 土壤通报, 48(3): 597-603. |
MA G F, MAN S E, JIN W G, 2017. Physical and chemical properties of grassland soils in the upper reaches of Tailan River on the southern slope of Tianshan Mountain A study of the relationship between altitudes[J]. Chinese Journal of Soil Science, 48(3): 597-603. | |
[7] | 刘俊廷, 2020. 晋西黄土区恢复年限对林下植被多样性及土壤理化性质的影响[D]. 北京: 北京林业大学. |
LIU J T, 2020. The effect vegetation recovery on the diversity of undergrowth vegetation and the physical and chemical properties of soil in the Loess Plateau of Western Shanxi Province.[D]. Beijing: Beijing Forestry University. | |
[8] | 李霖, 2019. 山西尖山铁尾矿库坝复垦地植被-土壤耦合关系研究[D]. 太原: 山西大学. |
LI L, 2019. Vegetation-Soil Coupling Relationship on a Reclaimed Tailings Dam of Jianshan Iron Mine in Shanxi[D]. Taiyuan: Shanxi University. | |
[9] | 汤佳, 2016. 九峰山森林公园核心景区森林景观资源评价与开发利用对策[J]. 园艺与种苗 (10): 60-63. |
TANG J, 2016. Forest Landscape Resource Evaluation of the Main Scenic Spots in Nine Peaks Forest Park and Development and Utilization of Countermeasures[J]. Horticulture & Seed (10): 60-63. | |
[10] | 彭晚霞, 宋同清, 曾馥平, 等, 2011. 喀斯特峰丛洼地退耕还林还草工程的植被土壤耦合协调度模型[J]. 农业工程学报, 27(9): 305-310. |
PENG W X, SONG G Q, ZENG F P, et al., 2011. The coupling coordination degree model of vegetation and soil in the project of converting farmland to forest and grassland in karst peak-cluster depression[J]. Transactions of the Chinese Society of Agricultural Engineering, 27(9): 305-310. | |
[11] | 李豪, 卢纪元, 魏天信, 等, 2019. 陕北黄土高原不同微地形下植被-土壤系统耦合特征研究[J]. 四川农业大学学报, 37(2): 53-59, 75. |
LI H, LU J Y, WEI T X, et al., 2019. Evaluation on Coupling Characteristics of Vegetation and Soil Systems under Different Microrelief in Loess Plateau of Northern Shaanxi Province[J]. Journal of Sichuan Agricultural University, 37(2): 53-59, 75. | |
[12] | 唐李斌, 吴基文, 毕尧山, 等, 2020. 基于AHP–熵权法耦合的含水层富水性评价研究[J]. 中国矿业, 29(12): 147-152. |
TRANG S B, WU J W, BI Y S, et al., 2020. Evaluation of aquifer water abundance based on AHP-entropy weight method[J]. China Mining Magazine, 29(12): 147-152. | |
[13] | 焦菊英, 马祥华, 白文娟, 等, 2005. 黄土丘陵沟壑区退耕地植物群落与土壤环境因子的对应分析[J]. 土壤学报, 42(5): 744-752. |
JIAO J Y, MA X H, BAI W J, et al., 2005. Corresponding Analysis of Plant Colony and Soil Environment Factors in Retreated Farmland of Loess Soil in Hilly and Gully Area[J]. Acta Pedologica Sinica, 42(5): 744-752. | |
[14] | 陈萍, 陈晓玲, 2011. 鄱阳湖生态经济区农业系统的干旱脆弱性评价[J]. 农业工程学报, 27(8): 8-13. |
CHEN P, CHEN X L, 2011. Drought Vulnerability Assessment of Agricultural System in Poyang Lake Ecological Economic Zone[J]. Transactions of the Chinese Society of Agricultural Engineering, 27(8): 8-13. | |
[15] | 王明全, 王金达, 刘景双, 等, 2009. 吉林省西部生态支撑能力与社会经济发展的动态耦合[J]. 应用生态学报, 20(1): 170-176. |
WANG M Q, WANG J D, LIU J S, et al., 2009. Dynamic coupling between ecological supporting capacity and social and economic development in western Jilin Province[J]. Chinese Journal of Applied Ecology, 20(1): 170-176. | |
[16] | 徐明, 张健, 刘国彬, 等, 2016. 不同植被恢复模式沟谷地植被-土壤系统耦合关系评价[J]. 自然资源学报, 31(12): 2137-2146. |
XU M, ZHANG J, LIU G B, et al., 2016. Different vegetation restoration models in gully vegetation-soil system Evaluation of coupling relationship[J]. Journal of Natural Resources, 31(12): 2137-2146. | |
[17] | 南国卫, 赵满兴, 王月月, 等, 2021. 不同退耕类型土壤-植被系统耦合度协调关系评价[J]. 干旱区资源与环境, 32(5): 157-162. |
NAN G W, ZHAO M X, WANG Y Y, et al., 2021. Evaluation of coupling degree coordination between soil and vegetation systems under different types of farmland conversion[J]. Journal of Arid Land Resources and Environment, 32(5): 157-162. | |
[18] | 张艳, 赵廷宁, 史长青, 等, 2013. 坡面植被恢复过程中植被与土壤特征评价[J]. 农业工程学报, 29(3): 124-131. |
ZHANG Y, ZHAO T N, SHI C Q, et al., 2013. Evaluation of vegetation and soil characteristics during slope vegetation recovery procedure[J]. Transactions of the Chinese Society of Agricultural Engineering, 29(3): 124-131. | |
[19] | 王淑佳, 孔维, 任亮, 等, 2021. 国内耦合协调度模型的误区及修正[J]. 自然资源学报, 36(3): 793-810. |
WANG S J, KONG L, REN L, et al., 2021. Research on misuses and modification of coupling coordination degree model in China[J]. Journal of Natural Resources, 36(3): 793-810.
DOI URL |
|
[20] | 余轩, 王兴, 吴婷, 等, 2021. 荒漠草原植物多样性恢复与土壤生境的关系[J]. 生态学报, 41(21): 1-9. |
YU X, WANG X, WU T, et al., 2021. Relationship between restoration of plant diversity and soil habitat in desert steppe[J]. Acta Ecologica Sinica, 41(21): 1-9.
DOI URL |
|
[21] | 王云强, 邵明安, 刘志鹏, 等, 2012. 黄土高原区域尺度土壤水分空间变异性[J]. 水科学进展, 23(3): 310-316. |
WANG Y Q, SHAO M A, LIU Z P, et al., 2021. Spatial variability of soil moisture at a regional scale in the Loess Plateau[J]. Advances in Water Science, 23(3): 310-316. | |
[22] | 张建华, 马成仓, 刘志宏, 等, 2011. 干旱荒漠区狭叶锦鸡儿灌丛扩展对策[J]. 生态学报, 31(8): 2132-2138. |
ZHANG J H, MA C C, LIU Z H, et al., 2011. Expansion strategies of Caragana stenophylla in the arid desert region[J]. Acta Ecologica Sinica, 31(8): 2132-2138. | |
[23] | 刘佳楠, 常海涛, 赵娟, 等, 2019. 宁夏荒漠草原柠条锦鸡儿枯落物分解特征及其影响因素[J]. 生态学报, 39(11): 4039-4048. |
LIU J N, CHANG H T, ZHAO J, et al., 2019. Litter decomposition rate of the Caragana korshinskii shrub: influencing factors in the desertified grassland ecosystems of Ningxia[J]. Acta Ecologica Sinica, 39(11): 4039-4048. | |
[24] | 闫海龙, 张希明, 许浩, 等, 2010. 塔里木沙漠公路防护林3种植物光合特性对干旱胁迫的响应[J]. 生态学报, 30(10): 2519-2528. |
YAN H L, ZHANG X M, XU H, et al., 2010. Photosynthetic characteristics responses of three plants to drought stress in Tarim Desert Highway shelter- belt[J]. Acta Ecologica Sinica, 30(10): 2519-2528. | |
[25] | 王树森, 孟凡旭, 赵波, 等, 2020. 大青山阳坡五种灌木叶片解剖结构及其抗旱性研究[J]. 中国农业科技导报, 22(1): 38-44. |
WANG S S, MENG F B, ZHAO B, et al., 2020. Leaf Anatomic Structure of Five Shrubs and Its Effects on Drought Tolerance in Sunny Slope of Daqing Mountain[J]. Journal of Agricultural and Technology, 22(1): 38-44. | |
[26] | 王芳, 高甲荣, 朱继鹏, 等, 2006. 晋西黄土高原三种灌木的根构型研究[J]. 干旱地区农业研究, 24(5): 146-150. |
WANG F, GAO J R, ZHU J P, et al., 2006. Root architecture characteristics of three species of shrubbery in the Loess Plateau of western Shanxi[J]. Agricultural Research in the Arid Areas, 24(5): 146-150. |
[1] | WANG Xuemei, YANG Xuefeng, ZHAO Feng, AN Baisong, HUANG Xiaoyu. Estimation of Aboveground Biomass in the Arid Oasis Based on the Machine Learning Algorithm [J]. Ecology and Environment, 2023, 32(6): 1007-1015. |
[2] | DU Dandan, GAO Ruizhong, FANG Lijing, XIE Longmei. Spatial Variation of Soil Heavy Metals and Their Responses to Physicochemical Factors of Salt Lake Basin in Arid Area [J]. Ecology and Environment, 2023, 32(6): 1123-1132. |
[3] | LI Chuanfu, ZHU Taochuan, MING Yufei, YANG Yuxuan, GAO Shu, DONG Zhi, LI Yongqiang, JIAO Shuying. Effect of Organic Fertilizer and Desulphurized Gypsum on Soil Aggregates and Organic Carbon and Its Fractions Contents in the Saline-alkali Soil of the Yellow River Delta [J]. Ecology and Environment, 2023, 32(5): 878-888. |
[4] | CHEN Junfang, WU Xian, LIU Xiaolin, LIU Juan, YANG Jiarong, LIU Yu. Shaping Characteristics of Elemental Stoichiometry on Microbial Diversity under Different Soil Water Contents [J]. Ecology and Environment, 2023, 32(5): 898-909. |
[5] | DONG Zhijin, ZHANG Chengchun, ZHAN Xiuli, ZHANG Weifu. Spatial Distribution Characteristics of Soil Nutrients of Biological Soil Crusts and Their Underlying Soil of Sandy Land in the East of Yellow River in Ningxia [J]. Ecology and Environment, 2023, 32(5): 910-919. |
[6] | ZHOU Qinyuan, DONG Quanmin, Wang Fangcao, LIU Yuzhen, FENG Bin, YANG Xiaoxia, YU Yang, ZHANG Chunping, CAO Quan, LIU Wenting. Effects of Mixed Grazing on Aggregates and Organic Carbon in Rhizosphere Soil of Stellera chamaejasme in Alpine Grassland [J]. Ecology and Environment, 2023, 32(4): 660-667. |
[7] | PAN Yuling, QU Xiangning, LI Qing, WANG Lei, WANG Xiaoping, TAN Peng, CUI Geng, AN Yu, TONG Shouzheng. Spatial Distribution Characteristics of Soil Physicochemical Factors and Their Response to Microtopography in a Typical Beach Wetland of the Yellow River in Ningxia [J]. Ecology and Environment, 2023, 32(4): 668-677. |
[8] | ZHAO Weibin, TANG Li, WANG Song, LIU Lingling, WANG Shufeng, XIAO Jiang, CHEN Guangcai. Improvement Effect of Two Biochars on Coastal Saline-Alkaline Soil [J]. Ecology and Environment, 2023, 32(4): 678-686. |
[9] | FENG Shuna, LÜ Jialong, HE Hailong. Effect of KI Leaching on the Hg (Ⅱ) Removal of Loess Soil and the Physicochemical Properties of the Soil [J]. Ecology and Environment, 2023, 32(4): 776-783. |
[10] | CHEN Minyi, ZHU Hanghai, SHE Weiduo, YIN Guangcai, HUANG Zuzhao, YANG Qiaoling. Health Risk Assessment and Source Apportionment of Soil Heavy Metals at A Legacy Shipyard Site in Pearl River Delta [J]. Ecology and Environment, 2023, 32(4): 794-804. |
[11] | LI Hui, LI Bilong, GE Lili, HAN Chenhui, YANG Qian, ZHANG Yuejun. Temporal and Spatial Characteristics of Vegetation Evolution and Topographic Effects in Fenhe River Basin from 2000 to 2021 [J]. Ecology and Environment, 2023, 32(3): 439-449. |
[12] | ZHANG Lin, QI Shi, ZHOU Piao, WU Bingchen, ZHANG Dai, ZHANG Yan. Study on Influencing Factors of Soil Organic Carbon Content in Mixed Broad-leaved and Coniferous Forests Land in Beijing Mountainous Areas [J]. Ecology and Environment, 2023, 32(3): 450-458. |
[13] | QIN Hao, LI Mengai, GAO Jin, CHEN Kailong, ZHANG Yinbo, ZHANG Feng. Composition and Diversity of Soil Bacterial Communities in Shrub at Different Altitudes in Luya Mountain [J]. Ecology and Environment, 2023, 32(3): 459-468. |
[14] | TANG Haiming, SHI Lihong, WEN Li, CHENG Kaikai, LI Chao, LONG Zedong, XIAO Zhiwu, LI Weiyan, GUO Yong. Effects of Different Long-term Fertilizer Managements on Rhizosphere Soil Nitrogen in the Double-cropping Rice Field [J]. Ecology and Environment, 2023, 32(3): 492-499. |
[15] | LIU Kanghan, ZHENG Liugen, ZHANG Liqun, DING Dan, SHAN Shifeng. Effect of Complex Plant Derived Activator on the Remediation of As Contaminated Soil by Pteris vittata [J]. Ecology and Environment, 2023, 32(3): 635-642. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn